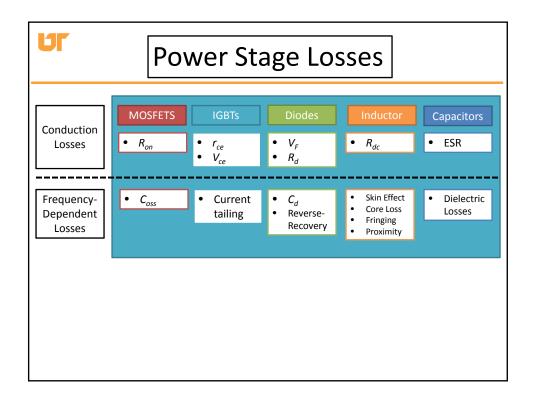


Power Converter Simulation

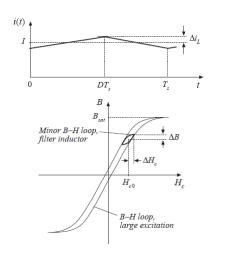
ECE 482 Lecture 6 January 27, 2014


Announcements

- Lab report 1 due today
- This week: Continue Experiment 2
 - Boost open-loop construction and modeling

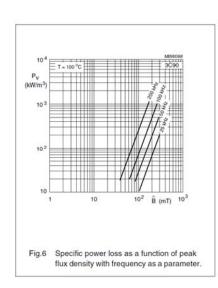
Analytical Loss Modeling

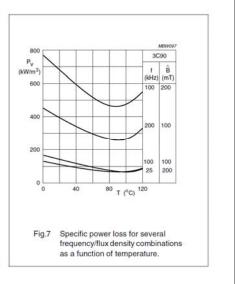
- High efficiency approximation is acceptable for hand calculations, as long as it is justified
 - Solve waveforms of lossless converter, then calculate losses
- Alternate approach: average circuit
 - Uses average, rather than RMS currents
 - Difficult to include losses other than conduction
- Argue which losses need to be included, and which may be neglected


Inductor Core Loss

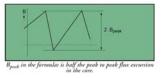
• Governed by Steinmetz Equation:

$$P_v = K_{fe} f_s^{\alpha} (\Delta B)^{\beta} \text{ [mW/cm}^3]$$


- Parameters K_{fe}, α, and β extracted from manufacturer data
- $\Delta B \propto \Delta i_L \rightarrow \text{small losses}$ with small ripple


$$P_{fe} = P_v A_c l_m \text{ [mW]}$$

U


Steinmetz Parameter Extraction

Ferroxcube Curve Fit Parameters

Power losses in our ferrites have been measured as a function of frequency (f in Hz), peak flux density (B in T) and temperature (T in $^{\circ}$ C). Core loss density can be approximated $^{(2)}$ by the following formula :

$$P_{core} = C_m \cdot f^x \cdot B_{peak}^y(ct_0-ct_1T+ct_2T^2)$$
 [3]

=
$$C_m \cdot C_T \cdot f^x \cdot B_{peak}^y$$
 [mW/cm³]

ferrite	f (kHz)	Cm	x	у	ct ₂	ct ₁	ct ₀		
3C30	20-100	7.13.10 ⁻³	1.42	3.02	3.65.10-4	6.65.10-2	4		
	100-200	7.13.10 ⁻³	1.42	3.02	4.10-4	6.8 .10 ⁻²	3.8		
3C90	20-200	3.2.10-3	1.46	2.75	1.65.10-4	3.1.10-2	2.45		
3C94	20-200	2.37.10 ⁻³	1.46	2.75	1.65.10-4	3.1.10-2	2.45		
	200-400	2.10-9	2.6	2.75	1.65.10-4	3.1.10-2	2.45		
3F3	100-300	0.25.10 ⁻³	1.63	2.45	0.79.10-4	1.05.10-2	1.26		
	300-500	2.10-5	1.8	2.5	0.77.10-4	1.05.10-2	1.28		
	500-1000	3.6.10-9	2.4	2.25	0.67.10-4	0.81.10-2	1.14		
3F4	500-1000	12.10 ⁻⁴	1.75	2.9	0.95.10-4	1.1.10-2	1.15		
	1000-3000	1.1.10-11	2.8	2.4	0.34.10-4	0.01.10-2	0.67		
	Table 1: Fit parameters to calculate the power loss density								

NSE/iGSE

- More complex empirical loss models exist, and remain valid for non-sinusoidal waveforms
- NSE/iGSE:

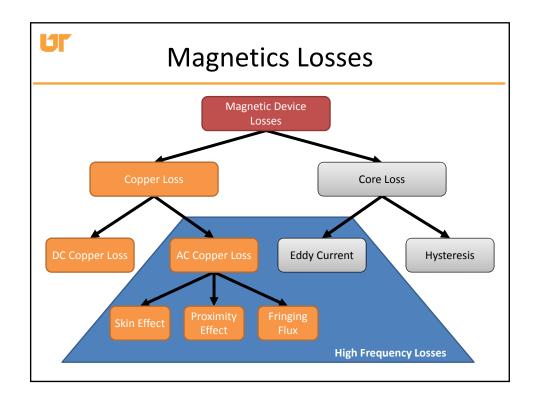
$$P_{NSE} = \left(\frac{\Delta B}{2}\right)^{\beta - \alpha} \frac{k_N}{T} \int_{0}^{T} \left| \frac{dB}{dt} \right|^{\alpha} dt$$

NSE/iGSE Shortcut for Squarewaves

• For square wave excitation, the improved loss model can be reduced to:

$$k_N = \frac{k}{(2\pi)^{\alpha-1} \int_{0}^{2\pi} |\cos \theta|^{\alpha} d\theta}$$
 (8)

$$P_{NSE} = k_N f^{\alpha} \left(\Delta B \right)^{\beta} \left(\left(\frac{2}{D} \right)^{\alpha} + \left(\frac{2}{1 - D} \right)^{\alpha} \left(1 - D \right) \right)$$
(9)


Full Paper included on materials page of website

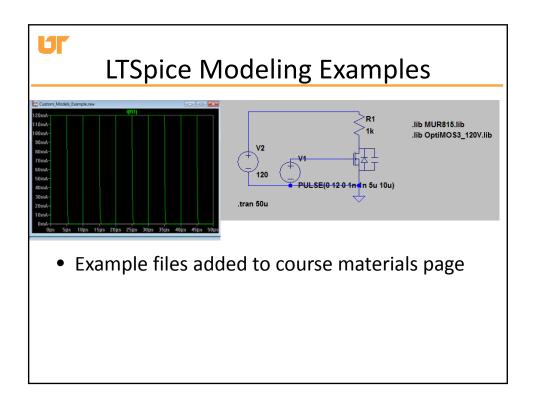
Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.;, "Measurement and loss model of ferrites with non-sinusoidal waveforms," Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol.6, no., pp. 4814-4818 Vol.6, 20-25 June 2004 doi: 10.1109/PESC.2004.1354851

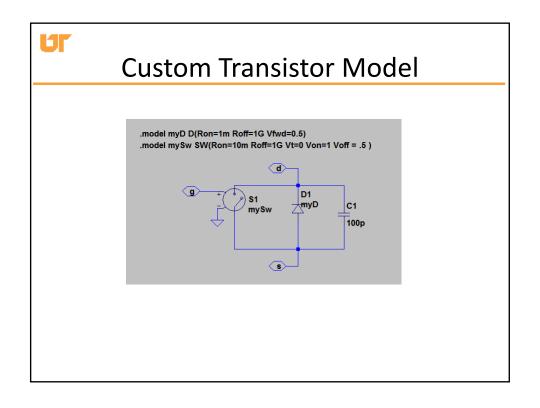
Inductor Design

K_g and K_{gfe} Methods

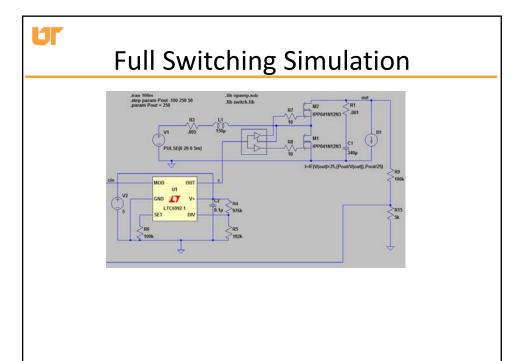
- Two closed-form methods to solve for the optimal inductor design *under certain constraints/assumptions*
- Neither method considers losses other than DC copper and (possibly) steinmetz core loss
- Both methods particularly well suited to spreadsheet/iterative design procedures

	K _g	K _{gfe}
Losses	DC Copper (specified)	DC Copper, SE Core Loss (optimized)
Saturation	Specified	Checked After
B _{max}	Specified	Optimized

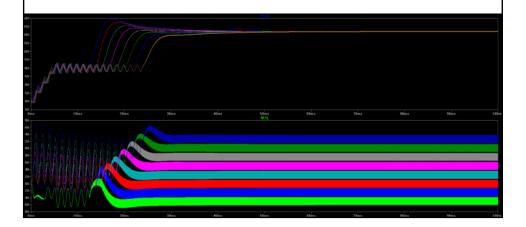

Simulation Modeling


13

Circuit Simulation


- Matlab, Simulink, LTSpice
 - Other tools accepted, but not supported
- Choose model type (switching, averaged, dynamic)
- Supplement analytical work rather than repeating it
- Show results which clearly demonstrate what matches and what does not with respect to experiments (i.e. ringing, slopes, etc.)

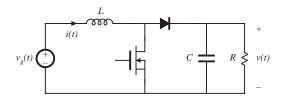
Manufacturer Device Model

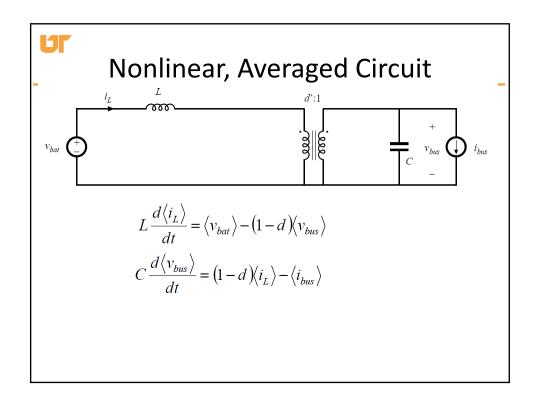

- Text-only netlist model of device including additional parasitics and temperature effects
- May slow or stop simulation if timestep and accuracy are not adjusted appropriately

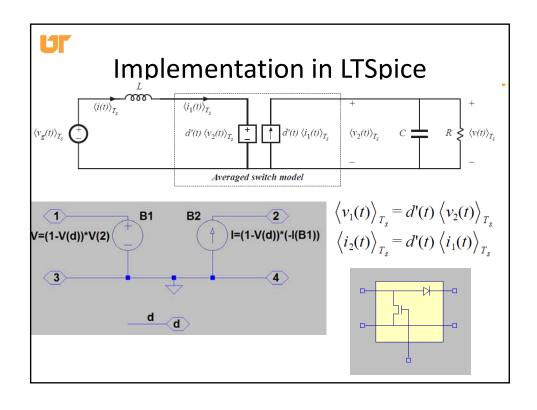
Switching Model Simulation Results

• Simulation Time ≈ 15 minutes

Full Switching Model

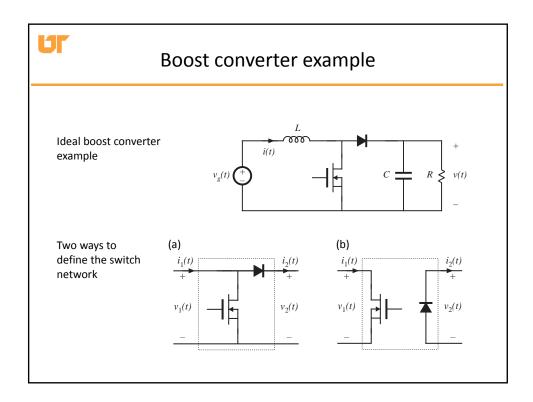

- Gives valuable insight into circuit operation
 - Understand expected waveforms
 - Identify discrepancies between predicted and experimental operation
- Slow to simulate; significant high frequency content
- Cannot perform AC analysis

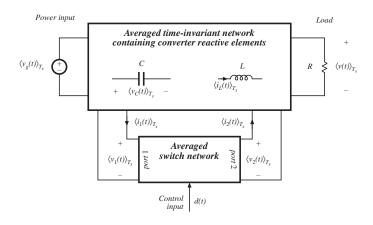

Averaged Switch Modeling: Motivation

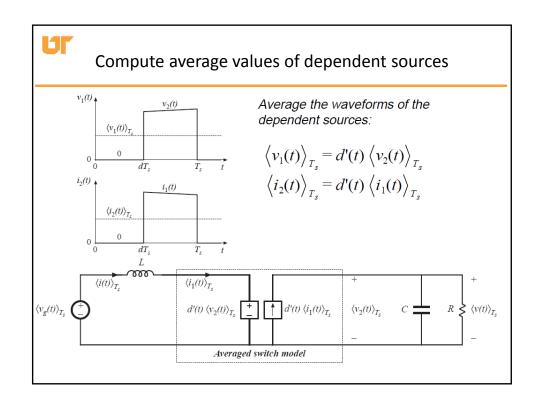

- A large-signal, nonlinear model of converter is difficult for hand analysis, but well suited to simulation across a wide range of operating points
- Want an averaged model to speed up simulation speed
- Also allows linearization (AC analysis) for control design

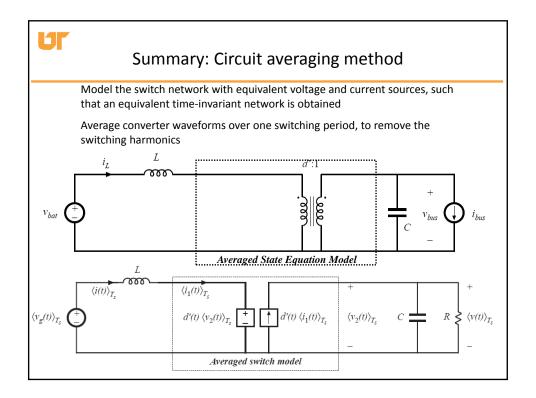
U

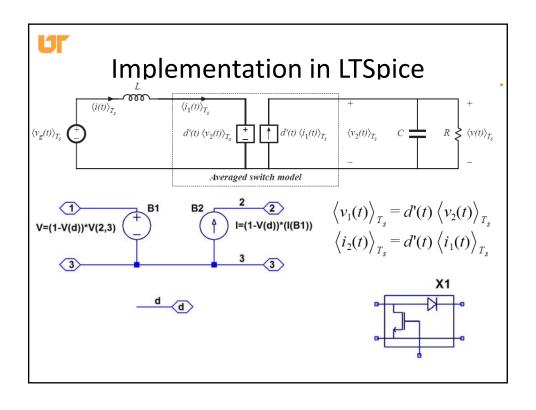
Nonlinear, Large-Signal Equations

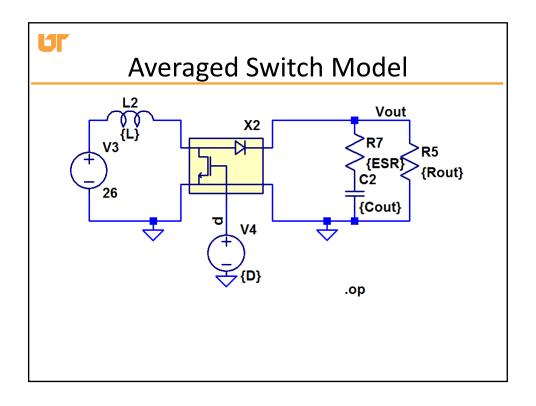


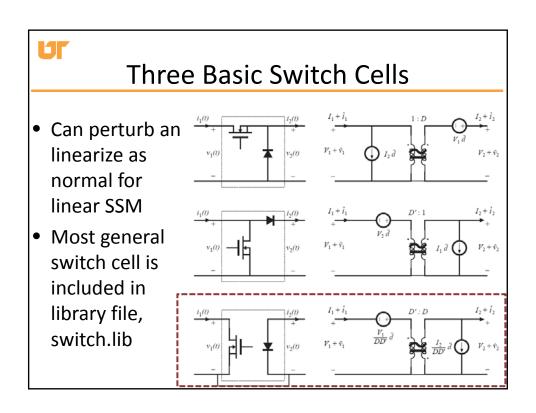

Circuit Averaging and Averaged Switch Modeling

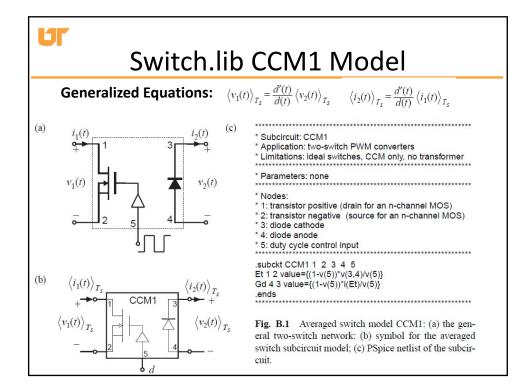

- Historically, circuit averaging was the first method known for modeling the small-signal ac behavior of CCM PWM converters
- It was originally thought to be difficult to apply in some cases
- There has been renewed interest in circuit averaging and its corrolary, averaged switch modeling, in the last two decades
- Can be applied to a wide variety of converters
 - We will use it to model DCM, CPM, and resonant converters
 - Also useful for incorporating switching loss into ac model of CCM converters
 - Applicable to 3ø PWM inverters and rectifiers
 - Can be applied to phase-controlled rectifiers
- Rather than averaging and linearizing the converter state equations, the averaging and linearization operations are performed directly on the converter circuit

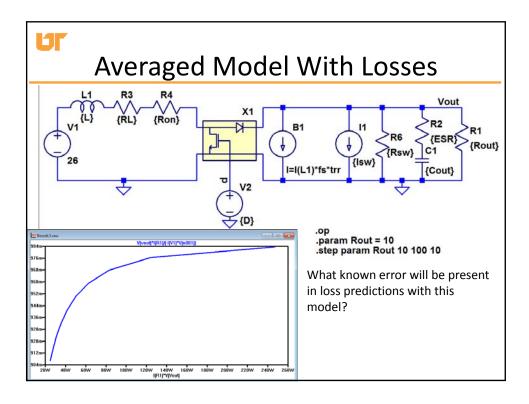





Circuit Averaging







Averaged Switch Modeling: Further Comments

- Model is slightly different but can be produced in same manner for
 - Inclusion of loss models
 - Transformer isolated converters
 - Converters in DCM
- See book appendix B.2 for further notes

