Chapter 9

Controller Design

9.1. Introduction

In all switching converters, the & Switching converter Load
_output_ voltagev(t) is a function of the - AT . »
input line voltagevy(t), the duty cycle -
d(t), and the load currerifyaq(t), as Vo T = V0
well as the converter circuiélement _
values. In a dc-dc converter [ transistor
application, it is desired to obtain as, ) g;:fszxgt v()
constant output voltage(t) = V, in - |modulator[*
spite of disturbances invg(t) and Ml ¢

ioad(t), and in spite of variations in the b)
switching converter

converter circuitelementvalues. The = .
_ v.(0) v(t) = f(vg, ioac )
sources of these disturbances and 9 , "o
variations aremany, and a typical i1ad(®) disturbances - ——"—p
situation is illustrated ifrig. 9.1. The d()
} control input

input voltagevy(t) of an off-line power
supply may typically contain periodic Fig. 9.1. The output voltage of a typical switching

_ . converter is a function of the line input voltagbe
variations at thesecond harmonic of .
the duty cycled, and the load currei, (a) open-

the ac power system frequency (L00HzZ  |o0p buck converter, (b) functional diagram
or 120Hz), produced by arectifier illustrating dependence @fon the independent

circuit. The magnitude ofvg(t) may quantitiesyg, d, andijoay

also vary when neighboring power system loagsswitched on ooff. The load current
Ilbadg(t) may contain variations of significant amplitude, andypical power supply
specification is that theutput voltage mugsiemain within a specified randér example,
5V +0.1V) whenthe load current takesstep changdrom, for example, full ratedoad

current t050% ofthe ratedcurrent, and vice-versdhe values of theircuit elements are
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Fig. 9.2. Feedback loop for regulation of the output voltage: (a) buck converter, with feedback loop
block diagram; (b) functional block diagram of the feedback system.

constructed to a certaimlerance, and so in high-volume manufacturing of a converter,
converters are constructed whose output volthges some distribution. It is desiragtat
essentiallyall of this distributionfall within the specified rangehowever, this is not
practical to achievavithout theuse ofnegativefeedback.Similar considerations apply to
inverter applications, except that the output voltage is ac.

So we cannot expect to simply set the dc-dc convdurcycle to asingle value,
and obtain a given constant output voltage umleronditions.The ideabehind theuse of
negative feedback is to build a circuit that automatically adjusts thecyelsy asnecessary,
to obtain the desired output voltage with high accureayardless of disturbances\ig(t)

Or ijpag(t) or variations in component values. This is a useful thing to do whenever there are
variations andunknownsthat otherwise preventhe system fromattaining the desired
performance.

A block diagram of a feedback system is shown in Fig. 9.2. The outfiagev(t)
is measured, using a “sensor” wihin H(s). In a dc voltage regulator or dc-awerter,
the sensor circuit is usually a voltage divider, comprised of preaisgstors.The sensor
output signaH(s)v(s)is compared with a reference input voltaggs). The objective is to
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make H(s)v(s) equal toVvie(s), so thatv(s) accuratelyfollows vie(s) regardless of
disturbances or component variationstl® compensator, pulse-width modulatgate
driver, or converter power stage.

The difference between the reference inputs) and thesensoroutputH(s)v(s)is
called theerror signalve(s). If the feedbacksystem works perfectlythen viei(s) =
H(s)v(s) and hence the error signal is zero. In practleeerror signal is usually nonzero
but nonetheless smalDbtaining a smallerror is one ofthe objectives in adding a
compensator netwoi®(s) as shown in Fig. 9.2. Note that the output voltaggis equal
to the error signalv,(s), multiplied by the gains of the compensator, pulse-width
modulator, and convertgrower stage. Ithe compensator gaiG.(s) is largeenough in
magnitude, then a small error signal can produce the required output witlage/ for a
dc regulator (Q: how should andv,, then be chosen?). So a large compensator gain leads
to a smallerror, and therefore the outpillows the reference inpwith good accuracy.
This is the key idea behind feedback systems.

The averaged small-signal converter models derived in chapter Usedein the
following sections to findhe effects of feedback on the small-sigmahsfer functions of
the regulator. The loop gaif(s) is defined as the product of the small-siggaihs in the
forward and feedback paths of the feedback loop. It is found that the transfer function from
a disturbance to the output is multiplied by the fadig§+T(s). Hence, wherthe loop
gainT is large inmagnitude, therthe influence ofdisturbances omhe output voltage is
small. Alarge loop gain alsacausesthe output voltagev(s) to be nearly equal to
Vrei(S) / H(S), with very little dependence on the gainghe forward path of the feedback
loop. Sothe loop gain magnitude T || is a measure dfow well the feedbaclsystem
works. All of these gains can be easily constructed ubkieglgebra-on-the-graph method;
this allows easyevaluation of important closed-loop performameeasures, such as the
output voltage ripple resulting frod20Hz rectification ripple invy(t) or the closed-loop
output impedance.

Stability is another importangssue infeedbacksystems.Adding a feedback loop
can cause an otherwise well-behaeeduit to exhibitoscillations, ringing anadvershoot,
and other undesirableehavior. An in-deptlireatment of stability i9eyondthe scope of
this book; howeverthe simplephase margin criteriofor assessingtability isused here.
When the phase margin of theop gainT is positive,then the feedbackystem is stable.
Moreover, increasinghe phase margin causése system transientesponse to béetter-
behaved, with less overshoot amalging. The relation betweephase margin and closed-
loop response is quantified in section 9.4.
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An example is given in sectiahb, inwhich a compensator network is designed
for a dcregulatorsystem.The compensatanetwork is designed tattain adequatphase
margin and good rejection of expecteddisturbances.Lead compensators and P-D
controllers are used to improve the phase margin and exteandevidth ofthe feedback
loop. Thisleads to better rejection of high-frequerdigturbanceslLag compensators and
P-I controllers areused toincrease thdow-frequency loop gain. Thiteads tobetter
rejection of low-frequency disturbances and vergmall steady-stateerror. More
complicated compensators can achieve the advantages of both approaches.

Injection methoddor experimental measurement fwfop gain are introduced in
section9.6. The use ofvoltage or current injectiosolvesthe problem of establishing the
correct quiescent operating point in high-gain systems. Conditions for obtairaecguaate
measurement are exposed. The injection method also allows measuremerlday tieens
of unstable systems.

9.2. Effect of negative feedback on the network transfer functions

We have seermow to

, , d
derive the small-signal ac e(;)\(s) 1:MD) e

O :

transfer functions of a
switching  converter.  For v j(9) d(s) C=—= %9 SR () FicaeS)
examplethe equivalent circuit

model of thebuck converter  Fig. 9.3. Small-signal converter model, which represents
can be written as ifrig. 9.3. variations invg, d, andijqa.

This equivalentircuit contains three independenputs: the control input variations ,
the powerinput voltage variations, , and the load current variations,, . The output

voltage variationv can therefore b&xpressed as #@near combination of the three
independent inputs, as follows:

V(S) = Gvd(s) a(S) + Gvg(s) Vg(S) - Zout(s) I»Ioad(s) (9'1)
where
Gu(S) = Zi((S; converter control-to-output transfer function
S) | 94=0
i”|goad:o
_ V(s . .

Gu(9) = (9 | ; converter line-to-output transfer function

[¢] d=0

i10ad =0
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v(s)

II\I oad (S) g :_0O
o=

Zout(s) =-

converter output impedance

The Bode diagrams of these quantitiage constructed in chapter 8. Equati(9i1)
describes how disturbances and l.q Propagate to the outpwt, throughthe transfer

function Gyg(s) and the output impedanag(s). If the disturbancess, and looq are

known to have somemaximum worst-case amplitudehen Eq. (9-1) can beused to
compute the resulting worst-case open-loop variation .in

As described previouslyhe feedbackoop of Fig. 9.2 can beused toreduce the
influences ofv, and l..q ON the outpuw . To analyzethis systemlet us perturb and
linearizeits averaged signals abadtieir quiescent operatingpints. Boththe power stage
and the control block diagram are perturbed and linearized:

Vref(t) = Vref + vref(t) (9-2)
Ve(t) = Ve + V(1)
etc.

In a dc regulatosystem,the reference input isonstant, sov,4(t) = 0. In a switching

amplifier or dc-ac inverter, the reference input may contain aaration. InFig. 9.4(a),

the converter model ofig. 9.3 iscombined withthe perturbed and linearized control

circuit blockdiagram. This iquivalent to the reduced block diagramFad§. 9.4(b), in

which the converter model has been replaced by blocks representing Eg. (9-1).
Solution of Fig. 9.4(b) for the output voltage variatibtyields

\7 — \7 GCGvd / VM + \7 GVQ _ r Zout
S M1+ HGG,/V, Y1+HGG,/V, '"1+HGG,/V,
(9-3)
which can be written in the form
o 1T Gy + Zu
VeV G 14T TN 1eT o 13T (9-4)

with  T(s)=H(s)G.(s)G,(S) / M = “loop gain”
Equation (9-4) is a general result. The loop d4s)is defined in general ake product of
the gains around the forward and feedback paths of the loop. This ecgethes how the
addition of a feedback loop modifies the transfer functions and performatieesystem,
as described in detail below.
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Fig. 9.4. Voltage regulator system small-signal model: (a) with converter equivalent circuit; (b)
cormplete block digram.

9.2.1. Feedback reducesthe transfer functions from disturbances to the
output

The transfer function fromy, to ¥ in the open-loop buck converter &fig. 9.3 is

Gyg(s), as given in Eq. (9-1). When feedback is added, this transfer function becomes

(s G\y(9)
\7:(5?) o TIHTE (9-5)
110ad=0
from Eqg. (9-4). So this transféunction is reduced via feedback by the fadtd+T(s)).
If the loop gainT(s)is large in magnitude, then the reduction can be substantial. Hence, the
output voltage variation resulting from a givery, variation is attenuated by the feedback

loop.
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Equation(9-4) also predictshat the converteoutput impedance iseduced, from
Zoul(S) to

v(s) = Zould
- IAload(s) Vret =0 1+ T(S)

\7920

(9-6)

So the feedbackoop also reduceshe converter output impedance by a factor of
1/(1+T(s), and the influence of load current variations on the output voltage is reduced.

9.2.2. Feedback causes the transfer function from the reference input to the
output to be insensitive to variations in the gains in tlierward path

of the loop

According to Eq. (9-4), the closed-loop transfer function fip(t) to v is
(s) _ 1 T
V(9 |00 H(ES I+ T (9-7)

floag =0
If the loop gain is large in magnitudeg., ||T || >> 1, then (1¥) = T andT/(1+T) = T/T
= 1. The transfer function then becomes

e . 1 (9-8)

V(9 HE
which is independent @(s), Vm, andG,4(s). So providedhat theloop gain is large in

magnitude, then variations @¢(s), W, andG,4(s) have negligible effect on the output
voltage. Of course, in the dc regulator applicatigg, is constant and,4(t) = 0. But Eq.

(9-8) applies equally well to the dc values. For example, if the system is linear, then we can
write

v_ 1 TO _ 1
Vo H() 1+T(0) H(0

So to make the doutput voltageV accuratelyfollow the dc referenc¥,es, we need only
ensure that the dc sensor gHii®) and dc referencé.s arewell-known and accurate, and

(9-9)

thatT(0)is large. Precision resistoase normallyused torealizeH, but components with
tightly-controlled values need not bged inGg, the pulse-width modulator, athe power

stage.The sensitivity of the output voltage to tgains inthe forward path isreduced,

while the sensitivity of to the feedback gaid and the reference inpyl; is increased.
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Fig. 9.5. Manitude of the lop gain exanple, Eq. (9-10).
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9.3. Construction of the important quantities 1/(1+T) and T/(1+T) and the
closed-loop transfer functions
The transfer functions irEgs. (9-4) — (9-9kan be easily constructeging the
algebra-on-the-graph meth¢4]. Let usassumehat we have analyzed theocks in our
feedbacksystem,and have plotted th8ode diagram of [I(s) ||. To use aconcrete
example, suppose that the result is given in Fig. 9.5, for wi{ghs

o rd
T(S)_TO(1+QZDI+(0§,)1)2>(1+cgpz) (9-10)

This exampleappears somewhat complicated. Bl loop gains of practical voltage
regulators are often even mocemplex, andmay containfour, five, or more poles.
Evaluation ofEgs. (9-5) - (9-7), taletermine thelosed-loop transfer functions, requires
quite a bit ofwork. Theloop gainT must be added to 1, atike resulting numerator and
denominator must be re-factorddsing this approach, it iglifficult to obtain physical
insight into the relationship between the closed-loop transfer functions and the loop gain. In
consequence, design of the feedback loop to meet specifications is difficult.

Using the algebra-on-the-graphethod,the closed-loop transfer functionsan be
constructed by inspection, ahénce the relation between théssnsfer functions and the
loop gain becomes obvious. Let us first investigate how to pIGHT) || . It can be seen
from Fig. 9.5 that there is a frequerfgycalled the‘crossover frequency”, whereT]||| =
1. At frequencies leshanfc, || T || > 1; indeed, [T || >> 1 forf << f.. Hence, at low
frequency, (1¥) =T, andT/(1+4T) = T/T = 1. At frequencies greater thén || T || < 1,
and |[T || << 1 forf >>f.. So at high frequency, (I3= 1 andT/(1+T) = T/1 =T. So we
have
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Fig. 9.6. Graphical construction of the asymptotes of
[T/ (1+T) ||. Exact curves are omitted.

T _J1 for || T [|>> 1
1+T \T for || T|<<1 (9-11)

The asymptotesorresponding to Eq. (9-18re relativelyeasy to constructThe low-
frequency asymptote, fdr< f, is 1 or 0dB.The high-frequencyasymptotes, fof > f,
follow T. The result is shown in Fig. 9.6.

So at low frequency, whereT|||| is largethe reference-to-outptitansfer function

Ve _ 1 TG _ 1
V(S ~ H(3 1+T(5 ~ H( (9-12)

This is the desired behavior, and the feedback loop works well at frequencies Whieie ||
large. At high frequencyf (>> f.) where ||T || is small,the reference-to-outputansfer
function is

Ve _ 1 TS _ T(9) _ GA9Gu(9)

Vig(S)  H(s) 1+T(s) H(9 Viu
This is notthe desired behavior; ifact, this isthe gainwith the feedback connection
removed H — 0). At high frequenciesthe feedbackloop is unable toreject the
disturbance because the bandwidtif &f limited. The reference-to-output transfer function
can be constructed on the graph by multiplyingTitig+T) asymptotes of Fig. 9.6 byH/

We can plot the asymptotes of 1jf(1+T) || usingsimilar arguments. At low

frequencies where T || >> 1, then (1¥) = T, and hencel/(1+T) = 1/T. At high
frequencies whereT]|| << 1, then (1¥) = 1 and 1/(1¥) = 1. So we have

1
L :IT(S) for || T|[>>1
W) |1 for || T|<<1 (9-14)

(9-13)
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Fig. 9.7. Graphical construction of || 1 / (1T ||.

|z
1+T

The asymptotes for thE(s) example of Fig. 9.5 are plotted in Fig. 9.7.
At low frequencies whereT]|| is large, the disturbance transfer function frgnto

v is
WS _ Gwl(d _ G (9-15)
() 1+T(9 T(9
Again, Gyg(s) is the original transfer function, with no feedbatke closed-loop transfer

function has magnitude reduced by the factoiTl}||So if, for example, we want to reduce
this transfer function by a factor of 20 at 120Hz, then we need a loop §djnof at least
20 0 26dB at 120HzThe disturbancéransfer function fromi, to v can be constructed
on the graph, by multiplying the asymptotes of Fig. 9.7 by the asympto@gfs).

Similar arguments apply to the output impedance. Thesed-loop output
impedance at low frequencies is

US)  _ ZoulS) _ Zou(9) _
SN ERECaC R 619

The output impedance &so reduced in magnitude by a factorldf T || at frequencies
below the crossover frequency.

At high frequenciesf (> f.) where |[T || is small, then 1/(TH) = 1, and

\7(5) _ Gvg(s) -
V() " 1+T(s)

Gyy(9)

) _ Zal®
(9 119 2l (9-17)

10
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This is the same as the original disturbance transfer function and output impedance. So the
feedback loop has essentially no effect on the disturliaauesfer functions at frequencies
above the crossover frequency.

9.4. Stability

It is well knownthatadding a feedback loogan cause aatherwise stable system
to become unstable. Even though the transfer functions of the original corZqrtéd;1),
as well as of théoop gainT(s), contain no right half-planeoles, it is possible for the
closed-loop transfer functions of Eq. (9-4)ctntain right half-plang@oles. The feedback
loop then fails to regulat¢he system atthe desired quiescent operatipgint, and
oscillations are usually observed. It is important to avoid this situatimhevenwhen the
feedback system istable, it is possible fathe transientesponse t@xhibit undesirable
ringing and overshoot. The stability problem is discussed in this section,raathaed for
ensuring that the feedback system is stable and well-behaved is explained.

When feedback destabilizes thgstem,the denominator (IF(s)) terms inEq. (9-
4) containroots inthe right half-plandi.e., with positivereal parts). IfT(s) is a rational
fraction, i.e., the ratidN(s)/D(s)of two polynomial functiondN(s) andD(s), then we can
write

N(s)
T(s) _ DO _ N
1+T(9 1+ N ~ N(9) +D(s)
D(s)
1 - 1 _ D@
I+7(® ;,N© NO+DE (9-18)
D(s)

So T(sY(1+T(s) and 1/(1+T(s) contain the sameoles, given by theroots of the
polynomial (N(s)+ D(s)). A brute-force test for stability is tevaluate N(s) + D(s)), and
factor the result to see whether any of thets have positive regbarts. However, for all
but very simple loomains,this involves a greadeal ofwork. A simpler method is given
by the Nyquist stability theorem, in whi¢the number of right half-planeots of ((s) +
D(s)) can be determined by testings) [1,2]. This theorem is notiscussed here.
However, aspecial case of the theordtnown asthe phase margin test is sufficient for
designing most voltage regulators, and is discussed in this section.

9.4.1. The phase margin test
The crossover frequendyis defined as the frequenesherethe magnitude of the

loop gain is unity:

11
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[| T(G2rfe) || = 10 0dB (9-19)
To compute the phase margip, the phase of the loop gains evaluated at therossover
frequency, and 180° is added. Hence,

dm = 180" +0T(j2rf,) (9-20)
If there is exactly one crossover frequency, and if the loopT@)contains no right half-
plane poles, then the quantities 1/T1&andT/(1+T) contain no right half-plane poleghen
the phase margin defined tg. (9-20) is positive. Thus, usingsenple test onT(s), we
can determine the stability ®f(1+T) and 1/(1H). This is an easy-to-use design tool —we
simple ensure that the phaséld$ greater than —180° at the crossover frequency.

When there are multiplerossover frequencieshe phase margin tesmay be
ambiguous. Also, wheil contains right half-plane polgs.e., the original open-loop
system is unstable)hen thephase margin test cannot beed. Ineither case,the more
general Nyquist stability theorem must be employed.

typical stable system s
shown in Fig. 9.8. Itan be
seen that
OT(j2rf.) = —-112°. Hence,
ém = 180° — 112° =+68".
Since thephase margin is
positive,  T/(1+4T) and

. 60dB
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The loop gain of a Ral oT
40dB
for
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20dB z  frequency
f
oT c .
0dB 0
—20dB \// -90
¢
—40dB 8 -180°
—270°
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

1/(1+T) contain no right half-
plane poles, anthe feedback
system is stable.

The loop gain of an T
unstable system is sketched

in  Fig. 9.9. For this
example, 0OT(j2rdf) =
—230°. The phase margin is
ém = 180° — 230° =-50°.
The negativephase margin
implies that T/(1+T) and
1/(1+T) each contain at least
one right half-plane pole.

f
Fig. 9.8. Magnitude and phase of the loop gain of a stable system.
The phase margi@i, is positive.
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f
Fig. 9.9. Magnitude and phase of the loop gain of an unstable
system. The phase margjg, is negative.

12
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9.4.2. The relation between phase margin and closed-loop damping factor

How much phase margin is necessary? Isvast-case phasenargin of 1°
satisfactory? Otourse, good designs shouldve adequatdesign marginsbut there is
another important reason why additional phase margin is needed. Apbiasdl margin (in
T) causes the closed-loop transfer functi®f{&+T) and1/(1+T) to exhibit resonant poles
with high Q in the vicinity of thecrossover frequencyThe system transientesponse
exhibits overshoot andinging. Asthe phase margin is reduced theskaracteristics
become worse (high€), longer ringing) until, fob, < 0°, the system becomes unstable.

Let us consider a loop gai(s) which is well-approximated, ithe vicinity of the
crossover frequency, by the following function:

S
o)1t o

Magnitude andphase asymptoteare plotted inFig. 9.10. This function is a good
approximation near therossover frequency fanany common loogains, in which [T ||

approaches unity gain with 40dB IRal

a —20dB/decadslope, with i 20dB
— 20dB/decade

an additonal pole at e 0

frequencyf, = wy/21L Any 2 fof
f2

—20dB

T(s) = (5)(1) (9-21)

—|s+

oT

additional poles and zeroes o .
are assumed to be 0T oy £/10 _0dB/decade
sufficiently far above or o,
below the crossover 101,
frequency, suchthat they
have negligible effect on the Fig. 9.10. Magnitude and phase asymptotes for the loop Gain
system transfer functions of Eq. (9-21).
near the crossover frequency.

Note that, ag, — o, thephase margi,, approache90°. Asf, - 0, ¢, — 0°.
So ad, is reduced, the phase margin is also reduced. Irestigatehow thisaffects the

f 4 -90°

>
N

<
<

-180°

-270°

closed-loop response Vid(1+T). We can write

T(S)( ;= 1 - 1 (9-22)
1+T(s 1 S s?
1+ —+ IS NI
9 "atae
using Eq. (9-21). By putting this into standard quadratic form, one obtains
LICHp. 1 (9-23)

HTO gt lal

c (4

13
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20dB
— 20dB/decade

where W, = o, = 21, 4008 T ~ I Tl I3
W _
wC

0dB

So theclosed-loop responseontains
guadratic poles af;, the geometric
mean offy andf,. These poles have a#0d®
low Q-factor whenfy << fy. In this

T
1+T
~20dB 1

— 40dB/decade

case, _ We_ can use tI.‘IG lowQ ~ Fig. 9.11.  Construction of magnitude asymptotes of
approximation to estimate their the closed-loop transfer functidn/ (1 +T), for
the lowQ case.

frequencies:
Qw. =
)
o (9-24)

Magnitude asymptotes are plottedRig. 9.11 forthis case. ltcan beseenthat these
asymptotes conform to the rules of section 9.3 for construétidgT) by the algebra-on-
the-graph method.

Next consider the higlp case. When the pole frequerigys reduced, reducing the
phase marginthen theQ-factor given byEq. (9-23) is increased. FQ > 0.5, resonant
poles occur at frequency.. The 6odB f
magnitude Bode pldor the casd, < 40 i f
fo is given in Fig. 9.12. The .| o |
frequency fc continues to be the ’ \ =t
geometric mean of, andfy, andf;

NI BTN
now coincides with the crossover %/ _ 0dB/decade
(unity-gain) frequency of the I || ~***® o
asymptotes.The exact value of the Fig. 9.12. Construction of magnitude asymptotes of
closed-loop gaif/(1+T) at frequency the closed-loop transfer functidr/ (1 +T), for

i ] the hgh-Q case.
fc is equal toQ = fo/fc. As shown in

Fig. 9.12, this isidentical to the value of theow-frequency —20dB/decade asymptote
(fo/f), evaluated at frequendy It can beseenthat theQ-factor becomes very large as the
pole frequencys is reduced.

The asymptotes dfig. 9.12also followthe algebra-on-the-graphles of section
9.3, but the deviation of thexact curve fromthe asymptotes is not predicted by the
algebra-on-the-graph methothesetwo poles withQ-factor appear in botfi/(1+T) and
1/(1+T). We need an easyay to predict theQ-factor. Wecan obtainsuch arelation by
finding the frequency atvhich the magnitude ofl is exactly equal tainity. We then
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20dB
Q
15dB
10dB \\
5dB
0odB Q=10 m T
Bn=52" T~
-5dB Q=050 —6dB—
-10dB ¢, = 76" \\
-15dB \
-20dB
0° 10° 20° 30° 40° 50° 60° 7 80° 90°
Py
Fig. 9.13. Relation between loop gain phase maxgjpand closed-loop

peakirg factorQ.
evaluate the exact phaseladit this frequency, andompute thgphase margin. This phase
margin is a function of the ratig/f,, or Q2. We can thersolve to findQ as a function of

the phase margin. The result is

_ JCOS @
Q="sng.
b =tant, | LTVI+AQ

2Q° (9-25)

This function is plotted in Fig. 9.13, witQ expressed in dB. Itan beseenthat obtaining
real poles Q < 0.5) requires a phase margin of lagst76°. ToobtainQ = 1, a phase
margin of52° is neededThe system with a phase margin of 1° exhibits a closed-loop
response with very higQ! With a small phase margiii(jc) is very nearly equal to —1 in
the vicinity of thecrossover frequencythe denominator (IF) then becomes vergmall,
causing the closed-loop transfer functions to exhibit a pesdsgbnse at frequenciesar
the crossover frequendy

Figure 9.13 is the result for tlegmple loop gain defined blq. (9-21). However,
this loop gain is @oodapproximationfor many other loop gainthat are encountered in
practice, in which |[I || approaches unity gain with a —20dB/decatigpe, with an
additional pole at frequendyg. If all other poles and zeroes ®{s) are sufficiently far
above or belowhe crossover frequencythen they have negligible effect on thgstem
transfer functions near the crossover frequency, and Fig.g&v&3 a goodipproximation
for the relation betweedy, andQ.

15
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Another common case is the onewhich || T || approaches unity gain with a
—40dB/decade slope, with an additional zero at frequéncis f, is increasedthe phase
margin is decreased aflis increased. It can be shown that the relation bet@geandQ
is exactly the same, Eq. (9-25).
A case wherd-ig. 9.13fails iswhentheloop gainT(s) three or morgoles at or
near thecrossover frequencylthe closed-loop respondben also contains three orore
poles near the crossover frequency, and these poles cannot be completely characterized by a
singleQ-factor. Additional work is required to findthe behavior of thexactT/(1+T) and
1/(1+T) near thecrossover frequency, but nonethelessal besaidthat a smallphase
margin leads to a peaked closed-loop response.

9.4.3. Transient response vs. damping factor

One cansolve for the unit-stepresponse ofthe T/(1+T) transfer function, by
multiplying Eq. (9-23) by Hand then taking the inveréaplacetransform.The result for
Q>05is

2Q ewliQ /4Q2_ 1 ) 5
vt)=1+ t+tanty/4Q° -1 -
(t) 101 ST @trtan ( Q ) (9-26)
ForQ < 0.5, the result is
—1-_ % e @ o 9-27
) =1- g € o & (9-27)
with a)l,wzzé‘(’s(lim—mz)

These equations are plotted 2

Q=50
in Fig. 9.14 for various’® )
values ofQ. . [N\ a\

According toEq. (9- Q=2
23), whenf, > 4fp, the Q- /921

factor is less than 0.5, and ! ona
Q=0.5
the closed-loop response ///QO g

contains a low-frequency os 302

and a high-frequencyreal on.l/ﬁgyﬂ
pole. The transientesponse 0L
0

0

in this case, Eq. (9-27), 0 5 1 15
contains decaying- @ radians

ial  f . f Fig. 9.14. Unit-step response of the second-order system, Eqgs. (9-
exponentia unctions o 26) and (9-27), for various values@f

time, of the form
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Aglpole)t (9-28)
This is called the “overdampedase.With very low Q, thelow-frequency pole leads to a
slow step response.

For f, = 4fy, the Q-factor is equal t®.5. The closed-loop response contains two
real poles at frequency fg. This is called the “critically dampedtase.The transient
response is fastéhan in the overdampezhse,because théowest-frequency pole is at a
higher frequency. This is the fastest respahsédoes notexhibit overshoot. Atat =1t
radians { = 1/%;), the voltage has reached 82% offital value. Atwt = 2t radians {( =
1/), the voltage has reached 98.6% of its final value.

For f, < 4fy, the Q-factor is greater thaf.5. The closed-loop responseontains
complex poles, and the transientesponse exhibits sinusoidal-type waveforms with

decaying amplitudeizq. (9-26). The rise time of thestep response is fastdran in the
critically-damped case, but the waveforms exhibit overshoot. The peak vaitg isf

peak V(t) = 1+ e-m/v4e* -2 (9-29)

This iscalled the “underdampedfase. AQ-factor of 1 leads to anvershoot 0f16.3%,
while a Q-factor of 2 leads to 44.4% overshootLarge Q-factors lead toovershoots
approaching 100%.

The exact transient response of the feedback taayp differ from the plots of Fig.
9.14, because of additiongdoles and zeroes ifi, and because of differences imtial
conditions. Nonetheless, Fig. 9.1Mustrateshow high-Q poleslead toovershoot and
ringing. In most power applications, overshooumsacceptableFor example, in a 5V
computerpower supply,the voltagemust not be allowed to overshoot to 7 or 10 volts
when the supply is turned on —this would destatiyof the TTL integrated circuits in the
computer! So th&-factor must be sufficientow, often 0.5 or less, corresponding to a
phase margin of at least 76°.

9.5. Regulator design
Let's now consider how to designragulatorsystem, tomeet specifications or
design goals regardingjection ofdisturbancestransientresponseand stability.Typical
dc regulator designs are defined using specifications such as the following:
(1) Effect ofload current variations on theutput voltage regulationThe output
voltage must remain within a specified range when the load current varies in
a prescribed way. This amounts to a limit on the maximum magnitude of the
closed-loop output impedance of Eg. (9-6), repeated below
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(s) _ Zou(d)
- IAload(s) Vref =0 B 1+ T(S)

\7920

(9-30)

If, over some frequenckange,the open-loop outputmpedanceZ,,; has
magnitude which exceeds the limit, then the loop gamust be sufficiently
large in magnitude ovehe same frequenaynge, suchhat the magnitude
of the closed-loop outpuimpedance given ifEq. (9-30) is lesshan the
given limit.

(2) Effect of input voltage variations (for example, at the setanohonic of the ac
line frequency) orthe output voltage regulatiorSpecific maximum limits
are usually placed on the amplitude of variations in the output voltage at the
second harmonic dhe ac linefrequency (120Hz ot00Hz). If we know
the magnitude of the rectification voltage ripphich appears at the
converter inpufas v, ), then we can calculate tlmesulting output voltage
ripple (in v ) usingthe closedoop line-to-output transfer function of Eq.
(9-5), repeated below

(s Gy(s
vg((s)) a0 1+%I('()s) (9-31)

fload =0
The output voltage ripple can be reduced by increasing the magnitude of the
loop gain at the ripple frequency. In a typical galesign, |[T || is 20dB or
more at 120Hz, so that the transfer function of Eq. (9-31) is at least an order
of magnitude smaller than thepen-loop line-to-output transfer function
[l Gyg Il
(3) Transientresponsdime. When a specified large disturbarmecurs, such as a
large step change in load current or inpattage,the output voltage may
undergo a transientDuring this transient, the output voltagetypically
deviates from its specified allowabtange. Eventuallythe feedback loop
operates to return the output voltage within tolerance.tifieerequired to
do so is the transiemesponsdime; typically, the responsetime can be
shortened by increasing the feedback loop crossover frequency.
(4) Overshoot and ringingAs discussed in sectidh4.3, the amount obvershoot
and ringing allowed in the transiemésponsemay be limited.Such a
specification implies that the phase margin must be sufficiently large.
Each of these requirementsposes constraints dhe loop gainT(s). Therefore,
the design ofthe controlsystem involves modifyinghe loop gain. Asillustrated inFig.
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9.2, acompensator network is addéat this purpose.Several well-known strategies for
design of the compensator transfer funct&(s) are discussed below.

9.5.1. Lead (PD) compensator

This type of compensator transfer function is usetinfrove thephase margin. A
zero is added to thoop gain, at arequencyf, sufficiently far belowthe crossover
frequencyf., suchthat thephase margin of (s) is increased by the desirednount. The
lead compensator is alstalled aproportional-plus-derivative, or P@pntroller —at high
frequencies, the zero causes the compensator to differahgaeor signal. ltoftenfinds
application insystemsoriginally containing a two-poleesponse. By use dhis type of
compensator, the bandwidth of the feedback l@@p, the crossover frequencfy) can be
extended while maintaining an acceptable phase margin.

A side effect of the zero is that tausesthe compensator gain to increase with
frequency, with a +20dB/decade slope. So steps must be taken to teasliie || remains
equal to unity at the desirettossover frequency. Alsaince the gain of anyractical
amplifier must tend to zero at high frequency, the compensator transfer fuBgg)rmust
contain high frequency poles. These poles also have the beneficial effect of attenuating high
frequency noise. Of particular concern are the switching frequency harmonics present in the
output voltage and feedback signalsthé compensator gain at tewitching frequency is
too great,then these switching harmoniese amplified by thecompensator, and can
disruptthe operation of theulse-width modulator (see secti@ry). Sothe compensator
network shouldcontainpoles at a frequency legean theswitching frequency.These
considerations typically restrict thossover frequenc§, to be lesshan approximately
10% of the converter switching frequerfgyin addition, the circuit designer must tadare
not to exceed the gain-bandwidth limits of available operational amplifiers.

The transfer function of the lead _
compensator therefore contains dow- | .

. 0\/ T, f

frequency zero and several hlgh-frequenacyl Gl ¢, /Rn‘m/;_
poles. A simplified example containing a single L= JRT
high-frequency pole is given iBqg. (9-32) and 10 10t

illustrated in Fig. 9.15. 1 + 45°/decad
(1 + i) 0 MF m

G(s) = Gy (1+as)z) (9-32) ¢

f

Fig. 9.15. Magnitude and phase
asymptotes of the PD compensator
transfer functiorG, of Eq. (9-32).

Wy
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The maximum phase occurs at a frequepgyx given by the geometricahean of the pole
and zero frequencies:
f¢max = fzfp (9'33)

To obtain the maximum improvement in phasargin, we should design oaompensator
so that the frequendymaxcoincides withthe loop gaincrossover frequencfe. The value

of the phase at this frequency can be shown to be
fP fz
LV
2
This equation is plotted irfrig. maximum 90T
9.16. Equation (9-34) can be Phase 'ead7
inverted to obtain
f, _1l+sn (e)
f, 1-sn(g)

D Gc( f¢max) = tan_l (9'34)

50*5
eo"%

45°«}
(9-35)
where6 = UG (fyma). Equations '
(9-34) and (9-32)mply that, to 5T
optimally obtain a compensator O Y

1 10 100 1000
phaselead of6 at frequencyf,, f

p’ 'z
the pole and zero frequencies Fig. 9.16. Maximum phase leaflvs. frequency ratid, /f, for

should be chosen as follows: the lead corpensator.

30°+

(9-36)

When it is desired to avoid changing the crossover frequéimeynagnitude of the
compensator gain is chosen to be unitythat loop gain crossover frequency.. This
requires thaG.g be chosen according to the following formula:

f
Co=y/ 7 (9-37)

p
It can be seen th& is less than unity, and therefore tead compensator reduces the dc
gain of the feedbacloop. Other choices 06, can be selectedhen it is desired to shift
the crossover frequencly; for examplejncreasing the value @, causeshe crossover
frequency to increase. If the frequendigandf, are chosen as in Eq. (9-3@)enf,,,, of
Eqg. (9-32) will coincide with the new crossover frequeficy
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60dB T

The Bode T,
diagram of a typical - sd8y 1T 7,6, original gain I o7
loop gain T(s) 20dB | compensated gar

containingtwo poles is
illustrated inFig. 9.17.
The phase margin of the

original T(s) is small, R =
since the crossover t
frequency  f, is
substantially greater

than the pole frequency | | f

fo- The result of adding Fig. 9.17. Compensation of a loop gain containing two poles, using a
lead (PD) compensator. The phase madygjiris improved.

0dB

—20dB T

10

| —90°

-180°

-270°

a lead compensator is
also illustrated.The leadcompensator of thiexample isdesigned tamaintain the same
crossover frequency but improve the phase margin.

9.5.2. Lag (Pl) compensator
This type of compensator is used to increase the low-frequency loop gairhatuch

the output is better regulated at dc and at frequenciesbaiiv the loop crossover

frequency. As given in Eq. (9-38) and

. - : . Il Gl
illustrated in Fig. 9.18, aninverted zero |so\
added to the loop gain, at frequerficy ~ 20dB /deca Gy

G(9=G..[1+ ]

(9-38) - )
. . . L
If f_ is sufficiently lower thanthe loop | .
crossover frequencl, then thephasemargin | oo’ + 45°/decade

is unchanged. This type of compensator is also /10

caled a proportional-plus-integral, or PI, # f
controller —atlow frequencies,the inverted  Fig. 9.18. Magnitude and phase
) asymptotes of the PI compensator

zero causeshe compensator to integrate the transfer functiorG, of Eq. (9-38).
error signal.

To the extent that theompensator gain can Ipeade arbitrarily large atc, the dc
loop gainT(0) becomes arbitrariNarge. This causethe dc component of therror signal
to approach zero. In consequence, the steady-state output voltage is perfectly regulated, and
the disturbance-to-outptrtansfer functions approach zerodat Suchbehavior is easily
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[Tl
obtained in practice, with the*®]
GCOOTU
compensator of Eq. (9-38) 2ods { ot °
: : : T I Tuo f
realized using a conventional 45 e, ¢

operational amplifier.
—20dB + < 90°

Although  the  PI oT \
. . —40dB + 4 T 0
compensator is useful in nearly T——__10f

all types of feedbaclkystems, e N\lo? » ~90°
it is an especially simple and A -180°
effective approaclior systems ‘ ‘ ‘ ‘

originally containing a single 1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

f

pole. Forthe example ofig. Fig. 9.19. Compensation of a loop gain containing a single pole,

9.19, the original using a lag (PI) conpensator. The lqngain maynitude is increased.
uncompensated loop gain is of the form
TU(S) = #
B
% (9-39)

The compensator transfer function of Eq. (9-38) is used, so that the compensatgnoop
iIsT(s) = T,(s) G.(s). Magnitude angbhase asymptotes @is) arealso illustrated irFig.
9.19. The compensator high-frequemain G,, is chosen to obtaithe desireccrossover
frequencyf.. If we approximate the compensatémbp gain by its high-frequency
asymptote, then at high frequencies we can write

T Con
[T]==7

4

fo (9-40)

At the crossover frequency = f., theloop gainhasunity magnitude. Equatiot(9-40)
predicts that the crossover frequency is

fc = TuOGcoo f0 (9'41)
Hence, to obtain a desired crossover frequéneye should choosthe compensator gain

G.., as follows:
f

Twf (9-42)
The corner frequendy is then chosen to be sufficiently lebsnf_, suchthat an adequate
phase margin is maintained.

Magnitude asymptotes of the quantity 1 / (I(s) are constructed iRig. 9.20. At
frequencies less thdn the PI compensator improvié®e rejection ofdisturbances. At dc,

G =
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wherethe magnitude ofG_, 4ods ¢
approaches infinity, the 541
magnitude of 1 / (1 +T)

tends to zero. Hence, the
closed-loop disturbance-to-"""
output transfer functions, —40d8
such as Egs. (9-3@nd (9-
31), tend to zero at dc.

0dB

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz
f

Fig. 9.20. Construction of || 1/ (1 ¥F) || for the PI-
conpensated exapte of Fig. 9.19.

9.5.3. Combined (PID) compensator

The advantages of the leadd lagcompensatorsan becombined, toobtain both
wide bandwidth and zero steady-state error. At low frequencies, the compensator integrates
the error signalJeading to large low-frequency loop gain aacturate regulation of the
low-frequency components tiie outputvoltage. At high frequency (ithe vicinity of the
crossover frequency), the compensator introduces phase ledlakifdop gain,improving
the phase margin. Such a compensator is sometimes called a PID controller.

A typical Bode diagram of @racticalversion of this compensator ikustrated in
Fig. 9.21. The compensator has transfer function

(1+°§L)(1+5)

G(9 =Gy -
g al
i P2 (9-43)
The inverted zero at frequenfyfunctions in the same manner as thec&hpensator. The
zero at frequencyf, 4008
Il GclI

adds phasé¢ead in the
vicinity of the

crossover frequency,
as in the PD

20dB +

0dB H

—200dB

r 90°

10f  10f
45°Idec L= z fp2/10

compensator. The ~40d8 _/wlo 90°/dee ’
. o 90°/d -
high-frequency poles at -9 To 106, 1 _og

. ueG f, /10
frequenciesf,; andf,, ¢ :
must be present in
practical compensators,

+ —180°

f
to cause the gain to roll  Fig. 9.21. Magnitude and phase asymptotes of the combined (PID)
compensator transfer functi@y, of Eq. (9-43).
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off at high frequencies and to prevent the switching ripple from disrutitengperation of
the pulse-width modulatorThe loop gaincrossover frequenc§, is chosen to bgreater
thanf, andf,, but less thafy,; andf,,.

9.5.4. Design example
To illustrate the design of Pl and PD compensatetsys considerthe design of a

combined PID compensator L

for the dc-dc  buck 50|JH
converter system offFig. T o
9.22. The input voltage vy — vy R
vi(t) for this system has*®" 50qu % H‘('S) sensor
nominal value28V. It is oz — gamn
desired to supply a ggf‘eng'ﬁ\t/grr glrgr’?]; |
frehgul;eltej 1.5V to ;a?A:a:. 5 pr:]JIOsdeu\I/;lt%trr [ o) e Hv
e load is modeled here V. —2v  compensator
with a 32 resistor. An ' 5v
accurate 5V reference is Fig- 9.22. Desgn exanple.

available.

The first step is to select the feedback ¢#(s). The gairH is chosen sucthat the
regulator produces eegulated 15V dmutput. Let us assumethat we will succeed in
designing a good feedback system, which causes the output voltage to accurately follow the
reference voltage. This is accomplished via a large loopIgawhich leads to a smadirror
voltage:v, = 0. HenceHv = v,;. So we should choose

V 15 3 (9-44)
The quiescent duty cycle is given by the steady-state solution of the converter:

D= =12-0536

The quiescent value of the control voltagg,must satisfy Eq. (7-135). Hence,
VC = DVM =214V (9'46)

Thus, the quiescent conditions of th&ystem are known. It remains to design the
compensator gaié(s).

A small-signal ac model of the regulator system is illustrated in Fig. B#8buck
converter ac model is represented in canorfarah. Disturbances in the input voltage and
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'y
in the load current are Bii 1D L
modeled. For & T
generality, reference 09 v ‘e c—= 99 sk ‘9
voltage variations
V¢ are included in the -
diagram; in a dc error i
voltage  regulator, ,__q _ " ol /[
these variations are Cls) " @
compensator Vy =4V
normally zero.
The open-loop HE U

converter transfer H(S) 1

. _1
functions are H=3

. . Fig. 9.23. stem small-gjnal ac model, degn exanple.
discussed in the g y 9 egn exanp

previous chapters. The open-loop control-to-output transfer function is
Cul9= 5 1+ s#1+ $LC
R (9-47)
The open-loop control-to-output transfer function contains two poles;ante written in
the following normalized form:

_ 1
Gvd(s) - C-:'dO 1+ S + (i)z
Qo o (9-48)
By equatinglike coefficients inEgs. (9-47)and(9-48), one findsthat the daain, corner

frequency, anf)-factor are given by

Go = 15 = 28V
:&: 1 =
f oM o/ iC 1kHz
o /C -
Q=Ry/ £ =950 19508 (9.49)

In practice, parasitic loss elements, suclthascapacitor equivaleseries resistanagsr),
would cause a lowef-factor to beobserved. Figure 9.24ontains a Bode diagram of

Gvd(s)-
The open-loop line-to-output transfer function is
- 1
Gy(9)=D —7——
Vi L 2
1+%R+sLC (9-50)

This transfer function contairthe samepoles as inG,4(s), and can be written in the
normalized form
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60dBV T T
I Gl 0 Gy

,,,,,,,, -
40dBV 1 _
1Gwll G =28v 29dBVJ\ Q=050 19508

20dBV | fo 1
0 Gy 1071/ %0 f, = 900Hz
0dBV Al { 0

—20dBV 1 1 -90°

-40dBV \ -180°
10%/ %0 ;= 1.1kHz

1 —270°

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

f

Fig. 9.24. Converter small-signal control-to-output transfer functiy,
design example.

— 1
Gvg(s) - GgO 1+ S + (i)z
Qo o (9-51)
with Gy, = D. The open-loop output impedance of the buck converter is
- 1 - sL
Zof( =Rl sk =—7=——
oul SC: L >
1+ SR +s2L.C (9-52)

Use of these equations to represent the converter in block-diagwam leads to the
complete system block diagram of Fig. 9.25. The loop gain of the system is

T(9 =69 [y | Gul9 HS)

(9-53)
Substitution of Eq. (9-48) into (9-53) leads to
G.(s) H(S
Qo 1 %% (9-54)
T 10aa(9) | l0ad current
variation
v
Z..(S)
\7(5) out!
acgline > GVQ(S)
variation
Vy=4v \ -
e (=0 d
Vs (=0) 04() o) s VA () J 6 , (s .
M__lduty cycle
variation
converter power stage
H(s) |e

Fig. 9.25. $§stem block digram, degin exanple.
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40dB T

The closed-loop I T, I - 0T,
. 20dB + = r
disturbance-to-output ITull T, 2:330 7.4dB ﬁ, Q= 9.50 19.5dB
transfer functions are 0dB 1fkoH
z
iven by Egs. (9-5 —20dB | i
g y q ( ) 2008 N — 40 dB/decade
and (9-6). o 1072 f,= 900Hz i
—-40dB A r 0
The oT,
+ + -90°
uncompensated loop
ainT,(s), with unit . -180°
J (5) . y 1070 f, = 1.1kHz
compensatorgain, is \ , : , _270°
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

sketched in Fig9.26. ;

With Gc(s) =1, Eq. Fig. 9.26. Uncompensated loop gal, design example.
(9-54) can be written

_ 1
T,(9) =T,
( ) 0 1 + S 4 (i)Z
Qo (W (9-55)
where the dc gain is

_HV _
T,o=HY =2330 7.4d8
" DV (9-56)

The uncompensated loop gain has a crossover frequerappaiximatelyl.8kHz, with a
phase margin of less than five degrees.

Let us design a compensator atitain acrossover frequency d¢f = 5kHz, or one
twentieth of the switching frequency. Frdfig. 9.26,the uncompensatddop gainhas a
magnitude at 5kHz of approximately, (f, /fc)2 = 0.0930 -20.6dB. So tmbtain unity
loop gain at 5kHz, our compensator should have a 5kHz gat@@b6dB. Inaddition, the
compensator should improve the phase margin, since the phtme wfcompensated loop
gain is nearly-180° at 5kHz. So kad (PD) compensator is needdcet us (somewhat
arbitrarily) choose to design for a phase margin of 52°. Accordirfggto9.13, this choice
leads to closed-loop poles havingRdactor of 1. The unistepresponse, Fig. 9.14hen
exhibits a peak overshoot of 16%. Evaluation of @g36), with f, = 5kHz andd = 52°,
leads to the following compensator pole and zero frequencies:

_ [1-sn(B2) _
_ [1+sn(52°) _

To obtain a compensator gain of 20.6dB10.7 at 5kHz the low-frequency compensator
gain must be
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40dB . T
Il Gl Gwv/Tp : 0 G,
2081 |Gl G, e o
i c
0dB fZ ————————— = Y fzfp rrrrrrrrrrrrrrrrrrrrrrrrrrrrr +
—20dB 1 /10 10f, T 90
0 /10
—40dB 0°
0G,
+ + —-90°
+-180°
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

f
Fig. 9.27. PDcompensator transfer functi@, design example.

2
Gy=(L| L /& o370 11308
P (9-58)

A Bode diagram of the PD compensator magnitude and phase is sketched in Fig. 9.27.
With this PD controller, the loop gain becomes

S
(1 + @)
4]
(@)
( b Qoo ((‘)0) (9-59)
The compensated loop gain is sketched in Fig. 9.28. It can be seen that the fifa¥es of
approximately equal to 400B -

T(8) =Ty Gy

o [y I
52° over the frequency Il o L ITII 7, =860 18,708 ﬁ Q,=950 19508 | T
range of 1.4kHz to fy \f\
d 1kH
17kHz. Hence o Tk 1,
inti i ] 5kHz f
-20dB
variations |r1 component ,, 900Hy o
values, whichcause the _40dB 0 1 o
oT
crossover frequency to | oo
deviate somewhat from
. -180°
5kHz, shouldhave little
impact on the phase * * ; % 270’
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz
margin. In addition, it £
can beseen fromFig. Fig. 9.28. The conpensated lop gain of K. (9-59).

9.28 that the loop gain has a dc magnitud€ gb., [ 18.7dB.
Asymptotes of the quantity 1 / (1 H are constructed iRig. 9.29. This quantity
has a dasymptote ot-18.7dB. Therefore, at frequencies legsan 1kHz, the feedback
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0dB -

loop attenuates outputvoltage 0 J\
[ T T, =8.60) 18.7dB
disturbances by 18.7dB. For 2% [N

example, suppos¢hat the input ods

A
Qy=9.50 19.5dB
v

voltage v (t) contains a 100Hz

—20dB A

variation of amplitudelV. With .
no feedback loop, this disturbance
would propagate to the output
according to the open-loop

transfer functionG,(s), given in

Eq (9_51) At 1OOHZ th|S 1Hz 16Hz 1(;0Hz ikHz l'OkHz 1YOOkHZ
. . ) .

transfer function has again Fig. 9.29. Construction of || 1/ (1 ¥F) || for the PD-

essentially equal to the dc conpensated degn exanple of Fig. 9.28.

asymptoteD = 0.536. Therefore, with ndeedbackoop, a 100Hzvariation of amplitude
0.536V would be observed at the output. In the presence of feedbaclqgsed-loopline-
to-output transfer function dEq. (9-5) isobtained;for our example, thisttenuates the
100Hz variation by an additional factor df8.7dB [0 8.6. The 100Hz outputvoltage
variation now has magnitude 0.536 / 8.6 = 0.062V.

The low-frequency regulatiorcan be further improved by addition of an inverted
zero, as discussed in section 9.5.2. A PID controller, aedtion9.5.3, isthenobtained.
The compensator transfer function becomes

(1+(§z)(1+‘g)

)

GC(S) = Gcm

p

(9-60)
The pole and zero frequencigsandf, areunchanged, andre given byEq. (9-57). The

midband gairG, is chosen to bthe same as thereviousG_, Eq. (9-58). Hence, for
40dB -

frequencies greater than g | 0G,
f_, the magnitude of the 20dB 1
loop gain is unchanged by 0dB
the inverted zero. The _o0dB 1 o 1, fow
loop continues to exhibit a .
—40dB i) 0°
crossover frequency of e ﬂ J
C — o
5kHz. fL/‘lO f/10 1%
So that the 1 1-180°
inverted zero does not # # # #
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

significantly degrade the f

Fig. 9.30. PID conpensator transfer functionge(9-60).
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. 60dB T
phase margin, let us

(somewhat arbitrarily)
choosef, to be one-tenth of 20d8 {
the crossover frequency, or 4
500Hz. The inverted zero
will then increase the loop
gain at frequencies below™ ]
500Hz, improving thelow- —60dB¢
frequency regulation of the g,4s

1H 10H 100H 1kH 10kH 100kH
output voltage. The loop ‘ ’ ’ f ’ ’ ’

gain of Fig. 9.31 is  Fig. 9.31. Construction of J|| and || 1/ (1 ¥) || with the
obtained. The magnitude of PID-conpensator of Fg. 9.30.

the quantity 1 / (1 H) is also constructed. ttan beseenthat the inverted zero &00Hz
causeghe magnitude of 1 / (1 ¥) at 100Hz to beeduced by a factor of approximately
(100Hz) / (500Hz) = 1/5. The totattenuation of 1 / (1 #) at 100Hz is -32.7dB. A 1V,
100Hz variation inv(t) would now induce a 12mV variationw(t). Further improvements
could be obtained by increasifighowever, this would require redesigntbé PD portion
of the compensator to maintain an adequate phase margin.

The line-to-output
transfer function is
constructed inFig. 9.32.
Both the open-loop transfer
function G, (s), Eq. (9-51),
and theclosed-loop transfer ~ -60dB 4

40dB

0dB +

20dB

[
0B }- G (0) =D JANES

v
VQ

functionG,(s) / (1 + T(s)), ~80d8 }Closed-loop 1G+ng — 40dB/ded
are constructedusing the L00dE

algebra-on-the-graph

method. The two transfer 1Hz 1(;Hz 1(;OHZ ikHz fOkHz lQOOkHz
functions  coincide at f

Fig. 9.32. Comparison of open-loop line-to-output transfer function

frequencies greater than the . .
q 9 Gyg and closed-loop line-to-output transfer function of Eq. (9-
crossover frequency. At 61).

frequencies lessthan the

crossover frequendy, theclosed-loop transfer function is reduced by a factor (s). It
can be seen that the poles3)f(s) are cancelled by zeroes of 1/ (I)+Hence the closed-
loop line-to-output transfer function is approximately
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Gvg(S) - D 1

[1T8) B 1 Q1 20§

(9-61)

So the algebra-on-the-graph methaliows simple approximate disturbance-to-output
closed-loop transfer functions to be written. Armed with suchratyticalexpression, the
system designecan easily compute the outpdisturbances, andan gain the insight
required to modify the element values such that system specifications are met.

9.6. Measurement of loop gains

It is good engineering practice to measure thep gains of prototype feedback
systems.The objective osuch arexercise is to verifghat thesystem haseen correctly
modeled. If so, then provided that a good controller design has been implemented, then the
system behavior wilineetexpectations regarding transievershoot (and phase margin),
rejection of disturbances, dc output voltage regulation, etc. Unfortunately, there are reasons
why practicalsystem prototypeare likely to differfrom theoreticalmodels.Phenomena
may occurwhich were not accountefdr in the originalmodel, and whiclsignificantly
influence thesystem behavior. Noise ari€MI can bepresent, whiclcause thesystem
transfer functions to deviate in unexpected ways.

Block 1 A Block2 77777777
Zy(s) ? +
V(9 049 6.9 %9 [ﬂ w9 E@ G(9) 9(9) = U(s) N

H(s) |=

Fig. 9.33. Itisdesired to determine the loop gdifs) experimentally, by
making measurements at poat

So let us consider the measurement of the loop H@hof the feedbackystem of
Fig. 9.33. We will make measurements at some @ggimthere two blocks othe network
are connected electrically. Irig. 9.33, the outputport of blockl is represented by a
Thevenin-equivalent network, composedtitd dependent voltagsurceG,v, and output
impedance,. Block 1 is loaded by the input impedangg of block 2. The remainder of
the feedbaclsystem is represented by a blatdiiagram asshown. The loop gain of the
system is
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Z(9)

T®:G@%L©+L@

)GQ(S) H(s)
(9-62)
Measurement of this loop gapresents severaghallenges not present in other frequency

response measurements.

VCC
Block 1 i Block 2
Sdc bias

-Zl(S) —o <

0 - 1

LM swue?] %9 09 [ze] 2T,

\72

+ —

H(s)

A

Fig. 9.34. Measurement of loop gain by breaking the loop.

In principle, one could break the loop at padand attempt to measufgs) using
the transfer function measurement methodttué previous chapter. Aslustrated inFig.
9.34, a dc supply voltayye and potentiometer would be used, to establish a dc bias in the
voltagev,, suchthat all of theelements of thenetwork operate at the correct quiescent
point. Acvoltage variations iv,(t) are coupled into the injection point via a dc blocking
capacitor. Any other independent ac inputshesystemaredisabled. A networlanalyzer
is used to measure the relative magnitudes and phases of the ac components of the voltages
Vy(t) andv(t):
(s)

VX(S) Vret =0
7=0 (9-63)

The measured gaifh,(s) differs from the actual gaiii(s) because, by breaking the
connection between blocksand2 at the measurement point, we have removed the loading
of block2 on blockl. Solution of Fig. 9.34 for the measured g&js) leads to

To(®) = Gi(9) Gy(9 H(9) (9-64)
Equations (9-62) and (9-64) can be combined to exgigssin terms ofT(s).

To(9) =

_ Z,(9)
Tm(s)—T(s)(1+ ! )

Hence,

T(9)=T(s) providedthat |Z,]|>>]Zz,| (9-66)
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So to obtain an accurate measurement, we need to fimjeation pointwhere loading is
negligible over the range of frequencies to be measured.

Other difficulties are encountereghen usinghe method ofFig. 9.34. The most
seriousproblem is adjustment of the digas using a potentiometefhe dcloop gain is
typically very large,especiallywhen a Plcontroller isused. Asmall change in the dc
component ofv,(t) can therefore lead twery large changes ithe dcbiases of some
elements in the system. So it is difficult to establish the correct dc conditions in the circuit.
The dcgains may drift during the experiment, makinghe problem everworse, and
saturation of the error amplifier is a common complaMgo, we have seethat thegains
of the converter can be a function of the quiescent operating point; significant deviation
from the correct operating point can cause the measured gain to differ fréooghgain of
actual operating conditions.

9.6.1. Voltage injection

An approach which avoidke dc biasing problerf8] is illustrated inFig. 9.35.
The voltage source(t) is injected between blocksand2, without breaking the feedback
loop. Acvariations inv,(t) again excitevariations in the feedbackystem,but dc bias
conditions are determined by the circuit. Indeed,ij contains no dc component, then the
biasing circuits of the system itself establish the quiescent opepating Hencethe loop
gain measurement is made at the actual system operating point.

Block 1 - \A + Block 2
i(s
0 Q-0+
V4(9) 6] 9 U E] o 9 E@ G,(9) vx(s):v(s)=
+ —

A

H(s)

Fig. 9.35. Measurement of loop gain by voltage injection.

The injectionsource ismodeled inFig. 9.35 by aThevenin equivalenbetwork,
containing an independent voltage source with soumpedanceZ(s). The magnitudes of
v, andZ, are irrelevant in the determination of to@p gain.However,the injection ofv,
does disrupthe loading of block on blockl. Hence, asuitable injection poinmust be
found, where the loading effect is negligible.
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To measure thioop gain by voltage injection, we connechetwork analyzer to
measure théransfer function fronv, to v,. Thesystem independent ac inpuee set to
zero, and the network analyzer sweepsthe injection voltagev,(t) over the intended
frequency range. The measured gain is
V(s)

V(S) |vre =0
%0 (9-67)
Let us solve Fig9.35, tocompare the measured gdig(s) with the actualoop gainT(s)
given by Eq. (9-62). The error signal is
9,(9) =~ H(9) GA9) (9 (9-68)
The voltage,(s) can be written

T(9) =

—0,(8) = Gy(9) U(S) — 1 (9) Z,(9) (9-69)

wherei(s) Z(s) is the voltage drop across the source impedan&ubstitution of Eq. (9-
68) into (9-69) leads to

—0(8) == 0,(8) Gy(s) H(s) Gy(s) ~i(9) Zy(9)

(9-70)
Buti(s)is
ay VY(S)
1(s) = 2=
Z(9) (9-71)
Therefore, Eq. (9-70) becomes
U9 = (9| 9 G HE9 + 517
? (9-72)

Substitution ofEq. (9-72)into (9-67) leads to thdollowing expression fothe measured
gainT,(s).

Zy(s)

Z{9) (9-73)
Equations (9-62) and (9-73) can be combined to determine the measurgg)amnterms
of the actual loop gaim(s)

_ Z,(9) | , Zi(9)
T(9) =T(9) (1 + Zz(s)) + 29

T() = Gy(8) G,() H(s) +

(9-74)
Thus,T,(s) can be expressed as the sum of two tefirhefirst term isproportional to the
actualloop gainT(s), and is approximately equal Tqs) whenever [F, || << ||Z, ||. The
second term is not proportionalT¢s), and limits theminimum T(s) that can be measured
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with the voltage injection technique.4f / Z, is much smaller in magnitude th&is), then
the second term can Ignored,andT,(s) = T(s). At frequencies wher&(s) is smaller in

magnitude tha#, / Z,, the measured data must be discarded. Thus,

T(9) =T(9) provided (i) |Zy(9)]<<|Z(9)|. and

Zy(s)
Z,(9)

(i) [T |>>

(9-75)
Again, note that the value of the injection source impedaniedrrelevant.

As an example, consideroltage Blocktr | Block2
injection at the output of an operational _?38
amplifier, having a 5Q output
impedance, which drives a SDCeffective [j] (9 0) < 500
load. The system inthe vicinity of the
injection point is illustrated iFig. 9.36.
S0 Z,(s) = 5 andZ,(s) = 50@Q. The = =
ratio Z, / Z, is 0.1, or —20dB.Let us Fig. 9.36. Voltage injection example.
further supposehat the actualoop gain
T(s) contains poles at 10Hz ad®0kHz,with a dc gain of80dB. The actualloop gain
magnitude is illustrated in Fig. 9.37.

Voltage injectionwould result inmeasurement of (s) given in Eq. (9-74).Note

that

(1 + 28) -110 0.83dB

(9-76)
Hence, forlarge |[T ||, the measuredogs
[| T, || deviates fromthe actualloop .
gain bylessthan 1dB. However, at - I
high frequency where T || is less Tl

than —-20dB, the measured gain40dB
differs significantly. Apparently, *°*®

T,(s) contains two high-frequency 08 f------ 205 oo
. zZ|": T,
zeroesthat arenot present inT(S). 208 Z \ l{ !
Depending on the)-factor of these .z ‘ ‘ ‘ TN
10Hz 100Hz 1kHz 10kHz 100kHz 1MHz

zeroes, the phase of T, at the .

crossover  frequency could  be Fig. 9.37. Comparison of measured loop gdjpand

influenced. To ensuréhat thephase actual loop gaifT, voltage injection example. The
measuredjain deviates at gh frequeng.
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margin is correctlymeasured, it isimportant thatZ, /Z, be sufficiently small in
magnitude.

Block 1 . o Block2
0 Z,(s)
s ) Gy(9) V9 E:I E@ CA9 (=% |
H(s) |=

Fig. 9.38. Measurement of Igpgain by current ifection.

9.6.2. Current injection

Theresults ofthe precedingparagraphganalso be obtained in du&érm, where
the loop gain is measured by current injection [3]. As illustrated in Fig. 9.38, weadsl
block 1 and the analyzer injectiosource bytheir Norton equivalents, and uswmirrent
probes to measuigandi,. The gain measured by current injection is

i\(s)

Ti(s) = I» (S)

Vref =0

%=0 (9-77)

It can be shown that

Ti(S) — T(S) (1 + ZZ(S)) + ZZ(S)

28] Z(9 (9.78)
Hence,
T(s) = T(s) provided (i) |Z,(s)|<<|Zi(s)| and
. Z,(9)
T(9) | >>| 52 < >
ONRICIEd PE T
(9-79) G
So to obtain an accurate measurement ofdibe gain by current R,

injection, we must find a point ithe network where blocR has

sufficiently small input impedancégain, notethat the injection

source impedancg, does notffect themeasurement. In fact, we
A . . . Fig. 9.39. Current

can realizé, by use of a Thevenin-equivalesdurce, aglustrated injection using Thevenin-

in Fig. 9.39. The networknalyzer injectiorsource is represented equivalent source.
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by voltagesourcev, and output resistand®,. A series capacitoC,, is inserted to avoid

disrupting the dc bias at the injection point.

9.6.3. Measurement of unstable systems

When the prototype feedbadystem is unstable, ware even more eager to
measure the loop gain —to find out what wembng. But measurements cannot fmade
while the system oscillates. We need s$tabilize thesystem,yet measure the original
unstable loopgain. It is possible to do this byecognizing that the injectiosource
impedance does not influence the measured loop gain [3]. As illustrated ir9HEQ, we
can even add additional resistaiizg, effectively increasing the sourcepedanceZ,. The
measured loop gaifi(s) is unaffected.

Block 1 Block 2
R m™— ~ |
Z Z
. A(s) F— &) H)—

LeXt =
94‘3 ) %S, 699 9,9 (9 E@ CA9 U =9

H(s)

A

Fig. 9.40. Measurement of an unstable loop gain by voltage injection.

Adding seriesmpedance generallpwersthe loop gain of asystem,leading to a
lower crossover frequency and a more positive phase margin. Hence, it is usually possible
to add a resistdR,, that is sufficiently large to stabilize the system. The Ggs), Eq. (9-
67), continues to be approximately equal to the original unstable gain,according to
Eq. (9-75). To avoid disturbing the dc bias conditionmay benecessary to bypast,,
with inductorL,,, If the inductance value is sufficiently large, then it will not influence the
stability of the modified system.

9.7. Summary of key points

1. Negative feedback caus#®e system output to closely followhe referenceinput,
according to the gain 1H(s). The influence on the output disturbances and
variation of gains in the forward path is reduced.

2. Theloop gainT(s) is equal to theroducts ofthe gains inthe forward andfeedback
paths. The loop gain is a measurehofv well the feedbaclsystem works: darge
loop gain leads to better regulation of thé&put. The crossover frequencf is the
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frequency at whiclithe loop gainT hasunity magnitude, and is a measure of the
bandwidth of the control system.

3. The introduction of feedbaatauseghe transfer functions from disturbances to the
output to be multiplied by the factd/(1+T(s)). At frequencies wher& is large in
magnitude (i.e., below the crossover frequency), fausor is approximately equal
to 1/T(s). Hence,the influence oflow-frequency disturbances dhe output is
reduced by a factor of I(s). At frequencies wher& is small in magnitudéi.e.,
above thecrossover frequency)he factor is approximately equal to 1. The
feedback loop therhas no effect. Closed-loop disturbance-to-output transfer
functions, such as the line-to-output transfer functiotheroutput impedance, can
easily be constructed using the algebra-on-the-graph method.

4. Stability can be assessed using the phase margiifttegithase ofT is evaluated at the
crossover frequency, anthe stability of the importantlosed-loop quantities
T/(1+T) and 1/(1H) is then deduced. Inadequate phase margin leads to ringing and
overshoot in the system transieasponseand peaking in thelosed-loop transfer
functions.

5. Compensators are added in the forward paths of feediiguk to shapéhe loop gain,
suchthatdesired performance is obtainegad compensators, or PD controllers,
are added to improve the phase margin and extend the control system bandwidth. PI
controllers areused toincrease thelow-frequency loop gain, tomprove the
rejection of low-frequency disturbances and reduce the steady-state error.

6. Loop gains can bexperimentally measured luse ofvoltage or current injection. This
approach avoidghe problem of establishing the correct quiescent operating
conditions in thesystem, acommon difficulty insystems having &rge dc loop
gain. Aninjection pointmust be found whermterstage loading is not significant.
Unstable loop gains can also be measured.
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PROBLEMS
Derive both forms of Eq. (9-25).

The flybackconvertersystem of Fig. 9.4kontains afeedbackloop for regulation of the main

output voltagev;. An auxiliary output 64:3
produces voltage,. The dc input voltage, » J_ +
lies in therange280V < v, < 380V. The L= 60QiH ° © vy R
. = 22QuF 5Q
compensator network has transfer function H% . -|_ _
w + .
G(9 =G, 1+ w© Ty
. L. ln
whereG,, = 0.05, and, = w,/21t = 400Hz. r| E i 10047 '|' 2 qx H‘(’ )
— S
(a) What is thesteady-statevalue of - f,= 200kHz H(s) =02

the error voltage v, (t)? Explain transistor

your reasoning. S W
modulator[*—] Gc(8)
(b) Determine thesteady-stat@alue of v —av  compensator
the main output voltage,. ! referencel , - ay
. input 1 "
(c) Estimate thesteady-statevalue of
the auxiliary output voltage,. Fig. 9.41.

In the boost converter system of Fig. 9.42, all elements are ideal. The compensator &s)gain
= 10005.

Boost converter

(a) Construct the Bodelot of the L
loop gain T(s) magnitude and LN Pl -
phase. Label values of all SouH
corner frequenciesand Q- Y, C) E c=—= v Rg
factors, as appropriate. 48V A\ rl 68UF 120 v
(b) Determine  the crossover 5
frequency and phase margin. transistor f,= 200kHz
gate driver,
(c) Construct theBode diagram of pulse-widtH Ve
the magnitude of 1/(1+T), modulator[*—| <)
using thealgebra-on-the-graph Vy=4v  compensator T f
method. Label values of all fe{gﬁgce oy
corner frequenciesand Q-
factors, as appropriate. Fig. 9.42.
(d) Construct theBodediagram ofthe magnitude of thelosed-loopline-to-output transfer

function. Label values of all corner frequencies @nfdictors, as appropriate.

A certain inverter system has the following loop gain

-3

(1+ w%)(“ %)(u %)

and the following open-loop line-to-output transfer function

T(9=T,

Gl = G 1+ (31)1(1 By
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where
T, =100 w, = 500 rad/s
w, = 1000 rad/s w,; = 24000 rad/s
w, = 4000 rad/s Gy =05

The gain of the feedback connectiofis) = 0.1.

(a) Sketch the magnitudand phase asymptotes of the loop gdifs). Determine numerical
values of the crossover frequency in Hz and phase margin in degrees.

(b) Construct themagnitude asymptotes of ttwosed-loopline-to-outputtransferfunction.
Label important features.

(c) Construct themagnitude asymptotes of thelosed-loop transfeifunction from the
reference voltage to the output voltage. Label important features.

The forward convertersystem of Fig. 9.43 igonstructedwith the element values shown. The
quiescent value of the input voltage\ig = 380V. Thetransformerhas turns ratio, / n; = 4.5.
The dutycycle produced bythe pulse-width modulator igestricted tothe range 0< d(t) < 0.5.
Within this ranged(t) follows the

control voltagev,(t) according to i L

n

f,= 150kHz

I']1 N
_ 1 V(t) )
A 4H
with V,, = 3 volts. ) C‘D

i
(a) Determine the quiescent E - -
values of: the dutycycle rl @
D, the output voltagé/, 81.8K0

. Bk 5610
and the control voltage . Soated ——w
V.. gate driver i
pulsde-}NItdt Ve - 18.2KQ
. ator[™ .
(b) Sketch a block diagram s Vier
which models the small- 5.1V L
signal ac variations in the i
system,anddetermine the Fig. 9.43.
transfer function of each
block.
(c) Construct aBode plot of the loop gainmagnitudeand phase. What is th&rossover
frequency? What is the phase margin?
(d) Construct the Bode plot of the closed-loop line-to-output transfer function magnitude
v
\79

Label important features. What is the gainlaOHz? At whafrequency do disturbances
in v, have the greatest influence on the output voltage?

In the voltage regulatasystem of Fig. 9.43described inproblem 9.5, the inputoltage vy(t)
contains a 120Hz variation of peak amplitude 10V.

(a) What is the amplitude of the resulting 120Hz variatiom(tj?
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(b) Modify the compensator network such that the 120Hz output voltage variatiqgredlas
amplitude less thar25mV. Your modification should leavehe dc outputvoltage
unchanged, and should result in a crossover frequency no greater than 10kHz.

Design of a boost converter with current feedback and a Pl compensator. In some applications, it is

desired tocontrol theconverterterminal current waveformThe boostconvertersystem ofFig.

9.44 contains afeedbackloop which
causes the converter input curref) to b} -
be proportional to aeferencevoltage
V,(t). The feedback connection is avg c=—— v Rs i,
current senseircuit having gainH(s) = 100F 1200 v
0.2 volts per ampere. A conventional - H(s)
pulse width modulator circuit(Fig. . f = 100kH2
7.62) is employed, having a sawtooth gg;’ienglr?\tlzrr s
waveformwith peak-peakamplitude of 5 |_[pursewia o[ o
Vyu = 3 volts. Thequiescentvalues of modulator ¢ H(s) iy(s)
the inputsare:V, = 120 volts,V o = 2 vy=3v  compensator
volts. All elements are ideal. e v
(a) Determine thequiescent values Fig. 9.44.
D, V, andl,.

(b) Determine the small-signal transfer function

e

Gil(9) ==
d(s)

(c) Sketch the magnitude and phase asymptotes of the uncompe@éded L) loop gain.

(d) It is desired to obtain a loop gain magnitude of at least 35dB at 120Hz, while maintaining

a phase margin of at least 72°. The crossover frequency should be no gredter fitar
10kHz. Design a Pl compensator which accomplighés Sketch themagnitude and
phase asymptotes of the resulting loop gain, and label important features.

(e) For your design of part (d), sketch the magnitude of the closed-loop transfer function

¥
Vref (S)

Label important features.

Design of a buck regulator to meelbsed-loopoutput impedancespecifications. Thebuck
converterwith control system illustrated ifrig. 9.45 is to bedlesigned tomeet the following

specifications. Theclosed-loop output L

impedanceshould be less than a2 1T ImH T

over the entirdrequencyrange 0-20kHz. fload

To ensurethat the transient response isy, 20qu =R

well-behaved,the poles of theclosed- 1oov y

loop transferfunctions, in the vicinity - H(s)

of the crossoverfrequency,should have . f;= 100kHz H(s)=0.1
. transistor

Q-factors no greatethan unity. The gate driver

quiescent load current ., Can vary 5 pulse-widt) Ve[ o)

from 5A to 50A, and the above modulator -

(e . V. =4y  compensator
specifications must be medbor every M

value of I in this range. For .
simplicity, you may assume that the Fig. 9.45.
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input voltagev, doesnot vary. The loop gairrossoverfrequencyf, may be chosen to be no
greater tharig/ 10, or 10kHz. You may also assume that all elemamtgleal. Thepulse-width
modulator circuit obeys Eq. (7-132).

(a)

(b)

(c)

(d)

What is theintended dooutput voltageV? Over what range doeghe effective load
resistancdR o,p vary?

Construct themagnitude asymptotes of the open-lomgtput impedanceZ, (s). Over
what range of frequencies ithe outputimpedancespecificationnot met?Hence, deduce
how large the minimum loop gaifi(s) must be in magnitude, such that ttiesed-loop
output impedance meets the specification. Choose a suitable crossover fréguency

Design a compensator netwdBl(s) such that all specifications are met. Additionally, the
dc loop gainr(s) should be at least 20dB. Specify the following:

0] Your choice for the transfer functi@sy(s)
(i) The worst-case closed-logp

(iii) Bode plots of the loop gaif(s) andthe closed-loopoutput impedance,
for load currents of 5Aand50A. What effect doesvariation of R gap
have on the closed-loop behavior of your design?

Design a circuit using resistorsapacitorsand an opamp, torealizeyour compensator
transfer functiorG,(s).

Design of a buck-boost voltage regulator. The buck-boosterter ofFig. 9.46 operates in the
continuous conduction mode, with the element values shown. The nominal input voltage is
48V, and it is desired toegulatethe output voltage at —15V. Design the besimpensator that

you can, which has highcrossover €
frequency (but no greater than 10% of the
switching frequency), large loop gain
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over thebandwidth ofthe feedbackoop, " C—) 50uH 20F T 5V
and phase margin of at least 52°.

(a)

(b)

(c)

— H(s)

Specify therequiredvalue ofH. _ f, = 200kHz

transistor
Sketch Bode plots of the gate driver,
uncompensated loop  gain 5 |__[pusewiat] Ve[ o
magnitude angbhase, as well as modulator ° t
the magnitude and phase of your Vi =3v.compensator 1,
proposed compensatotransfer sv
function Gg(s). Label the Fig. 9.46.

important features of your plots.

Construct Bode diagrams of the magnitude and phase of your compdosatahinT(s),
and also of the magnitude of the quantifiels(1 +T) and1/ (1 +T).

Discuss your design. What prevents you friumther increasindghe crossoveifrequency?
How large is the loop gain at 120Hz? Can you obtain more loop gain at 120Hz?
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Chapter 9. Controller Design

9.10 The loop gain of acertain a)
feedback system is measured, -9 +

using voltage injection at point @ AN
1kQ - kQ *

in the forward path of théoop as

illustrated in Fig. 9.47(a). The + A4
data in Fig. 9.47(b) is obtained. SCRCIN ke We s10@ Sz 2
What is T(s)? Specify T(s) in . _

factoredpole-zeroform, and give e
numerical values for all important

features. Overwhat range of b)
frequencies doethe measurement 60dB

give valid results? [
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Fig. 9.47.

43



