Power Converter Simulation

ECE 482 Lecture 6
January 27, 2014

Announcements

e Lab report 1 due today

e This week: Continue Experiment 2
— Boost open-loop construction and modeling
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or
Analytical Loss Modeling

* High efficiency approximation is acceptable for hand
calculations, as long as it is justified
* Solve waveforms of lossless converter, then
calculate losses
* Alternate approach: average circuit
* Uses average, rather than RMS currents
* Difficult to include losses other than conduction
* Argue which losses need to be included, and which
may be neglected

or

Power Stage Losses
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o Magnetics Losses

Magnetic Device
Losses

Copper Loss Core Loss

AC Copper Loss Eddy Current

Proximity Fringing
Effect Flux

Skin Effect

High Frequency Losses

or
Inductor Core Loss

* Governed by Steinmetz 10
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Steinmetz Parameter Extraction
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Fig.7 Specific power loss for several
Fig.6 Specific power loss as a function of peak frequency/Hux density combinations
flux density with frequency as a parameter. as a function of temperature.

or

Ferroxcube Curve Fit Parameters

B i sl forsmulas is half she peak v peak flux excursion
in the care.

Power losses in our ferrites have been measured as a
function of frequency (f in Hz), peak flux density (B in
T) and temperature (T in "C). Core loss density can be
approximated @) by the following formula :

Peore=Cm-f* B Y. (cto-ct) T+t T2)  [3]

=Cn.Cr. fx° pr

Yo ImWiem]

Table 1: Fit parameters to calculate the power loss density
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—» NSE/iGSE

 More complex empirical loss models exist, and
remain valid for non-sinusoidal waveforms

* NSE/iGSE: 250
3
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NSE/iGSE Shortcut for Squarewaves

* For square wave excitation, the improved loss
model can be reduced to:

"“.i\r =___'t.f$_4_. _(3}

ﬁxfk'ﬁmnafdﬂ
0

Py =ky f*(aBY’ [(%]a +(1725]a(1—:9]] ©)

e Full Paper included on materials page of
website

Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.; , "Measurement and loss model of ferrites with non-sinusoidal waveforms," Power Electronics Specialists Conference,
2004. PESC 04. 2004 IEEE 35th Annual , vol.6, no., pp. 4814- 4818 Vol.6, 20-25 June 2004 doi: 10.1109/PESC.2004.1354851
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Inductor Design

=t Magnetics Losses

Magnetic Device
Losses

Copper Loss Core Loss

DC Copper Loss AC Copper Loss Eddy Current

Proximity Fringing
Effect Flux

Skin Effect

High Frequency Losses
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K, and K ;. Methods

* Two closed-form methods to solve for the optimal
inductor design under certain constraints/assumptions

* Neither method considers losses other than DC copper
and (possibly) steinmetz core loss

* Both methods particularly well suited to
spreadsheet/iterative design procedures

I A

Losses DC Copper DC Copper,
(specified) SE Core Loss
(optimized)
Saturation Specified Checked After
Box Specified Optimized

Kg Method Derivation

The four constraints:

[ L= _ oA, n?
nlmax:BmaxAc'ﬂg:Bmuxm - -J/i,)g - Eg
KMWAEMAW R: 7’1 (MLT)
Ay

These equations involve the quantities
A, W,, and MLT, which are functions of the core geometry,

uer B » Moo Ly Ky R, @and p, which are given specifications or
other known quantities, and

n, £, and Ay, which are unknowns.

Elimination of n, £g, and A
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Simulation Modeling

Circuit Simulation

* Matlab, Simulink, LTSpice
— Other tools accepted, but not supported
* Choose model type (switching, averaged,
/~=dynamic) —
e Supplement analytical work rather than
repeating it

* Show results which clearly demonstrate what
matches and what does not with respect to
experiments (i.e. ringing, slopes, etc.)
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LTSpice Modeling Examples

£ Custom_Model: Brample.raw

lib MUR815.lib
ib OptiMO S3_120V.lib

.tran 50u

e Example files added to course materials page

Custom Transistor Model

.model myD D{Ron=1m Roff=1G Vfwd=0.5)
.model mySw SW(Ron=10m Roff=1G Vt=0 Von=1 Voff = .5 )

<Cdr—
LDt oo Lo
7 7 [100p
/
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Manufacturer Device Model

» Text-only netlist model of device including
additional parasitics and temperature effects

e May slow or stop simulation if timestep and
accuracy are not adjusted appropriately

Full Switching Simulation

10



Switching Model Simulation Results

e Simulation Time ziES minutes s

Full Switching Model

* Gives valuable insight into circuit operation
— Understand expected waveforms
— ldentify discrepancies between predicted and
experimental operation
» Slow to simulate; significant high frequency
content

* Cannot AC analysis
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Averaged Switch Modeling: Motivation

. A. lqrge—SIgnal, nonI/nea.r model of cor.xverter is
difficult for hand analysis, but well suited to
simulation across a wide range of operating
points

* Want an averaged model to speed up
simulation speed

e Also allows linearization (AC analysis) for
. -—-\
control design

Nonlinear, Large-Signal Equations
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Nonlinear, Averaged Circuit
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Ingplementb@;cion in LTSpice
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Averaged switch model
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Averaged Switch Model
2

{L}

) [

.op

Averafed Model Wlth Losses

Vout
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