Power Electronic Circuits

Prof. Daniel Costinett

ECE 482 Lecture 1
January 8, 2015

* New course in design an implementation of power converters

 Course website: http://web.eecs.utk.edu/courses/spring2015/ece482/

* Course uses electric bicycle platform as framework for the
investigation of practical issues in SMPS construction

e Unlike ECE 481, this is not a theory-focused course; expect to
spend most of your effort on construction/debugging with
relatively little new theory

* Goal of course is practical experience in designing, building,
testing, and debugging power electronics; system, components,
architectures can be modified based on student initiative

* Prerequisites: undergraduate Circuits sequence, Microelectronics,
ECE 481 — Power Electronics

1/13/2015



Instructor: Daniel Costinett
* Office: MK502
* OH during canceled lectures, in-lab
e E-mail: Daniel.Costinett@utk.edu

* Email questions will be answered within 24 hours
(excluding weekends)

* Please use ECE 482 in the subject line

Course Structure

¢ Scheduled for one lecture and one 3-hr lab session
per week

* Theory is presented as necessary for practical design
* Plan to spend ~10 hours per week on course; mostly
lab time

e Lectures will only be used as needed — when no
theory/review is necessary, lectures will give way to
additional lab time

— Check course website often for cancelled lectures

» Additional theory may be presented in brief sessions

during lab time
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Textbook and materials

e Portions of the Textbook
R.Erickson, D.Maksimovic, Fundamentals of Power Electronics,
Springer 2001
will be used. The textbook is available on-line from campus
network
e MATLAB/Simulink, LTSpice, Altium Designer, Xilinx ISE will be
used; All installed in MK227 and in the Tesla Lab
e Lecture slides and notes, additional course materials, prelabs,
experiments, etc. posted on the course website

Assignments

Labs will be complete in groups of 2-3
Lab Reports and Demonstrations (~7 labs total): 50% of total grade
e Turnin one lab writeup per group
e Submit electronically via e-mail to Daniel.Costinett@utk.edu
Demonstrations each lab session: 10% of grade
¢ Show functionality/progress and demonstrate understanding
e Questions asked to each individual group member
Pre-labs completed prior to starting each experiment: 20% of grade
e Turnin one pre-lab assignment per person
Midterm exam (open book/notes, in-class), 20% of the grade
Late work will not be accepted except in cases of documented emergencies

Due dates posted on website course schedule
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Use of Lab Time

Attendance is required during all lectures and
scheduled lab time

— Make use of designated time with Instructor present
— Informal Q&A and end-of-experiment demonstrations

Work efficiently but do not work independently

— Understand all aspects of design
Build in stages; test one stage at a time

Outside of normal lab hours, key access will be
granted per group

Topics Covered

Course Topics

— Battery Modeling

— Modeling and Characterization of AC Machines
— DC/DC Converter Analysis and Design
— Loss Modeling of Power Electronics
— Basic Magnetics and Transformers

— Feedback Loop Design

— Layout of Power Electronics Circuits
— Electric Motor Drivers

— BLDC and PMSM Control Methods

— System-Level Control Design
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EIA:

Transportation Electrification

Motivation

Improve efficiency: reduce energy consumption

Displace petroleum as primary energy source

¢ Reduce impact on environment

Reduce cost

Transportation accounts for 28% of
total U.S. energy use

Transportation accounts for 33% of
CO2 emissions

Petroleum comprises 93% of US
transportation energy use
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Average power and energy
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Engine power (kW)

ICE vs. ED 7
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Internal Combustion Engine (ICE) Electric Drive (ED)

e ED offers full torque at zero speed
Neppk = 95%; Nicepk = 35%

Tractive effort and resistance (kN)

Transmissions in Conventional Vehicles
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Conventional Vs. Electric Vehicle

(Prius-sized vehicle example)

Tank + Internal Combustion Electric Vehicle (EV) Battery +
Engine Inverter + AC machine
Regenerative NO YES
braking
Tank-to-wheel ~20% ~ 85%
efficiency 1.2 kWh/mile, 28 mpg 0.17 kWh/mile, 200 mpg equiv.
Energy storage Gasoline energy content LiFePO, battery
12.3 kWh/kg, 36.4 kWh/gallon 0.1 kWh/kg, 0.8 kWh/gallon
Refueling 5 gallons/minute Level | (120Vac): 1.5 kW, <8 miles/hour
11 MW, 140 miles/minute Level Il (240Vac): 6 kW, <32 miles/hour
Level 11l (DC): 100 kW, <9 miles/minute
Cost 12 ¢/mile [$3.50/gallon] 2 ¢/mile [$0.12/kWh]
CO, emissions ~ (300, 350) g CO,/mile (0, ~120) g CO,/mile
(tailpipe, total) [current U.S. electricity mix]

CO, emissions and oil displacement study

Well-to-Wheel Analysis of Energy Use and Greenhouse Gas Emissions of PHEVs
(2010 report by Argonne National Lab)
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CO, emissions Over Full Lifetime

Preparing for a Life Cycle CO, Measure (2011 report by Ricardo)

Mid-Size EV
(without battery / 66%
replacement)

Mid-Size EV (with

battery — 55% ——> 43%
replacernent)
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Conventional Vs. Electric Vehicle

(Ford Focus comparison)

Tank + Internal Combustion Electric Vehicle (EV) Battery +
Engine Inverter + AC machine
(Ford Focus ST) (Ford Focus Electric)
Purchase Price $24,495 $39,995
Significant $5,000 S0 - 13,500
Maintenance (Major Engine Repair) (Battery Pack Replacement)
Energy Costs
(10-year, 15k $18,000 $3,000
mi/yr)
Range > 350 mi <100 mi
160 hp @ 6500 rpm 123 hp, 2000-12000 rpm
Performance 0-60 mph : 8.7 sec 0-60 mph: 9.6 sec
% mile: (16.4 sec @ 85.4 mph) % mile: (17.2 sec @ 82.1 mph)
Curb Weight 3,000 Ib 3,700 Ib
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The Price of Batteries

Estimates of electric-vehicle battery costs

Additional cost of a plug-in hybrid electric Market share of hybrid and electric vehicles

$ per kilowatt-hour vehicle (PHEV) over a conventional vehicle® 2007-2020, estimated
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Peter Savagian, “Barriers to the Electrification of the Automobile,” Plenary session, ECCE 2014
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A Vision: Renewable Sources + Battery Electric Vehicles

R

* Zero GHG emissions, no petroleum
* High efficiencies are feasible: 80% grid-to-wheel
* Challenges
* Battery technology: cost, cycle life, power and energy density
« Efficient, reliably and cost-effective drivetrain components
* Need for charging infrastructure
* Limited charging power, long charge-up times

Power Electronics in Electric Vehicles
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Peter Savagian, “Barriers to the Electrification of the Automobile,” Plenary session, ECCE 2014
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BEV Architecture
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Example: Tesla Roadster
e 215 KkW electric drive ED1 (sport model)
e 53 kWh Li-ion battery

Series HEV Architecture

In a PHEV, a (larger) battery can be
charged from the electric power grid

-
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Example: Chevy Volt, a PHEV with a drive-train

based on the series architecture: "
* 62 kW (83 hp, 1.4 L) ICE '
* 55 kW electric drive ED1
*111 kW (149 hp) electric drive ED2
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Parallel HEV
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Example: 2011 Sonata HEV with a drive-train
based on the parallel architecture:
e 121 kW (163 hp, 2.0 L) ICE
* 30 kW electric drive ED1
8.5 kW hybrid starter/generator
connected to crankshaft

Series/Parallel HEV
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Example: 2010 Prius HEV with a drive-train based on the series/parallel architecture :
*+ 73 kW (98 hp, 1.8 L) ICE
* 60 kW electric drive ED2

*100 kW total power

*42 kW (149 hp) electric drive ED1

1/13/2015

13



Electric Bicycle Platform

Power Conversion
Battery and Control

Electric Motor

Electric Bicycle System

Pedals || Gears L3

A4

Rider
nput

Motor 3
control Motor

A

Battery Vehicle
_— charger Battery L—3| assecoires
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Growing Popularity of E-bikes

Electric Bicycle Sales by Region, World Markets: 2012-2018
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(Source: Pike Research)

(Asia Pacific, Millions)

Electric Bicycles Worldwide

E-bikes accounted for $6.9 billion in revenue in 2012

By utilizing sealed lead-acid (SLA) batteries, the cost of e-
bicycles in China averages about $167 (compared to $815 in
North America and $1,546 in Western Europe)

China accounts for 90% of world market

Western Europe accounts for majority of remaining 10%
despite $1,546 average cost

North America: 89,000 bicycles sold in 2012
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System Structure

Battery Boost 3-¢ Motor
DC-DC H Inl\;e'rter/ 6
river
BMS Converter
A
D \{\/Uf g176 Iubc
PWM 3-b PWM | _ Bpe
Controller Controller
N N\
Throttle Filteri v
iltering
Brake and ref .
Control ref
Experiment 1
Battery Motor
BMS
6

Identification and characterization of motor

Modeling of motor using simulink
Derivation of model parameters from experimental data

abc
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Experiment 2-3

Battery Boost Motor
DC-DC
BMS Converter

D lvaut

eabc
Throttle
Digital ¢ Open-loop operation of Boost converter
Controller ¢ Inductor design
¢ Converter construction and efficiency
analysis

¢ Bidirectional operation using voltage
source / resistive load

Experiment 4

Battery Boost Motor
DC-DC

BMS Converter

ol . |v
A4 A\ 4

PWM Base
Controller

A

ref

¢ Closed loop operation of boost converter
¢ Feedback loop design and stability analysis
¢ Analog control of PWM converters
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Experiment 5

Battery Boost 3-¢ Motor
DCDC [y '“I‘;e,rter/ ma
river
BMS Converter
A
DI 1 Vour 916
A\ 4 \ 4
PWM 3-6 PWM | _ Benc
Controller Controller
A
Vref
e Circuit layout and PCB design
¢ Device selection and implementation according to loss analysis
e Basic control of BLDC motors
Experiment 6
Battery Boost | 3'3’ / Motor
DC-DC ‘ ' nverter 0
Converter Driver
BMS
N
D Vout 91-6 labc
v
PWM 3-¢ PWM | _ Bube
Controller Controller
A A
Throttle
Digital Vief
Controller

f ref

System-level control techniques

1/13/2015

18



1/13/2015

Experiment 7
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or Design Expo

* No final exam

* Demo operational electric bicycles with
system improvements

* Competition to determine the most efficient
and well-controlled system
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Electric Bicycle Safety and Law

Traffic Law:

* Electric motor with power output not more than
1000 W

* Not capable of propelling or assisting at greater
than 20 mph

No helmet laws for riders over age 16; you
may request one at any time

Read Tennessee bicycle safety laws on website

General Safety

Lab will work with high voltages (Up to 100 V)

Will use various machinery with high power
moving parts

Use caution at all times
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