1/10/2014

Power Electronic Circuits

Prof. Daniel Costinett

ECE 482 Lecture 2
January 10, 2014

Power Electronics in EVs
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PHEV/EV Drivetrain

Battery Management System

+ Vpack -

¢ BMS monitors batteries to ensure operation within safe limits of

¢ Charge/discharge current
¢ State-of-Charge (SOC)
¢ (Temperature, SOH, ...)
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Battery Mismatch
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resistance, capacity, operating temperature, health, or dynamics

EV battery consists of many (100’s) series battery cells (LFP, Li-ion, NiMH)
Cells share a charging and discharging current, but may have mismatches in series

Cells binned by manufacturer to limit mismatch at beginning-of-life
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¢ Discharge is limited by the first cell to reach the minimum allowable State-of-

Charge (SOC).
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Battery Management System
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¢ Discharge is limited by the first cell to reach the minimum allowable State-of-
Charge (SOC).
* Effective pack capacity limited to the capacity of the lowest cell (in Amp-hours)

Battery Management System
]

Uncharged
Capacity

+ Vpack

¢ When recharged, charging is stopped when the first cell reaches maximum
capacity, leading to incomplete charging of some cells and lower total pack
capacity
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Battery Management System
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e Option 1: Dissipate, then recharge
e Repeat a number of cycles to balance all cells at full chargs
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(Optional) Bidirectional DC-DC
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* A DC-DC converter to boost
battery voltage is included in
many EVs

* Allows higher n operation
of ED

e Wider operating range

e Lower pack voltage

Torgque (N m)

Reference: Oak Ridge National Lab, “Benchmarking of Competitive Technologies”

DC-AC Motor Drive
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e Motor drive generates three, 120° out of phase
signals to drive motor windings

¢ Individually operate as three individual electronic
power converters
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Growing Popularity of E-bikes

Electric Bicycle Sales by Region, World Markets: 2012-2018
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(Source: Pike Research)
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Electric Bicycles Worldwide

* E-bikes accounted for $6.9 billion in revenue in 2012

* By utilizing sealed lead-acid (SLA) batteries, the cost of e-
bicycles in China averages about $167 (compared to $815 in
North America and $1,546 in Western Europe)

* China accounts for 90% of world market

* Western Europe accounts for majority of remaining 10%
despite $1,546 average cost

* North America: 89,000 bicycles sold in 2012
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Electric Bicycle Platform

Power Conversion
Battery and Control

Electric Motor

Electric Bicycle System
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System Structure

Battery Boost | 3'3’ / Motor
H nverter 0
C(l))ncv_t?r(t:er Driver
BMS
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D VUt 916 labc
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PWM 3-6 PWM | _ Bepc
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N N
Throttle
Filtering Vief
Brake and f
Control ref
Battery Motor
BMS
6

Identification and characterization of motor

Modeling of system using simulink
Derivation of model parameters from experimental data
Specification of performance for power electronics

abc
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Experiment 2

Battery Boost Motor
DC-DC
BMS Converter
of Vo
abc
¢ Open-loop operation of Boost converter
¢ Inductor design
¢ Converter construction and efficiency analysis
¢ Bidirectional operation using voltage source / resistive load
Battery Boost Motor
DC-DC
BMS Converter
D VGU[’
\4
PWM Bt
Controller
A
Vref

¢ Closed loop operation of boost converter
¢ Feedback loop design and stability analysis
¢ Analog control of PWM converters
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Experiment 4/5

Battery Boost | 3'3’ / Motor
DC-DC ‘ ' nverter 0
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BMS
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Controller Controller
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¢ Circuit layout and PCB design
¢ Device selection and implementation according to loss analysis
e Basic control of BLDC motors
Battery Boost 3-¢ Motor
DCDC [y '“I‘;e,rter/ ma
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System-level control techniques
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Example System Implementation
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e System improvements
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¢ No final exam

* Demo operational electric bicycles with
system improvements

e Competition to determine the most efficient
and well-controlled system
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Electric Bicycle Safety and Law

Traffic Law:

* Electric motor with power output not more than
1000 W

* Not capable of propelling or assisting at greater
than 20 mph

No helmet laws for riders over age 16; you
may request one at any time

Read Tennessee bicycle safety laws on website

General Safety

Lab will work with high voltages (Up to 100 V)

Will use various machinery with high power
moving parts

Use caution at all times
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Introduction to Vehicle Dynamics

Vehicle as a Feedback Sytem
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Basic Vehicle Dynamics

Angle of inclination

a= tanl(Hj
L

Slope or “grade”

(1)

g =9.81m/s?

Air density

p=1.204 kg/m?
Rolling resistance
coefficient C,

Aerodynamic drag
coefficient C4
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Rolling resistance coefficient C,

Aerodynamic drag coefficient
Cy

Reference: Mehrdad Ehsani, Yimin Gao, Sebastien E .Gay, and Ali
Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, CRC
Press 2004,

Chapter 2

Rolling Resistance Coefficients

Conditions

Car tires on concrete or asphalt

Tar macadam

Unpaved road
Field

Truck tires on concrete or asphale
Wheels on rail

Vehicle Type

Rolling resistance coefficient

L1111k

ooz

0025

05
0.1-0.35
L006-0.01
0010002

Cosfficient of Asrodymanic Resistance

eGP PUR

ERTL A v
o Nimria R

Wedge-shaped body; headlamps
and bumpers are integrated into
the body, covered underbody,

optimized cooling air flow

G D Headlamp and all wheels in
body, covered underbody
K-shaped (small breakway
section)
(!
Optimum streamiined design
~

7
Trucks, road trains
Buses
Streamlined buses
Motorcycles

05-0.7

05-0.7

04-055

0.3-0.4

02-025

0.15-0.20

fLil

Typical Performance Specifications

*Cruising (v = const) specs
—Top cruising speed on a flat road: v,,,,
—Gradeability: ability to ascend a road of grade Z (in %) at a cruising speed V,,q,

*Acceleration specs

—Time t, it takes to accelerate from v, to v; Typical: v, = 0 mph to v,= 60 mph

(100 km/h) in t,seconds

1/10/2014
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Cruising on a flat road
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Acceleration Spec

F,— P AV ~CM,g

Engine Power Rating

P, z% '\t/lv (vb2 +vf2)+%,oclj,%vf3’+Cergvf
Example
M, = 1500 kg Acc. performace spec: 0-60 mphin/, =10s
€,=0.26
¢,=0.01 (P.)oores = TAKW (99 hp)
A,=2.16m2 e
x=4
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