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Chapter 9

Controller Design

9 . 1 . Introduction

In all switching converters, the

output voltage v(t) is a function of the

input line voltage vg(t), the duty cycle

d(t), and the load current iload(t), as

well as the converter circuit element

values. In a dc-dc converter

application, it is desired to obtain a

constant output voltage v(t) = V, in

spite of disturbances in vg(t) and

iload(t), and in spite of variations in the

converter circuit element values. The

sources of these disturbances and

variations are many, and a typical

situation is illustrated in Fig. 9.1. The

input voltage vg(t) of an off-line power

supply may typically contain periodic

variations at the second harmonic of

the ac power system frequency (100Hz

or 120Hz), produced by a rectifier

circuit. The magnitude of vg(t) may

also vary when neighboring power system loads are switched on or off. The load current

iload(t) may contain variations of significant amplitude, and a typical power supply

specification is that the output voltage must remain within a specified range (for example,

5V ±0.1V) when the load current takes a step change from, for example, full rated load

current to 50% of the rated current, and vice-versa. The values of the circuit elements are
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Fig. 9.1. The output voltage of a typical switching

converter is a function of the line input voltage vg,

the duty cycle d, and the load current iload: (a) open-
loop buck converter, (b) functional diagram
illustrating dependence of v on the independent

quantities vg, d, and iload.
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constructed to a certain tolerance, and so in high-volume manufacturing of a converter,

converters are constructed whose output voltages lie in some distribution. It is desired that

essentially all of this distribution fall within the specified range; however, this is not

practical to achieve without the use of negative feedback. Similar considerations apply to

inverter applications, except that the output voltage is ac.

So we cannot expect to simply set the dc-dc converter duty cycle to a single value,

and obtain a given constant output voltage under all conditions. The idea behind the use of

negative feedback is to build a circuit that automatically adjusts the duty cycle as necessary,

to obtain the desired output voltage with high accuracy, regardless of disturbances in vg(t)

or iload(t) or variations in component values. This is a useful thing to do whenever there are

variations and unknowns that otherwise prevent the system from attaining the desired

performance.

A block diagram of a feedback system is shown in Fig. 9.2. The output voltage v(t)

is measured, using a “sensor” with gain H(s). In a dc voltage regulator or dc-ac inverter,

the sensor circuit is usually a voltage divider, comprised of precision resistors. The sensor

output signal H(s)v(s) is compared with a reference input voltage vref(s). The objective is to
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Fig. 9.2. Feedback loop for regulation of the output voltage: (a) buck converter, with feedback loop
block diagram; (b) functional block diagram of the feedback system.
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make H(s)v(s) equal to vref(s), so that v(s) accurately follows vref(s) regardless of

disturbances or component variations in the compensator, pulse-width modulator, gate

driver, or converter power stage.

The difference between the reference input vref(s) and the sensor output H(s)v(s) is

called the error signal ve(s). If the feedback system works perfectly, then vref(s) =

H(s)v(s), and hence the error signal is zero. In practice, the error signal is usually nonzero

but nonetheless small. Obtaining a small error is one of the objectives in adding a

compensator network Gc(s) as shown in Fig. 9.2. Note that the output voltage v(s) is equal

to the error signal ve(s), multiplied by the gains of the compensator, pulse-width

modulator, and converter power stage. If the compensator gain Gc(s) is large enough in

magnitude, then a small error signal can produce the required output voltage v(t) = V for a

dc regulator (Q: how should H and vref then be chosen?). So a large compensator gain leads

to a small error, and therefore the output follows the reference input with good accuracy.

This is the key idea behind feedback systems.

The averaged small-signal converter models derived in chapter 7 are used in the

following sections to find the effects of feedback on the small-signal transfer functions of

the regulator. The loop gain T(s) is defined as the product of the small-signal gains in the

forward and feedback paths of the feedback loop. It is found that the transfer function from

a disturbance to the output is multiplied by the factor 1/(1+T(s)). Hence, when the loop

gain T is large in magnitude, then the influence of disturbances on the output voltage is

small. A large loop gain also causes the output voltage v(s) to be nearly equal to

vref(s) / H(s), with very little dependence on the gains in the forward path of the feedback

loop. So the loop gain magnitude || T || is a measure of how well the feedback system

works. All of these gains can be easily constructed using the algebra-on-the-graph method;

this allows easy evaluation of important closed-loop performance measures, such as the

output voltage ripple resulting from 120Hz rectification ripple in vg(t) or the closed-loop

output impedance.

Stability is another important issue in feedback systems. Adding a feedback loop

can cause an otherwise well-behaved circuit to exhibit oscillations, ringing and overshoot,

and other undesirable behavior. An in-depth treatment of stability is beyond the scope of

this book; however, the simple phase margin criterion for assessing stability is used here.

When the phase margin of the loop gain T is positive, then the feedback system is stable.

Moreover, increasing the phase margin causes the system transient response to be better-

behaved, with less overshoot and ringing. The relation between phase margin and closed-

loop response is quantified in section 9.4.
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An example is given in section 9.5, in which a compensator network is designed

for a dc regulator system. The compensator network is designed to attain adequate phase

margin and good rejection of expected disturbances. Lead compensators and P-D

controllers are used to improve the phase margin and extend the bandwidth of the feedback

loop. This leads to better rejection of high-frequency disturbances. Lag compensators and

P-I controllers are used to increase the low-frequency loop gain. This leads to better

rejection of low-frequency disturbances and very small steady-state error. More

complicated compensators can achieve the advantages of both approaches.

Injection methods for experimental measurement of loop gain are introduced in

section 9.6. The use of voltage or current injection solves the problem of establishing the

correct quiescent operating point in high-gain systems. Conditions for obtaining an accurate

measurement are exposed. The injection method also allows measurement of the loop gains

of unstable systems.

9 . 2 . Effect of negative feedback on the network transfer functions

We have seen how to

derive the small-signal ac

transfer functions of a

switching converter. For

example, the equivalent circuit

model of the buck converter

can be written as in Fig. 9.3.
This equivalent circuit contains three independent inputs: the control input variations  d ,

the power input voltage variations  vg , and the load current variations  i load . The output

voltage variation  v  can therefore be expressed as a linear combination of the three

independent inputs, as follows:

  v(s) = Gvd(s) d(s) + Gvg(s) vg(s) – Zout(s) i load(s) (9-1)

where

  
Gvd(s) =

v(s)
d(s) vg = 0

i load = 0

converter control-to-output transfer function

  
Gvg(s) =

v(s)
vg(s) d = 0

i load = 0

converter line-to-output transfer function

+
–

+– 1 : M(D) Le

C Rvg(s)

+

–

v(s)

e(s) d(s)

j(s) d(s) i load(s)

Fig. 9.3. Small-signal converter model, which represents

variations in vg, d, and iload.
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Zout(s) = –

v(s)
i load(s) d = 0

vg = 0

converter output impedance

The Bode diagrams of these quantities are constructed in chapter 8. Equation (9-1)
describes how disturbances  vg  and  i load  propagate to the output  v , through the transfer

function Gvg(s) and the output impedance Zout(s). If the disturbances  vg  and  i load  are

known to have some maximum worst-case amplitude, then Eq. (9-1) can be used to

compute the resulting worst-case open-loop variation in  v .

As described previously, the feedback loop of Fig. 9.2 can be used to reduce the
influences of  vg  and  i load  on the output  v . To analyze this system, let us perturb and

linearize its averaged signals about their quiescent operating points. Both the power stage

and the control block diagram are perturbed and linearized:

  vref(t) = Vref + vref(t) (9-2)

  ve(t) = Ve + ve(t)

etc.
In a dc regulator system, the reference input is constant, so   vref(t) = 0. In a switching

amplifier or dc-ac inverter, the reference input may contain an ac variation. In Fig. 9.4(a),

the converter model of Fig. 9.3 is combined with the perturbed and linearized control

circuit block diagram. This is equivalent to the reduced block diagram of Fig. 9.4(b), in

which the converter model has been replaced by blocks representing Eq. (9-1).

Solution of Fig. 9.4(b) for the output voltage variation  v yields

  
v = vref

GcGvd / VM

1 + HGcGvd / VM
+ vg

Gvg

1 + HGcGvd / VM
– i load

Zout

1 + HGcGvd / VM

(9-3)

which can be written in the form

  
v = vref

1
H

T
1 + T

+ vg

Gvg

1 + T
– i load

Zout

1 + T
(9-4)

with T(s) = H(s)Gc(s)Gvd(s) / VM = “loop gain”

Equation (9-4) is a general result. The loop gain T(s) is defined in general as the product of

the gains around the forward and feedback paths of the loop. This equation shows how the

addition of a feedback loop modifies the transfer functions and performance of the system,

as described in detail below.
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9.2.1. Feedback reduces the transfer functions from disturbances to the
output
The transfer function from  vg to  v in the open-loop buck converter of Fig. 9.3 is

Gvg(s), as given in Eq. (9-1). When feedback is added, this transfer function becomes

  v(s)
vg(s) vref = 0

i load = 0

=
Gvg(s)

1 + T(s) (9-5)

from Eq. (9-4). So this transfer function is reduced via feedback by the factor 1/(1+T(s)).

If the loop gain T(s) is large in magnitude, then the reduction can be substantial. Hence, the
output voltage variation  v resulting from a given  vg variation is attenuated by the feedback

loop.
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Fig. 9.4. Voltage regulator system small-signal model: (a) with converter equivalent circuit; (b)
complete block diagram.
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Equation (9-4) also predicts that the converter output impedance is reduced, from

Zout(s) to

  v(s)
– i load(s) vref = 0

vg = 0

=
Zout(s)

1 + T(s) (9-6)

So the feedback loop also reduces the converter output impedance by a factor of

1/(1+T(s)), and the influence of load current variations on the output voltage is reduced.

9.2.2. Feedback causes the transfer function from the reference input to the
output to be insensitive to variations in the gains in the forward path
of the loop
According to Eq. (9-4), the closed-loop transfer function from   vref(t) to  v is

  v(s)
vref(s) vg = 0

i load = 0

= 1
H(s)

T(s)
1 + T(s) (9-7)

If the loop gain is large in magnitude, i.e., || T || >> 1, then (1+T) ≈ T and T/(1+T) ≈ T/T

= 1. The transfer function then becomes

   v(s)
vref(s)

≈ 1
H(s)

(9-8)

which is independent of Gc(s), VM, and Gvd(s). So provided that the loop gain is large in

magnitude, then variations in Gc(s), VM, and Gvd(s) have negligible effect on the output
voltage. Of course, in the dc regulator application, vref is constant and   vref(t) = 0. But Eq.

(9-8) applies equally well to the dc values. For example, if the system is linear, then we can

write

   V
Vref

= 1
H(0)

T(0)
1 + T(0)

≈ 1
H(0) (9-9)

So to make the dc output voltage V accurately follow the dc reference Vref, we need only

ensure that the dc sensor gain H(0) and dc reference Vref are well-known and accurate, and

that T(0) is large. Precision resistors are normally used to realize H, but components with

tightly-controlled values need not be used in Gc, the pulse-width modulator, or the power

stage. The sensitivity of the output voltage to the gains in the forward path is reduced,

while the sensitivity of v to the feedback gain H and the reference input vref is increased.
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9 . 3 . Construction of the important quantities 1/(1+T) and T/(1+T) and the

closed-loop transfer functions

The transfer functions in Eqs. (9-4) – (9-9) can be easily constructed using the

algebra-on-the-graph method [4]. Let us assume that we have analyzed the blocks in our

feedback system, and have plotted the Bode diagram of || T(s) ||. To use a concrete

example, suppose that the result is given in Fig. 9.5, for which T(s) is

   
T(s) = T0

1 + s
ωz

1 + s
Qωp1

+ s
ωp1

2
1 + s

ωp2

(9-10)

This example appears somewhat complicated. But the loop gains of practical voltage

regulators are often even more complex, and may contain four, five, or more poles.

Evaluation of Eqs. (9-5) - (9-7), to determine the closed-loop transfer functions, requires

quite a bit of work. The loop gain T must be added to 1, and the resulting numerator and

denominator must be re-factored. Using this approach, it is difficult to obtain physical

insight into the relationship between the closed-loop transfer functions and the loop gain. In

consequence, design of the feedback loop to meet specifications is difficult.

Using the algebra-on-the-graph method, the closed-loop transfer functions can be

constructed by inspection, and hence the relation between these transfer functions and the

loop gain becomes obvious. Let us first investigate how to plot || T/(1+T) || . It can be seen

from Fig. 9.5 that there is a frequency fc, called the “crossover frequency”, where || T || =

1. At frequencies less than fc, || T || > 1; indeed, || T || >> 1 for f << fc. Hence, at low

frequency, (1+T) ≈ T, and T/(1+T) ≈ T/T = 1. At frequencies greater than fc, || T || < 1,

and || T || << 1 for f >> fc. So at high frequency, (1+T) ≈ 1 and T/(1+T) ≈ T/1 = T. So we

have
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Fig. 9.5. Magnitude of the loop gain example, Eq. (9-10).
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T

1 + T
≈ 1 for || T || >> 1

T for || T || << 1 (9-11)

The asymptotes corresponding to Eq. (9-11) are relatively easy to construct. The low-

frequency asymptote, for f < fc, is 1 or 0dB. The high-frequency asymptotes, for f > fc,

follow T. The result is shown in Fig. 9.6.

So at low frequency, where || T || is large, the reference-to-output transfer function

is

   v(s)
vref(s)

= 1
H(s)

T(s)
1 + T(s)

≈ 1
H(s)

(9-12)

This is the desired behavior, and the feedback loop works well at frequencies where || T || is

large. At high frequency (f >> fc) where || T || is small, the reference-to-output transfer

function is

   v(s)
vref(s)

= 1
H(s)

T(s)
1 + T(s)

≈ T(s)
H(s)

=
Gc(s)Gvd(s)

VM
(9-13)

This is not the desired behavior; in fact, this is the gain with the feedback connection

removed (H  →  0). At high frequencies, the feedback loop is unable to reject the

disturbance because the bandwidth of T is limited. The reference-to-output transfer function

can be constructed on the graph by multiplying the T/(1+T) asymptotes of Fig. 9.6 by 1/H.

We can plot the asymptotes of || 1/(1+T) || using similar arguments. At low

frequencies where || T || >> 1, then (1+T) ≈ T, and hence 1/(1+T) ≈ 1/T. At high

frequencies where || T || << 1, then (1+T) ≈ 1 and 1/(1+T) ≈ 1. So we have

   

1
1+T(s)

≈

1
T(s)

for || T || >> 1

1 for || T || << 1 (9-14)
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T
1 + T

Fig. 9.6. Graphical construction of the asymptotes of
|| T / (1 + T) ||. Exact curves are omitted.
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The asymptotes for the T(s) example of Fig. 9.5 are plotted in Fig. 9.7.
At low frequencies where || T || is large, the disturbance transfer function from  vg to

 v is

   v(s)
vg(s)

=
Gvg(s)

1 + T(s)
≈

Gvg(s)
T(s)

(9-15)

Again, Gvg(s) is the original transfer function, with no feedback. The closed-loop transfer

function has magnitude reduced by the factor 1/|| T ||. So if, for example, we want to reduce

this transfer function by a factor of 20 at 120Hz, then we need a loop gain || T || of at least
20 ⇒  26dB at 120Hz. The disturbance transfer function from  vg to  v can be constructed

on the graph, by multiplying the asymptotes of Fig. 9.7 by the asymptotes for Gvg(s).

Similar arguments apply to the output impedance. The closed-loop output

impedance at low frequencies is

   v(s)
– i load(s)

=
Zout(s)

1 + T(s)
≈ Zout(s)

T(s)
(9-16)

The output impedance is also reduced in magnitude by a factor of 1/|| T || at frequencies

below the crossover frequency.

At high frequencies (f > fc) where || T || is small, then 1/(1+T) ≈ 1, and

   v(s)
vg(s)

=
Gvg(s)

1 + T(s)
≈ Gvg(s)

   v(s)
– i load(s)

=
Zout(s)

1 + T(s)
≈ Zout(s)

(9-17)
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Fig. 9.7. Graphical construction of || 1 / (1 + T) ||.
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This is the same as the original disturbance transfer function and output impedance. So the

feedback loop has essentially no effect on the disturbance transfer functions at frequencies

above the crossover frequency.

9 . 4 . Stability

It is well known that adding a feedback loop can cause an otherwise stable system

to become unstable. Even though the transfer functions of the original converter, Eq. (9-1),

as well as of the loop gain T(s), contain no right half-plane poles, it is possible for the

closed-loop transfer functions of Eq. (9-4) to contain right half-plane poles. The feedback

loop then fails to regulate the system at the desired quiescent operating point, and

oscillations are usually observed. It is important to avoid this situation. And even when the

feedback system is stable, it is possible for the transient response to exhibit undesirable

ringing and overshoot. The stability problem is discussed in this section, and a method for

ensuring that the feedback system is stable and well-behaved is explained.

When feedback destabilizes the system, the denominator (1+T(s)) terms in Eq. (9-

4) contain roots in the right half-plane (i.e., with positive real parts). If T(s) is a rational

fraction, i.e., the ratio N(s)/D(s) of two polynomial functions N(s) and D(s), then we can

write

  
T(s)

1 + T(s)
=

N(s)
D(s)

1 +
N(s)
D(s)

=
N(s)

N(s) + D(s)

1
1 + T(s)

= 1

1 +
N(s)
D(s)

=
D(s)

N(s) + D(s) (9-18)

So T(s)/(1+T(s)) and 1/(1+T(s)) contain the same poles, given by the roots of the

polynomial (N(s) + D(s)). A brute-force test for stability is to evaluate (N(s) + D(s)), and

factor the result to see whether any of the roots have positive real parts. However, for all

but very simple loop gains, this involves a great deal of work. A simpler method is given

by the Nyquist stability theorem, in which the number of right half-plane roots of (N(s) +

D(s)) can be determined by testing T(s) [1,2]. This theorem is not discussed here.

However, a special case of the theorem known as the phase margin test is sufficient for

designing most voltage regulators, and is discussed in this section.

9.4.1. The phase margin test
The crossover frequency fc is defined as the frequency where the magnitude of the

loop gain is unity:
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|| T(j2πfc) || = 1 ⇒  0dB (9-19)

To compute the phase margin ϕm, the phase of the loop gain T is evaluated at the crossover

frequency, and 180˚ is added. Hence,

ϕm = 180˚ + ∠ T(j2πfc) (9-20)

If there is exactly one crossover frequency, and if the loop gain T(s) contains no right half-

plane poles, then the quantities 1/(1+T) and T/(1+T) contain no right half-plane poles when

the phase margin defined in Eq. (9-20) is positive. Thus, using a simple test on T(s), we

can determine the stability of T/(1+T) and 1/(1+T). This is an easy-to-use design tool —we

simple ensure that the phase of T is greater than –180˚ at the crossover frequency.

When there are multiple crossover frequencies, the phase margin test may be

ambiguous. Also, when T contains right half-plane poles (i.e., the original open-loop

system is unstable), then the phase margin test cannot be used. In either case, the more

general Nyquist stability theorem must be employed.

The loop gain of a

typical stable system is

shown in Fig. 9.8. It can be

seen that

∠ T(j2πfc) = –112˚. Hence,

ϕm = 180˚ – 112˚ = +68˚.

Since the phase margin is

positive, T/(1+T) and

1/(1+T) contain no right half-

plane poles, and the feedback

system is stable.

The loop gain of an

unstable system is sketched

in Fig. 9.9. For this

example, ∠ T(j2πfc) =

–230˚. The phase margin is

ϕm = 180˚ – 230˚ = –50˚.

The negative phase margin

implies that T/(1+T) and

1/(1+T) each contain at least

one right half-plane pole.
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Fig. 9.8. Magnitude and phase of the loop gain of a stable system.

The phase margin ϕm is positive.
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Fig. 9.9. Magnitude and phase of the loop gain of an unstable

system. The phase margin ϕm is negative.
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9.4.2. The relation between phase margin and closed-loop damping factor

How much phase margin is necessary? Is a worst-case phase margin of 1˚

satisfactory? Of course, good designs should have adequate design margins, but there is

another important reason why additional phase margin is needed. A small phase margin (in

T) causes the closed-loop transfer functions T/(1+T) and 1/(1+T) to exhibit resonant poles

with high Q in the vicinity of the crossover frequency. The system transient response

exhibits overshoot and ringing. As the phase margin is reduced these characteristics

become worse (higher Q, longer ringing) until, for ϕm ≤ 0˚, the system becomes unstable.

Let us consider a loop gain T(s) which is well-approximated, in the vicinity of the

crossover frequency, by the following function:

   T(s) = 1
s

ω0
1 + s

ω2

(9-21)

Magnitude and phase asymptotes are plotted in Fig. 9.10. This function is a good

approximation near the crossover frequency for many common loop gains, in which || T ||

approaches unity gain with

a –20dB/decade slope, with

an additional pole at

frequency f2 = ω2/2π. Any

additional poles and zeroes

are assumed to be

sufficiently far above or

below the crossover

frequency, such that they

have negligible effect on the

system transfer functions

near the crossover frequency.

Note that, as f2 → ∞, the phase margin ϕm approaches 90˚. As f2 → 0, ϕm → 0˚.

So as f2 is reduced, the phase margin is also reduced. Let’s investigate how this affects the

closed-loop response via T/(1+T). We can write

   T(s)
1 + T(s)

= 1
1 + 1

T(s)

= 1

1 + s
ω0

+ s2

ω0ω2

(9-22)

using Eq. (9-21). By putting this into standard quadratic form, one obtains

   T(s)
1 + T(s)

= 1
1 + s

Qωc
+ s

ωc

2
(9-23)

0dB

–20dB

–40dB

20dB

40dB

f

|| T ||

0˚

–90˚

–180˚

–270˚

∠ T

|| T || ∠ T

f0

– 90˚

f2

ϕm

f2

f2 / 10

10 f2

f0
f

f0 f2
f 2

– 20dB/decade

– 40dB/decade

Fig. 9.10. Magnitude and phase asymptotes for the loop gain T
of Eq. (9-21).
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where    ωc = ω0ω2 = 2π fc
   Q =

ω0
ωc

=
ω0
ω2

So the closed-loop response contains

quadratic poles at fc, the geometric

mean of f0 and f2. These poles have a

low Q-factor when f0 << f2. In this

case, we can use the low-Q

approximation to estimate their

frequencies:

   Q ωc = ω0

   ωc

Q
= ω2 (9-24)

Magnitude asymptotes are plotted in Fig. 9.11 for this case. It can be seen that these

asymptotes conform to the rules of section 9.3 for constructing T/(1+T) by the algebra-on-

the-graph method.

Next consider the high-Q case. When the pole frequency f2 is reduced, reducing the

phase margin, then the Q-factor given by Eq. (9-23) is increased. For Q > 0.5, resonant

poles occur at frequency fc. The

magnitude Bode plot for the case f2 <

f0 is given in Fig. 9.12. The

frequency fc continues to be the

geometric mean of f2 and f0, and fc

now coincides with the crossover

(unity-gain) frequency of the || T ||

asymptotes. The exact value of the

closed-loop gain T/(1+T) at frequency

fc is equal to Q = f0/fc. As shown in

Fig. 9.12, this is identical to the value of the low-frequency –20dB/decade asymptote

(f0/f), evaluated at frequency fc. It can be seen that the Q-factor becomes very large as the

pole frequency f2 is reduced.

The asymptotes of Fig. 9.12 also follow the algebra-on-the-graph rules of section

9.3, but the deviation of the exact curve from the asymptotes is not predicted by the

algebra-on-the-graph method. These two poles with Q-factor appear in both T/(1+T) and

1/(1+T). We need an easy way to predict the Q-factor. We can obtain such a relation by

finding the frequency at which the magnitude of T is exactly equal to unity. We then

0dB

–20dB

–40dB

20dB

40dB

f

|| T ||

f0

f2

f0
f

f0 f2
f 2

– 20dB/decade

– 40dB/decade

T
1 + T

fc = f0 f2
Q = f0 / fc

Fig. 9.11. Construction of magnitude asymptotes of
the closed-loop transfer function T / (1 + T), for
the low-Q case.

f

|| T ||

f0

f2

f0
f

f0 f2
f 2

– 20dB/decade

– 40dB/decade

T
1 + T

fc = f0 f2

Q = f0 / fc
0dB

–20dB

–40dB

20dB

40dB

60dB

Fig. 9.12. Construction of magnitude asymptotes of
the closed-loop transfer function T / (1 + T), for
the high-Q case.
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evaluate the exact phase of T at this frequency, and compute the phase margin. This phase

margin is a function of the ratio f0/f2, or Q2. We can then solve to find Q as a function of

the phase margin. The result is

   Q =
cos ϕm

sin ϕm

   
ϕm = tan-1 1 + 1 + 4Q4

2Q4
(9-25)

This function is plotted in Fig. 9.13, with Q expressed in dB. It can be seen that obtaining

real poles (Q < 0.5) requires a phase margin of at least 76˚. To obtain Q = 1, a phase

margin of 52˚ is needed. The system with a phase margin of 1˚ exhibits a closed-loop

response with very high Q! With a small phase margin, T(jω)  is very nearly equal to –1 in

the vicinity of the crossover frequency. The denominator (1+T) then becomes very small,

causing the closed-loop transfer functions to exhibit a peaked response at frequencies near

the crossover frequency fc.

Figure 9.13 is the result for the simple loop gain defined by Eq. (9-21). However,

this loop gain is a good approximation for many other loop gains that are encountered in

practice, in which || T || approaches unity gain with a –20dB/decade slope, with an

additional pole at frequency f2. If all other poles and zeroes of T(s) are sufficiently far

above or below the crossover frequency, then they have negligible effect on the system

transfer functions near the crossover frequency, and Fig. 9.13 gives a good approximation

for the relation between ϕm and Q.

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
ϕm

Q

Q = 1 ⇒ 0dB

Q = 0.5 ⇒ –6dB

ϕm = 52˚

ϕm = 76˚

-20dB

-15dB

-10dB

-5dB

0dB

5dB

10dB

15dB

20dB

Fig. 9.13. Relation between loop gain phase margin ϕm and closed-loop
peaking factor Q.
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Another common case is the one in which || T || approaches unity gain with a

–40dB/decade slope, with an additional zero at frequency f2. As f2 is increased, the phase

margin is decreased and Q is increased. It can be shown that the relation between ϕm and Q

is exactly the same, Eq. (9-25).

A case where Fig. 9.13 fails is when the loop gain T(s) three or more poles at or

near the crossover frequency. The closed-loop response then also contains three or more

poles near the crossover frequency, and these poles cannot be completely characterized by a

single Q-factor. Additional work is required to find the behavior of the exact T/(1+T) and

1/(1+T) near the crossover frequency, but nonetheless it can be said that a small phase

margin leads to a peaked closed-loop response.

9.4.3. Transient response vs. damping factor

One can solve for the unit-step response of the T/(1+T) transfer function, by

multiplying Eq. (9-23) by 1/s and then taking the inverse Laplace transform. The result for

Q > 0.5 is

   
v(t) = 1 +

2Q e -ωct/2Q

4Q2 – 1
sin

4Q2 – 1
2Q

ωc t + tan-1 4Q2 – 1 (9-26)

For Q < 0.5, the result is

   v(t) = 1 –
ω2

ω2 – ω1
e–ω1t –

ω1
ω1 – ω2

e–ω2t (9-27)

with    ω1, ω2 =
ωc

2Q
1 ± 1 – 4Q2

These equations are plotted

in Fig. 9.14 for various

values of Q.

According to Eq. (9-

23), when f2 > 4f0, the Q-

factor is less than 0.5, and

the closed-loop response

contains a low-frequency

and a high-frequency real

pole. The transient response

in this case, Eq. (9-27),

contains decaying-

exponential functions of

time, of the form

0

0.5

1

1.5

2

0 5 10 15

ωct, radians

v(t)
Q=10

Q=50

Q=4

Q=2

Q=1

Q=0.75

Q=0.5

Q=0.3

Q=0.2

Q=0.1

Q=0.05
Q=0.01

Fig. 9.14. Unit-step response of the second-order system, Eqs. (9-
26) and (9-27), for various values of Q.
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  Ae (pole) t
(9-28)

This is called the “overdamped” case. With very low Q, the low-frequency pole leads to a

slow step response.

For f2 = 4f0, the Q-factor is equal to 0.5. The closed-loop response contains two

real poles at frequency 2f0. This is called the “critically damped” case. The transient

response is faster than in the overdamped case, because the lowest-frequency pole is at a

higher frequency. This is the fastest response that does not exhibit overshoot.  At ωct = π
radians (t = 1/2fc), the voltage has reached 82% of its final value. At ωct = 2π radians (t =

1/fc), the voltage has reached 98.6% of its final value.

For f2 < 4f0, the Q-factor is greater than 0.5. The closed-loop response contains

complex poles, and the transient response exhibits sinusoidal-type waveforms with

decaying amplitude, Eq. (9-26). The rise time of the step response is faster than in the
critically-damped case, but the waveforms exhibit overshoot. The peak value of   v(t) is

   peak v(t) = 1 + e– π / 4Q2 – 1
(9-29)

This is called the “underdamped” case. A Q-factor of 1 leads to an overshoot of 16.3%,

while a Q-factor of 2 leads to a 44.4% overshoot. Large Q-factors lead to overshoots

approaching 100%.

The exact transient response of the feedback loop may differ from the plots of Fig.

9.14, because of additional poles and zeroes in T, and because of differences in initial

conditions. Nonetheless, Fig. 9.14 illustrates how high-Q poles lead to overshoot and

ringing. In most power applications, overshoot is unacceptable. For example, in a 5V

computer power supply, the voltage must not be allowed to overshoot to 7 or 10 volts

when the supply is turned on —this would destroy all of the TTL integrated circuits in the

computer! So the Q-factor must be sufficiently low, often 0.5 or less, corresponding to a

phase margin of at least 76˚.

9 . 5 . Regulator design

Let’s now consider how to design a regulator system, to meet specifications or

design goals regarding rejection of disturbances, transient response, and stability. Typical

dc regulator designs are defined using specifications such as the following:

(1) Effect of load current variations on the output voltage regulation. The output

voltage must remain within a specified range when the load current varies in

a prescribed way. This amounts to a limit on the maximum magnitude of the

closed-loop output impedance of Eq. (9-6), repeated below
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  v(s)
– i load(s) vref = 0

vg = 0

=
Zout(s)

1 + T(s) (9-30)

If, over some frequency range, the open-loop output impedance Zout has

magnitude which exceeds the limit, then the loop gain T must be sufficiently

large in magnitude over the same frequency range, such that the magnitude

of the closed-loop output impedance given in Eq. (9-30) is less than the

given limit.

(2) Effect of input voltage variations (for example, at the second harmonic of the ac

line frequency) on the output voltage regulation. Specific maximum limits

are usually placed on the amplitude of variations in the output voltage at the

second harmonic of the ac line frequency (120Hz or 100Hz). If we know

the magnitude of the rectification voltage ripple which appears at the
converter input (as  vg ), then we can calculate the resulting output voltage

ripple (in  v ) using the closed loop line-to-output transfer function of Eq.

(9-5), repeated below

  v(s)
vg(s) vref = 0

i load = 0

=
Gvg(s)

1 + T(s) (9-31)

The output voltage ripple can be reduced by increasing the magnitude of the

loop gain at the ripple frequency. In a typical good design, || T || is 20dB or

more at 120Hz, so that the transfer function of Eq. (9-31) is at least an order

of magnitude smaller than the open-loop line-to-output transfer function

|| Gvg ||.

(3) Transient response time. When a specified large disturbance occurs, such as a

large step change in load current or input voltage, the output voltage may

undergo a transient. During this transient, the output voltage typically

deviates from its specified allowable range. Eventually, the feedback loop

operates to return the output voltage within tolerance. The time required to

do so is the transient response time; typically, the response time can be

shortened by increasing the feedback loop crossover frequency.

(4) Overshoot and ringing. As discussed in section 9.4.3, the amount of overshoot

and ringing allowed in the transient response may be limited. Such a

specification implies that the phase margin must be sufficiently large.

Each of these requirements imposes constraints on the loop gain T(s). Therefore,

the design of the control system involves modifying the loop gain. As illustrated in Fig.
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9.2, a compensator network is added for this purpose. Several well-known strategies for

design of the compensator transfer function Gc(s) are discussed below.

9.5.1. Lead (PD) compensator

This type of compensator transfer function is used to improve the phase margin. A

zero is added to the loop gain, at a frequency fz sufficiently far below the crossover

frequency fc, such that the phase margin of T(s) is increased by the desired amount. The

lead compensator is also called a proportional-plus-derivative, or PD, controller —at high

frequencies, the zero causes the compensator to differentiate the error signal. It often finds

application in systems originally containing a two-pole response. By use of this type of

compensator, the bandwidth of the feedback loop (i.e., the crossover frequency fc) can be

extended while maintaining an acceptable phase margin.

A side effect of the zero is that it causes the compensator gain to increase with

frequency, with a +20dB/decade slope. So steps must be taken to ensure that || T || remains

equal to unity at the desired crossover frequency. Also, since the gain of any practical

amplifier must tend to zero at high frequency, the compensator transfer function Gc(s) must

contain high frequency poles. These poles also have the beneficial effect of attenuating high

frequency noise. Of particular concern are the switching frequency harmonics present in the

output voltage and feedback signals. If the compensator gain at the switching frequency is

too great, then these switching harmonics are amplified by the compensator, and can

disrupt the operation of the pulse-width modulator (see section 7.7). So the compensator

network should contain poles at a frequency less than the switching frequency. These

considerations typically restrict the crossover frequency fc to be less than approximately

10% of the converter switching frequency fs. In addition, the circuit designer must take care

not to exceed the gain-bandwidth limits of available operational amplifiers.

The transfer function of the lead

compensator therefore contains a low-

frequency zero and several high-frequency

poles. A simplified example containing a single

high-frequency pole is given in Eq. (9-32) and

illustrated in Fig. 9.15.

   
Gc(s) = Gc0

1 + s
ωz

1 + s
ωp

(9-32)
f

|| Gc ||

∠ Gc

Gc0

0˚

fp

fz/10

fp/10 10fz

fϕmax

= fz fp

+ 45˚/decade

– 45˚/decade

fz

Gc0

fp

fz

Fig. 9.15. Magnitude and phase
asymptotes of the PD compensator

transfer function Gc of Eq. (9-32).
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The maximum phase occurs at a frequency fϕmax given by the geometrical mean of the pole

and zero frequencies:

   fϕmax = fz fp (9-33)

To obtain the maximum improvement in phase margin, we should design our compensator
so that the frequency fϕmax coincides with the loop gain crossover frequency fc. The value

of the phase at this frequency can be shown to be

   

∠ Gc( fϕmax) = tan-1

fp

fz
–

fz
fp

2 (9-34)

This equation is plotted in Fig.

9.16. Equation (9-34) can be

inverted to obtain

   fp

fz
=

1 + sin θ
1 – sin θ (9-35)

where θ = ∠ Gc(fϕmax). Equations

(9-34) and (9-32) imply that, to

optimally obtain a compensator

phase lead of θ at frequency fc,

the pole and zero frequencies

should be chosen as follows:

   
fz = fc

1 – sin θ
1 + sin θ

fp = fc
1 + sin θ
1 – sin θ (9-36)

When it is desired to avoid changing the crossover frequency, the magnitude of the

compensator gain is chosen to be unity at the loop gain crossover frequency fc. This

requires that Gc0 be chosen according to the following formula:

  
Gc0 =

fz
fp

(9-37)

It can be seen that Gc0 is less than unity, and therefore the lead compensator reduces the dc

gain of the feedback loop. Other choices of Gc0 can be selected when it is desired to shift

the crossover frequency fc; for example, increasing the value of Gc0 causes the crossover

frequency to increase. If the frequencies fp and fz are chosen as in Eq. (9-36), then fϕmax of

Eq. (9-32) will coincide with the new crossover frequency fc.

1 10 100 1000

maximum
phase lead

0˚

15˚

30˚

45˚

60˚

75˚

90˚

fp / fz

Fig. 9.16. Maximum phase lead θ vs. frequency ratio fp / fz for
the lead compensator.
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The Bode

diagram of a typical

loop gain T(s)

containing two poles is

illustrated in Fig. 9.17.

The phase margin of the

original T(s) is small,

since the crossover

frequency fc is

substantially greater

than the pole frequency

f0. The result of adding

a lead compensator is

also illustrated. The lead compensator of this example is designed to maintain the same

crossover frequency but improve the phase margin.

9.5.2. Lag (PI) compensator

This type of compensator is used to increase the low-frequency loop gain, such that

the output is better regulated at dc and at frequencies well below the loop crossover

frequency. As given in Eq. (9-38) and

illustrated in Fig. 9.18, an inverted zero is

added to the loop gain, at frequency fL.

   Gc(s) = Gc∞ 1 +
ωL
s (9-38)

If fL is sufficiently lower than the loop

crossover frequency fc, then the phase margin

is unchanged. This type of compensator is also

called a proportional-plus-integral, or PI,

controller —at low frequencies, the inverted

zero causes the compensator to integrate the

error signal.

To the extent that the compensator gain can be made arbitrarily large at dc, the dc

loop gain T(0) becomes arbitrarily large. This causes the dc component of the error signal

to approach zero. In consequence, the steady-state output voltage is perfectly regulated, and

the disturbance-to-output transfer functions approach zero at dc. Such behavior is easily

f
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–270˚

∠ T

|| T || ∠ T
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compensated gain

original phase asymptotes

compensated phase asymptotes

0dB

–20dB
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20dB

40dB

60dB

Fig. 9.17. Compensation of a loop gain containing two poles, using a

lead (PD) compensator. The phase margin ϕm is improved.

f
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– 90˚

10fL

– 20dB /decade

Fig. 9.18. Magnitude and phase
asymptotes of the PI compensator

transfer function Gc of Eq. (9-38).
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obtained in practice, with the

compensator of Eq. (9-38)

realized using a conventional

operational amplifier.

Although the PI

compensator is useful in nearly

all types of feedback systems,

it is an especially simple and

effective approach for systems

originally containing a single

pole. For the example of Fig.

9.19, the original

uncompensated loop gain is of the form

   Tu(s) =
Tu0

1 + s
ω0 (9-39)

The compensator transfer function of Eq. (9-38) is used, so that the compensated loop gain

is T(s) = Tu(s) Gc(s). Magnitude and phase asymptotes of T(s) are also illustrated in Fig.

9.19. The compensator high-frequency gain Gc∞ is chosen to obtain the desired crossover

frequency fc. If we approximate the compensated loop gain by its high-frequency

asymptote, then at high frequencies we can write

   T ≈ Tu0Gc∞

f
f0 (9-40)

At the crossover frequency f = fc, the loop gain has unity magnitude. Equation (9-40)

predicts that the crossover frequency is

   fc ≈ Tu0Gc∞ f0 (9-41)

Hence, to obtain a desired crossover frequency fc, we should choose the compensator gain

Gc∞ as follows:

   Gc∞ =
fc

Tu0 f0 (9-42)

The corner frequency fL is then chosen to be sufficiently less than fc, such that an adequate

phase margin is maintained.

Magnitude asymptotes of the quantity 1 / (1 + T(s)) are constructed in Fig. 9.20. At

frequencies less than fL, the PI compensator improves the rejection of disturbances. At dc,

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz
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–90˚

–180˚

Gc∞Tu0
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f0
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∠ Tu

|| Tu ||
f0

|| T ||

fc

∠ T

10 fL

10 f0 ϕm

Fig. 9.19. Compensation of a loop gain containing a single pole,
using a lag (PI) compensator. The loop gain magnitude is increased.
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where the magnitude of Gc

approaches infinity, the

magnitude of 1 / (1 + T)

tends to zero. Hence, the

closed-loop disturbance-to-

output transfer functions,

such as Eqs. (9-30) and (9-

31), tend to zero at dc.

9.5.3. Combined (PID) compensator

The advantages of the lead and lag compensators can be combined, to obtain both

wide bandwidth and zero steady-state error. At low frequencies, the compensator integrates

the error signal, leading to large low-frequency loop gain and accurate regulation of the

low-frequency components of the output voltage. At high frequency (in the vicinity of the

crossover frequency), the compensator introduces phase lead into the loop gain, improving

the phase margin. Such a compensator is sometimes called a PID controller.

A typical Bode diagram of a practical version of this compensator is illustrated in

Fig. 9.21. The compensator has transfer function

   

Gc(s) = Gcm

1 +
ωL
s 1 + s

ωz

1 + s
ωp1

1 + s
ωp2 (9-43)

The inverted zero at frequency fL functions in the same manner as the PI compensator. The

zero at frequency fz

adds phase lead in the

vicinity of the

crossover frequency,

as in the PD

compensator. The

high-frequency poles at

frequencies fp1 and fp2

must be present in

practical compensators,

to cause the gain to roll

0dB

–20dB

–40dB

20dB

40dB

f
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Gc∞Tu0
fL f0

|| T ||

fc

1
1 + T

fL f0
1

Gc∞ Tu0

Fig. 9.20. Construction of || 1 / (1 + T) || for the PI-
compensated example of Fig. 9.19.
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Fig. 9.21. Magnitude and phase asymptotes of the combined (PID)

compensator transfer function Gc of Eq. (9-43).
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off at high frequencies and to prevent the switching ripple from disrupting the operation of

the pulse-width modulator. The loop gain crossover frequency fc is chosen to be greater

than fL and fz, but less than fp1 and fp2.

9.5.4. Design example

To illustrate the design of PI and PD compensators, let us consider the design of a

combined PID compensator

for the dc-dc buck

converter system of Fig.

9.22. The input voltage

vg(t) for this system has

nominal value 28V. It is

desired to supply a

regulated 15V to a 5A load.

The load is modeled here

with a 3Ω resistor. An

accurate 5V reference is

available.

The first step is to select the feedback gain H(s). The gain H is chosen such that the

regulator produces a regulated 15V dc output. Let us assume that we will succeed in

designing a good feedback system, which causes the output voltage to accurately follow the

reference voltage. This is accomplished via a large loop gain T, which leads to a small error

voltage: ve ≈ 0. Hence, Hv ≈ vref. So we should choose

  
H =

Vref

V = 5
15

= 1
3 (9-44)

The quiescent duty cycle is given by the steady-state solution of the converter:

  D = V
Vg

= 15
28

= 0.536
(9-45)

The quiescent value of the control voltage, Vc, must satisfy Eq. (7-135). Hence,

  Vc = DVM = 2.14 V (9-46)

Thus, the quiescent conditions of the system are known. It remains to design the

compensator gain Gc(s).

A small-signal ac model of the regulator system is illustrated in Fig. 9.23. The buck

converter ac model is represented in canonical form. Disturbances in the input voltage and

+
–

+

v(t)

–

vg(t)

28V

–+

compensator

Hvpulse-width
modulator

vc

transistor
gate driver

δ Gc(s)
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ve

error
signal

sensor
gain

iload

L
50µH

C
500µF

R
3Ω

fs = 100kHz

VM = 4V vref

5V

Fig. 9.22. Design example.
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in the load current are

modeled. For

generality, reference

voltage variations
 vref are included in the

diagram; in a dc

voltage regulator,

these variations are

normally zero.

The open-loop

converter transfer

functions are

discussed in the

previous chapters. The open-loop control-to-output transfer function is

  Gvd(s) = V
D

1
1 + s L

R + s2LC
(9-47)

The open-loop control-to-output transfer function contains two poles, and can be written in

the following normalized form:

   Gvd(s) = Gd0
1

1 + s
Q0ω0

+ s
ω0

2

(9-48)

By equating like coefficients in Eqs. (9-47) and (9-48), one finds that the dc gain, corner

frequency, and Q-factor are given by

   Gd0 = V
D = 28V

f0 =
ω0

2π = 1
2π LC

= 1kHz

Q0 = R C
L = 9.5 ⇒ 19.5dB

(9-49)

In practice, parasitic loss elements, such as the capacitor equivalent series resistance (esr),

would cause a lower Q-factor to be observed. Figure 9.24 contains a Bode diagram of

Gvd(s).

The open-loop line-to-output transfer function is

  Gvg(s) = D 1
1 + s L

R
+ s2LC

(9-50)

This transfer function contains the same poles as in Gvd(s), and can be written in the

normalized form

+
–

+– 1 : D L

C Rvg(s)

+

–

v(s)

V
D2 d

V
R

d iload(s)

error
signal

+–

compensator

d(s)

ve(s) vc(s)vref ( = 0)
Gc(s)

H(s)

1
VM

H(s) v(s)

T(s)
VM = 4V

H = 1
3

Fig. 9.23. System small-signal ac model, design example.
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   Gvg(s) = Gg0
1

1 + s
Q0ω0

+ s
ω0

2

(9-51)

with Gg0 = D. The open-loop output impedance of the buck converter is

  Zout(s) = R || 1
sC

|| sL = sL
1 + s L

R
+ s2LC

(9-52)

Use of these equations to represent the converter in block-diagram form leads to the

complete system block diagram of Fig. 9.25. The loop gain of the system is

  T(s) = Gc(s) 1
VM

Gvd(s) H(s)
(9-53)

Substitution of Eq. (9-48) into (9-53) leads to

   
T(s) =

Gc(s) H(s)
VM

V
D

1
1 + s

Q0ω0
+ s

ω0

2

(9-54)

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

0˚

–90˚

–180˚

–270˚

∠ Gvd

f0

|| Gvd || Gd0  = 28V ⇒ 29dBV

|| Gvd || ∠ Gvd

0dBV

–20dBV

–40dBV

20dBV

40dBV

60dBV

Q0 = 9.5 ⇒ 19.5dB

10–1 / 2Q0 f0 = 900Hz

101 / 2Q0 f0 = 1.1kHz

Fig. 9.24. Converter small-signal control-to-output transfer function Gvd,
design example.

vg(s)

v(s)

i load(s)

+–
d(s)ve(s) vc(s)vref ( = 0)

H(s)

1
VM duty cycle

variation

Gc(s) Gvd(s)

Gvg(s)
Zout(s)

ac line
variation

load current
variation

+

–+

converter power stage
T(s)

VM = 4V

H = 1
3

Fig. 9.25. System block diagram, design example.
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The closed-loop

disturbance-to-output

transfer functions are

given by Eqs. (9-5)

and (9-6).

The

uncompensated loop

gain Tu(s), with unity

compensator gain, is

sketched in Fig. 9.26.

With Gc(s) = 1, Eq.

(9-54) can be written

   Tu(s) = Tu0
1

1 + s
Q0ω0

+ s
ω0

2

(9-55)

where the dc gain is

   Tu0 = H V
D VM

= 2.33 ⇒ 7.4dB
(9-56)

The uncompensated loop gain has a crossover frequency of approximately 1.8kHz, with a

phase margin of less than five degrees.

Let us design a compensator, to attain a crossover frequency of fc = 5kHz, or one

twentieth of the switching frequency. From Fig. 9.26, the uncompensated loop gain has a

magnitude at 5kHz of approximately Tu0 (f0 / fc)
2 = 0.093 ⇒  –20.6dB. So to obtain unity

loop gain at 5kHz, our compensator should have a 5kHz gain of +20.6dB. In addition, the

compensator should improve the phase margin, since the phase of the uncompensated loop

gain is nearly –180˚ at 5kHz. So a lead (PD) compensator is needed. Let us (somewhat

arbitrarily) choose to design for a phase margin of 52˚. According to Fig. 9.13, this choice

leads to closed-loop poles having a Q-factor of 1. The unit step response, Fig. 9.14, then

exhibits a peak overshoot of 16%. Evaluation of Eq. (9-36), with fc = 5kHz and θ = 52˚,

leads to the following compensator pole and zero frequencies:

   
fz = (5kHz)

1 – sin (52°)
1 + sin (52°)

= 1.7kHz

fp = (5kHz)
1 + sin (52°)
1 – sin (52°)

= 14.5kHz
(9-57)

To obtain a compensator gain of 20.6dB ⇒  10.7 at 5kHz, the low-frequency compensator

gain must be

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| Tu ||

0˚

–90˚

–180˚

–270˚

∠ Tu

|| Tu || ∠ Tu

Tu0  2.33 ⇒ 7.4dB

f0
1kHz

0˚ 10– 1
2Q f0 = 900Hz

10
1

2Q f0 = 1.1kHz

Q0 = 9.5 ⇒ 19.5dB

– 40 dB/decade

Fig. 9.26. Uncompensated loop gain Tu, design example.
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Gc0 =

fc
f0

2
1

Tu0

fz
fp

= 3.7 ⇒ 11.3dB
(9-58)

A Bode diagram of the PD compensator magnitude and phase is sketched in Fig. 9.27.

With this PD controller, the loop gain becomes

   
T(s) = Tu0 Gc0

1 + s
ωz

1 + s
ωp

1 + s
Q0ω0

+ s
ω0

2

(9-59)

The compensated loop gain is sketched in Fig. 9.28. It can be seen that the phase of T(s) is

approximately equal to

52˚ over the frequency

range of 1.4kHz to

17kHz. Hence

variations in component

values, which cause the

crossover frequency to

deviate somewhat from

5kHz, should have little

impact on the phase

margin. In addition, it

can be seen from Fig.

9.28 that the loop gain has a dc magnitude of Tu0Gc0 ⇒  18.7dB.

Asymptotes of the quantity 1 / (1 + T) are constructed in Fig. 9.29. This quantity

has a dc asymptote of –18.7dB. Therefore, at frequencies less than 1kHz, the feedback

fc
= fz fp0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gc0

fz

0˚

fp
Gc0

fp

fz

90˚

0˚

–90˚

–180˚

fz/10
fp/10 10fz

Fig. 9.27. PD compensator transfer function Gc, design example.
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20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| T ||

0˚

–90˚

–180˚

–270˚

∠ T

|| T || ∠ T
T0  = 8.6 ⇒ 18.7dB

f0
1kHz

0˚

Q0 = 9.5 ⇒ 19.5dB

fz

fp

1.7kHz

14kHz

fc
5kHz

170Hz

1.1kHz

1.4kHz

900Hz

17kHz

ϕm=52˚

Fig. 9.28. The compensated loop gain of Eq. (9-59).
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loop attenuates output voltage

disturbances by 18.7dB. For

example, suppose that the input

voltage vg(t) contains a 100Hz

variation of amplitude 1V. With

no feedback loop, this disturbance

would propagate to the output

according to the open-loop

transfer function Gvg(s), given in

Eq. (9-51). At 100Hz, this

transfer function has a gain

essentially equal to the dc

asymptote D = 0.536. Therefore, with no feedback loop, a 100Hz variation of amplitude

0.536V would be observed at the output. In the presence of feedback, the closed-loop line-

to-output transfer function of Eq. (9-5) is obtained; for our example, this attenuates the

100Hz variation by an additional factor of 18.7dB ⇒  8.6. The 100Hz output voltage

variation now has magnitude 0.536 / 8.6 = 0.062V.

The low-frequency regulation can be further improved by addition of an inverted

zero, as discussed in section 9.5.2. A PID controller, as in section 9.5.3, is then obtained.

The compensator transfer function becomes

   

Gc(s) = Gcm

1 + s
ωz

1 +
ωL
s

1 + s
ωp (9-60)

The pole and zero frequencies fz and fp are unchanged, and are given by Eq. (9-57). The

midband gain Gcm is chosen to be the same as the previous Gc0, Eq. (9-58). Hence, for

frequencies greater than

fL, the magnitude of the

loop gain is unchanged by

the inverted zero. The

loop continues to exhibit a

crossover frequency of

5kHz.

So that the

inverted zero does not

significantly degrade the

0dB

–20dB

–40dB

20dB

40dB

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| T || T0  = 8.6 ⇒ 18.7dB

f0

Q0 = 9.5 ⇒ 19.5dB

fz

fp

fc

Q0

1 / T0  = 0.12 ⇒ – 18.7dB
1

1 + T

Fig. 9.29. Construction of || 1 / (1 + T) || for the PD-
compensated design example of Fig. 9.28.
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f
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|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gcm
fz

– 90˚

fp

90˚

0˚

–90˚

–180˚

fz/10

fp/10

10fz

fL

fc

fL/10

10fL

90˚/dec

45˚/dec – 45˚/dec

Fig. 9.30. PID compensator transfer function, Eq. (9-60).
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phase margin, let us

(somewhat arbitrarily)

choose fL to be one-tenth of

the crossover frequency, or

500Hz. The inverted zero

will then increase the loop

gain at frequencies below

500Hz, improving the low-

frequency regulation of the

output voltage. The loop

gain of Fig. 9.31 is

obtained. The magnitude of

the quantity 1 / (1 + T) is also constructed. It can be seen that the inverted zero at 500Hz

causes the magnitude of 1 / (1 + T) at 100Hz to be reduced by a factor of approximately

(100Hz) / (500Hz) = 1/5. The total attenuation of 1 / (1 + T) at 100Hz is -32.7dB. A 1V,

100Hz variation in vg(t) would now induce a 12mV variation in v(t). Further improvements

could be obtained by increasing fL; however, this would require redesign of the PD portion

of the compensator to maintain an adequate phase margin.

The line-to-output

transfer function is

constructed in Fig. 9.32.

Both the open-loop transfer

function Gvg(s), Eq. (9-51),

and the closed-loop transfer

function Gvg(s) / (1 + T(s)),

are constructed using the

algebra-on-the-graph

method. The two transfer

functions coincide at

frequencies greater than the

crossover frequency. At

frequencies less than the

crossover frequency fc, the closed-loop transfer function is reduced by a factor of T(s). It

can be seen that the poles of Gvg(s) are cancelled by zeroes of 1 / (1 + T). Hence the closed-

loop line-to-output transfer function is approximately

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

|| T ||

f0
fz

fp

fc

Q01
1 + T

fL

Q0

0dB

–20dB

–40dB

20dB

40dB

60dB

–60dB

–80dB

Fig. 9.31. Construction of || T || and || 1 / (1 + T) || with the
PID-compensator of Fig. 9.30.

D
Tu0Gcm

f

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

fz
fc

fL

v
vg

open-loop || Gvg ||

closed-loop
Gvg

1 + T

–40dB

–60dB

–80dB

–20dB

0dB

20dB

–100dB

f0

Q0Gvg(0) = D

– 40dB/dec

20dB/dec

Fig. 9.32. Comparison of open-loop line-to-output transfer function

Gvg and closed-loop line-to-output transfer function of Eq. (9-
61).



Chapter 9. Controller Design

31

   Gvg(s)

1 + T(s)
≈ D

Tu0 Gcm

1

1 +
ωL
s 1 + s

ωz
1 + s

ωc (9-61)

So the algebra-on-the-graph method allows simple approximate disturbance-to-output

closed-loop transfer functions to be written. Armed with such an analytical expression, the

system designer can easily compute the output disturbances, and can gain the insight

required to modify the element values such that system specifications are met.

9 . 6 . Measurement of loop gains

It is good engineering practice to measure the loop gains of prototype feedback

systems. The objective of such an exercise is to verify that the system has been correctly

modeled. If so, then provided that a good controller design has been implemented, then the

system behavior will meet expectations regarding transient overshoot (and phase margin),

rejection of disturbances, dc output voltage regulation, etc. Unfortunately, there are reasons

why practical system prototypes are likely to differ from theoretical models. Phenomena

may occur which were not accounted for in the original model, and which significantly

influence the system behavior. Noise and EMI can be present, which cause the system

transfer functions to deviate in unexpected ways.

So let us consider the measurement of the loop gain T(s) of the feedback system of

Fig. 9.33. We will make measurements at some point A, where two blocks of the network

are connected electrically. In Fig. 9.33, the output port of block 1 is represented by a

Thevenin-equivalent network, composed of the dependent voltage source G1ve and output

impedance Z1. Block 1 is loaded by the input impedance Z2 of block 2. The remainder of

the feedback system is represented by a block diagram as shown. The loop gain of the

system is

G2(s) vx(s) = v(s)+–
ve(s)vref(s)

H(s)

+
–

Z1(s)

Z2(s)

A

+

–

vx(s)G1(s) ve(s)

T(s)

Block 1 Block 2

Fig. 9.33. It is desired to determine the loop gain T(s) experimentally, by
making measurements at point A.
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T(s) = G1(s)

Z2(s)
Z1(s) + Z2(s)

G2(s) H(s)

(9-62)

Measurement of this loop gain presents several challenges not present in other frequency

response measurements.

G2(s) vx(s) = v(s)+–
ve(s)vref(s)

H(s)

+
–

Z1(s)

Z2(s)

+

–

vx(s)G1(s) ve(s)

Block 1 Block 2

–

+

vy(s)

vz

dc bias

VCC

0

Tm(s)

Fig. 9.34. Measurement of loop gain by breaking the loop.

In principle, one could break the loop at point A, and attempt to measure T(s) using

the transfer function measurement method of the previous chapter. As illustrated in Fig.

9.34, a dc supply voltageVCC and potentiometer would be used, to establish a dc bias in the

voltage vx, such that all of the elements of the network operate at the correct quiescent

point. Ac voltage variations in vz(t) are coupled into the injection point via a dc blocking

capacitor. Any other independent ac inputs to the system are disabled. A network analyzer

is used to measure the relative magnitudes and phases of the ac components of the voltages

vy(t) and vx(t):

  
Tm(s) =

vy(s)
vx(s) vref = 0

vg = 0 (9-63)

The measured gain Tm(s) differs from the actual gain T(s) because, by breaking the

connection between blocks 1 and 2 at the measurement point, we have removed the loading

of block 2 on block 1. Solution of Fig. 9.34 for the measured gain Tm(s) leads to

  Tm(s) = G1(s) G2(s) H(s) (9-64)

Equations (9-62) and (9-64) can be combined to express Tm(s) in terms of T(s):

  
Tm(s) = T(s) 1 +

Z1(s)
Z2(s)

(9-65)

Hence,

   Tm(s) ≈ T(s) provided that Z2 >> Z1 (9-66)
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So to obtain an accurate measurement, we need to find an injection point where loading is

negligible over the range of frequencies to be measured.

Other difficulties are encountered when using the method of Fig. 9.34. The most

serious problem is adjustment of the dc bias using a potentiometer. The dc loop gain is

typically very large, especially when a PI controller is used. A small change in the dc

component of vx(t) can therefore lead to very large changes in the dc biases of some

elements in the system. So it is difficult to establish the correct dc conditions in the circuit.

The dc gains may drift during the experiment, making the problem even worse, and

saturation of the error amplifier is a common complaint. Also, we have seen that the gains

of the converter can be a function of the quiescent operating point; significant deviation

from the correct operating point can cause the measured gain to differ from the loop gain of

actual operating conditions.

9.6.1.  Voltage injection

An approach which avoids the dc biasing problem [3] is illustrated in Fig. 9.35.

The voltage source vz(t) is injected between blocks 1 and 2, without breaking the feedback

loop. Ac variations in vz(t) again excite variations in the feedback system, but dc bias

conditions are determined by the circuit. Indeed, if vz(t) contains no dc component, then the

biasing circuits of the system itself establish the quiescent operating point. Hence, the loop

gain measurement is made at the actual system operating point.

–

+

G2(s) vx(s) = v(s)+–
ve(s)vref(s)

H(s)

+
–

Z2(s)G1(s) ve(s)

Block 1 Block 2

vy(s)

0

Tv(s)

Z1(s)
+

–

vx(s)

i(s)
Zs(s)

–                   +vz

Fig. 9.35. Measurement of loop gain by voltage injection.

The injection source is modeled in Fig. 9.35 by a Thevenin equivalent network,

containing an independent voltage source with source impedance Zs(s). The magnitudes of

vz and Zs are irrelevant in the determination of the loop gain. However, the injection of vz

does disrupt the loading of block 2 on block 1. Hence, a suitable injection point must be

found, where the loading effect is negligible.
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To measure the loop gain by voltage injection, we connect a network analyzer to

measure the transfer function from vx to vy. The system independent ac inputs are set to

zero, and the network analyzer sweeps the injection voltage vz(t) over the intended

frequency range. The measured gain is

  
Tv(s) =

vy(s)

vx(s) vref = 0

vg = 0 (9-67)

Let us solve Fig. 9.35, to compare the measured gain Tv(s) with the actual loop gain T(s)

given by Eq. (9-62). The error signal is

  ve(s) = – H(s) G2(s) vx(s) (9-68)
The voltage   vy(s) can be written

  – vy(s) = G1(s) ve(s) – i(s) Z1(s) (9-69)

where î(s) Z1(s) is the voltage drop across the source impedance Z1. Substitution of Eq. (9-

68) into (9-69) leads to

  – vy(s) = – vx(s) G2(s) H(s) G1(s) – i(s) Z1(s) (9-70)

But î(s) is

  i(s) =
vx(s)
Z2(s) (9-71)

Therefore, Eq. (9-70) becomes

  
vy(s) = vx(s) G1(s) G2(s) H(s) +

Z1(s)
Z2(s)

(9-72)

Substitution of Eq. (9-72) into (9-67) leads to the following expression for the measured

gain Tv(s):

  Tv(s) = G1(s) G2(s) H(s) +
Z1(s)
Z2(s) (9-73)

Equations (9-62) and (9-73) can be combined to determine the measured gain Tv(s) in terms

of the actual loop gain T(s):

  
Tv(s) = T(s) 1 +

Z1(s)
Z2(s)

+
Z1(s)
Z2(s)

(9-74)

Thus, Tv(s) can be expressed as the sum of two terms. The first term is proportional to the

actual loop gain T(s), and is approximately equal to T(s) whenever || Z1 || << || Z2 ||. The

second term is not proportional to T(s), and limits the minimum T(s) that can be measured
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with the voltage injection technique. If Z1 / Z2 is much smaller in magnitude than T(s), then

the second term can be ignored, and Tv(s) ≈ T(s). At frequencies where T(s) is smaller in

magnitude than Z1 / Z2, the measured data must be discarded. Thus,

   
Tv(s) ≈ T(s) provided (i) Z1(s) << Z2(s) , and

(ii) T(s) >>
Z1(s)
Z2(s)

(9-75)

Again, note that the value of the injection source impedance Zs is irrelevant.

As an example, consider voltage

injection at the output of an operational

amplifier, having a 50Ω output

impedance, which drives a 500Ω effective

load. The system in the vicinity of the

injection point is illustrated in Fig. 9.36.

So Z1(s) = 50Ω and Z2(s) = 500Ω. The

ratio Z1 / Z2 is 0.1, or –20dB. Let us

further suppose that the actual loop gain

T(s) contains poles at 10Hz and 100kHz, with a dc gain of 80dB. The actual loop gain

magnitude is illustrated in Fig. 9.37.

Voltage injection would result in measurement of Tv(s) given in Eq. (9-74). Note

that

   
1 +

Z1(s)
Z2(s)

= 1.1 ⇒ 0.83dB
(9-76)

Hence, for large || T ||, the measured

|| Tv || deviates from the actual loop

gain by less than 1dB. However, at

high frequency where || T || is less

than –20dB, the measured gain

differs significantly. Apparently,

Tv(s) contains two high-frequency

zeroes that are not present in T(s).

Depending on the Q-factor of these

zeroes, the phase of Tv at the

crossover frequency could be

influenced. To ensure that the phase

–

+

+

–

+
–

+–

50Ω

500Ω

vz

vx(s)vy(s)

Block 1 Block 2

Fig. 9.36. Voltage injection example.
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|| Tv ||

Z1

Z2

⇒ – 20dB || Tv ||

|| T ||

Fig. 9.37. Comparison of measured loop gain Tv and
actual loop gain T, voltage injection example. The
measured gain deviates at high frequency.
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margin is correctly measured, it is important that Z1 / Z2 be sufficiently small in

magnitude.

9.6.2.  Current injection

The results of the preceding paragraphs can also be obtained in dual form, where

the loop gain is measured by current injection [3]. As illustrated in Fig. 9.38, we can model

block 1 and the analyzer injection source by their Norton equivalents, and use current

probes to measure îx and îy. The gain measured by current injection is

  
Ti(s) =

i y(s)

i x(s) vref = 0

vg = 0 (9-77)

It can be shown that

  
Ti(s) = T(s) 1 +

Z2(s)
Z1(s)

+
Z2(s)
Z1(s)

(9-78)

Hence,

   
Ti(s) ≈ T(s) provided (i) Z2(s) << Z1(s) , and

(ii) T(s) >>
Z2(s)
Z1(s)

(9-79)

So to obtain an accurate measurement of the loop gain by current

injection, we must find a point in the network where block 2 has

sufficiently small input impedance. Again, note that the injection

source impedance Zs does not affect the measurement. In fact, we

can realize îz by use of a Thevenin-equivalent source, as illustrated

in Fig. 9.39. The network analyzer injection source is represented

G2(s) vx(s) = v(s)+–
ve(s)vref(s)

H(s)

+
–

Z2(s)G1(s) ve(s)

Block 1 Block 2

0

Ti(s)

Z1(s)
i xi y

i z

Zs(s)

Fig. 9.38. Measurement of loop gain by current injection.

vz

Rs

Cb

ixi y
i z

Fig. 9.39. Current
injection using Thevenin-
equivalent source.
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by voltage source  vz and output resistance Rs. A series capacitor, Cb, is inserted to avoid

disrupting the dc bias at the injection point.

9.6.3.  Measurement of unstable systems

When the prototype feedback system is unstable, we are even more eager to

measure the loop gain —to find out what went wrong. But measurements cannot be made

while the system oscillates. We need to stabilize the system, yet measure the original

unstable loop gain. It is possible to do this by recognizing that the injection source

impedance Zs does not influence the measured loop gain [3]. As illustrated in Fig. 9.40, we

can even add additional resistance Rext, effectively increasing the source impedance Zs. The

measured loop gain Tv(s) is unaffected.

–

+

G2(s) vx(s) = v(s)+–
ve(s)vref(s)

H(s)

+
–

Z2(s)G1(s) ve(s)

Block 1 Block 2

vy(s)

0

Tv(s)

Z1(s)
+

–

vx(s)

Rext

–                              +vz

Lext

Zs(s)

Fig. 9.40. Measurement of an unstable loop gain by voltage injection.

Adding series impedance generally lowers the loop gain of a system, leading to a

lower crossover frequency and a more positive phase margin. Hence, it is usually possible

to add a resistor Rext that is sufficiently large to stabilize the system. The gain Tv(s), Eq. (9-

67), continues to be approximately equal to the original unstable loop gain, according to

Eq. (9-75). To avoid disturbing the dc bias conditions, it may be necessary to bypass Rext

with inductor Lext. If the inductance value is sufficiently large, then it will not influence the

stability of the modified system.

9 . 7 . Summary of key points

1. Negative feedback causes the system output to closely follow the reference input,

according to the gain 1 / H(s). The influence on the output of disturbances and

variation of gains in the forward path is reduced.

2. The loop gain T(s) is equal to the products of the gains in the forward and feedback

paths. The loop gain is a measure of how well the feedback system works: a large

loop gain leads to better regulation of the output. The crossover frequency fc is the
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frequency at which the loop gain T has unity magnitude, and is a measure of the

bandwidth of the control system.

3. The introduction of feedback causes the transfer functions from disturbances to the

output to be multiplied by the factor 1/(1+T(s)). At frequencies where T is large in

magnitude (i.e., below the crossover frequency), this factor is approximately equal

to 1/T(s). Hence, the influence of low-frequency disturbances on the output is

reduced by a factor of 1/T(s). At frequencies where T is small in magnitude (i.e.,

above the crossover frequency), the factor is approximately equal to 1. The

feedback loop then has no effect. Closed-loop disturbance-to-output transfer

functions, such as the line-to-output transfer function or the output impedance, can

easily be constructed using the algebra-on-the-graph method.

4. Stability can be assessed using the phase margin test. The phase of T is evaluated at the

crossover frequency, and the stability of the important closed-loop quantities

T/(1+T) and 1/(1+T) is then deduced. Inadequate phase margin leads to ringing and

overshoot in the system transient response, and peaking in the closed-loop transfer

functions.

5. Compensators are added in the forward paths of feedback loops to shape the loop gain,

such that desired performance is obtained. Lead compensators, or PD controllers,

are added to improve the phase margin and extend the control system bandwidth. PI

controllers are used to increase the low-frequency loop gain, to improve the

rejection of low-frequency disturbances and reduce the steady-state error.

6. Loop gains can be experimentally measured by use of voltage or current injection. This

approach avoids the problem of establishing the correct quiescent operating

conditions in the system, a common difficulty in systems having a large dc loop

gain. An injection point must be found where interstage loading is not significant.

Unstable loop gains can also be measured.
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PROBLEMS

9 . 1 . Derive both forms of Eq. (9-25).

9 . 2 . The flyback converter system of Fig. 9.41 contains a feedback loop for regulation of the main
output voltage v1. An auxiliary output
produces voltage v2. The dc input voltage vg

lies in the range 280V ≤ vg ≤ 380V. The
compensator network has transfer function

   Gc(s) = Gc∞ 1 +
ω1
s

where Gc∞ = 0.05, and f1 = ω1/2π = 400Hz.

(a) What is the steady-state value of
the error voltage ve(t)? Explain
your reasoning.

(b) Determine the steady-state value of
the main output voltage v1.

(c) Estimate the steady-state value of
the auxiliary output voltage v2.

9 . 3 . In the boost converter system of Fig. 9.42, all elements are ideal. The compensator has gain Gc(s)
= 1000/s.

(a) Construct the Bode plot of the
loop gain T(s) magnitude and
phase. Label values of all
corner frequencies and Q-
factors, as appropriate.

(b) Determine the crossover
frequency and phase margin.

(c) Construct the Bode diagram of
the magnitude of 1/(1+T),
using the algebra-on-the-graph
method. Label values of all
corner frequencies and Q-
factors, as appropriate.

(d) Construct the Bode diagram of the magnitude of the closed-loop line-to-output transfer
function. Label values of all corner frequencies and Q-factors, as appropriate.

9 . 4 . A certain inverter system has the following loop gain

   
T(s) = T0

1 + s
ωz

1 + s
ω1

1 + s
ω2

1 + s
ω3

and the following open-loop line-to-output transfer function

   Gvg(s) = Gg0
1

1 + s
ω1

1 + s
ω3

+
–vg

64 : 3

: 1
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where

T0 = 100 ω1 = 500 rad/s

ω2 = 1000 rad/s ω3 = 24000 rad/s

ωz = 4000 rad/s Gg0 = 0.5

The gain of the feedback connection is H(s) = 0.1.

(a) Sketch the magnitude and phase asymptotes of the loop gain T(s). Determine numerical
values of the crossover frequency in Hz and phase margin in degrees.

(b) Construct the magnitude asymptotes of the closed-loop line-to-output transfer function.
Label important features.

(c) Construct the magnitude asymptotes of the closed-loop transfer function from the
reference voltage to the output voltage. Label important features.

9 . 5 . The forward converter system of Fig. 9.43 is constructed with the element values shown. The
quiescent value of the input voltage is Vg = 380V. The transformer has turns ratio n1 / n3 = 4.5.
The duty cycle produced by the pulse-width modulator is restricted to the range 0 ≤ d(t) ≤ 0.5.
Within this range, d(t) follows the
control voltage vc(t) according to

  d(t) = 1
2

vc(t)
VM

with VM = 3 volts.

(a) Determine the quiescent
values of: the duty cycle
D, the output voltage V,
and the control voltage
Vc.

(b) Sketch a block diagram
which models the small-
signal ac variations in the
system, and determine the
transfer function of each
block.

(c) Construct a Bode plot of the loop gain magnitude and phase. What is the crossover
frequency? What is the phase margin?

(d) Construct the Bode plot of the closed-loop line-to-output transfer function magnitude

 v
vg

Label important features. What is the gain at 120Hz? At what frequency do disturbances
in vg have the greatest influence on the output voltage?

9 . 6 . In the voltage regulator system of Fig. 9.43, described in problem 9.5, the input voltage vg(t)
contains a 120Hz variation of peak amplitude 10V.

(a) What is the amplitude of the resulting 120Hz variation in v(t)?

+
–
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C R

+
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–

L
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pulse-width
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5.1V

+

–

13nF 5.6kΩ 81.8kΩ

18.2kΩ

Fig. 9.43.
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(b) Modify the compensator network such that the 120Hz output voltage variation has peak
amplitude less than 25mV. Your modification should leave the dc output voltage
unchanged, and should result in a crossover frequency no greater than 10kHz.

9 . 7 . Design of a boost converter with current feedback and a PI compensator. In some applications, it is
desired to control the converter terminal current waveform. The boost converter system of Fig.
9.44 contains a feedback loop which
causes the converter input current ig(t) to
be proportional to a reference voltage
vref(t). The feedback connection is a
current sense circuit having gain H(s) =
0.2 volts per ampere. A conventional
pulse width modulator circuit (Fig.
7.62) is employed, having a sawtooth
waveform with peak-peak amplitude of
VM = 3 volts. The quiescent values of
the inputs are: Vg = 120 volts, Vref = 2
volts. All elements are ideal.

(a) Determine the quiescent values
D, V, and Ig.

(b) Determine the small-signal transfer function

  
Gid(s) =

ig(s)

d(s)

(c) Sketch the magnitude and phase asymptotes of the uncompensated (Gc(s) = 1) loop gain.

(d) It is desired to obtain a loop gain magnitude of at least 35dB at 120Hz, while maintaining
a phase margin of at least 72˚. The crossover frequency should be no greater than fs / 10 =
10kHz. Design a PI compensator which accomplishes this. Sketch the magnitude and
phase asymptotes of the resulting loop gain, and label important features.

(e) For your design of part (d), sketch the magnitude of the closed-loop transfer function

  ig(s)

vref(s)

Label important features.

9 . 8 . Design of a buck regulator to meet closed-loop output impedance specifications. The buck
converter with control system illustrated in Fig. 9.45 is to be designed to meet the following
specifications. The closed-loop output
impedance should be less than 0.2Ω
over the entire frequency range 0-20kHz.
To ensure that the transient response is
well-behaved, the poles of the closed-
loop transfer functions, in the vicinity
of the crossover frequency, should have
Q-factors no greater than unity. The
quiescent load current ILOAD can vary
from 5A to 50A, and the above
specifications must be met for every
value of ILOAD in this range. For
simplicity, you may assume that the
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input voltage vg does not vary. The loop gain crossover frequency fc may be chosen to be no
greater than fs / 10, or 10kHz. You may also assume that all elements are ideal. The pulse-width
modulator circuit obeys Eq. (7-132).

(a) What is the intended dc output voltage V? Over what range does the effective load
resistance RLOAD vary?

(b) Construct the magnitude asymptotes of the open-loop output impedance Zout(s). Over
what range of frequencies is the output impedance specification not met? Hence, deduce
how large the minimum loop gain T(s) must be in magnitude, such that the closed-loop
output impedance meets the specification. Choose a suitable crossover frequency fc.

(c) Design a compensator network Gc(s) such that all specifications are met. Additionally, the
dc loop gain T(s) should be at least 20dB. Specify the following:

(i) Your choice for the transfer function Gc(s)

(ii) The worst-case closed-loop Q

(iii) Bode plots of the loop gain T(s) and the closed-loop output impedance,
for load currents of 5A and 50A. What effect does variation of RLOAD

have on the closed-loop behavior of your design?

(d) Design a circuit using resistors, capacitors, and an op amp, to realize your compensator
transfer function Gc(s).

9 . 9 Design of a buck-boost voltage regulator. The buck-boost converter of Fig. 9.46 operates in the
continuous conduction mode, with the element values shown. The nominal input voltage is Vg =
48V, and it is desired to regulate the output voltage at –15V. Design the best compensator that
you can, which has high crossover
frequency (but no greater than 10% of the
switching frequency), large loop gain
over the bandwidth of the feedback loop,
and phase margin of at least 52˚.

(a) Specify the required value of H.
Sketch Bode plots of the
uncompensated loop gain
magnitude and phase, as well as
the magnitude and phase of your
proposed compensator transfer
function Gc(s). Label the
important features of your plots.

(b) Construct Bode diagrams of the magnitude and phase of your compensated loop gain T(s),
and also of the magnitude of the quantities T / (1 + T) and 1 / (1 + T).

(c) Discuss your design. What prevents you from further increasing the crossover frequency?
How large is the loop gain at 120Hz? Can you obtain more loop gain at 120Hz?
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9 . 1 0 The loop gain of a certain
feedback system is measured,
using voltage injection at a point
in the forward path of the loop as
illustrated in Fig. 9.47(a). The
data in Fig. 9.47(b) is obtained.
What is T(s)? Specify T(s) in
factored pole-zero form, and give
numerical values for all important
features. Over what range of
frequencies does the measurement
give valid results?
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Fig. 9.47.


