

Power Electronic Circuits

Prof. Daniel Costinett

ECE 482 Lecture 1 January 8, 2015

- New course in design an implementation of power converters
 - Course website: http://web.eecs.utk.edu/courses/spring2015/ece482/
 - Course uses electric bicycle platform as framework for the investigation of practical issues in SMPS construction
- Unlike ECE 481, this is not a theory-focused course; expect to spend most of your effort on construction/debugging with relatively little new theory
- Goal of course is practical experience in designing, building, testing, and debugging power electronics; system, components, architectures can be modified based on student initiative
- Prerequisites: undergraduate Circuits sequence, Microelectronics, ECE 481 – Power Electronics

Instructor: Daniel Costinett

• Office: MK502

OH during canceled lectures, in-lab

• E-mail: Daniel.Costinett@utk.edu

 Email questions will be answered within 24 hours (excluding weekends)

• Please use ECE 482 in the subject line

Course Structure

- Scheduled for one lecture and one 3-hr lab session per week
- Theory is presented as necessary for practical design
- Plan to spend ~10 hours per week on course; mostly lab time
- Lectures will only be used as needed when no theory/review is necessary, lectures will give way to additional lab time
 - Check course website often for cancelled lectures
- Additional theory may be presented in brief sessions during lab time

Textbook and materials

Portions of the Textbook

R.Erickson, D.Maksimovic, *Fundamentals of Power Electronics*, Springer 2001

will be used. The textbook is available on-line from campus network

- MATLAB/Simulink, LTSpice, Altium Designer, Xilinx ISE will be used; All installed in MK227 and in the Tesla Lab
- Lecture slides and notes, additional course materials, prelabs, experiments, etc. posted on the course website

Assignments

- Labs will be complete in groups of 2-3
- Lab Reports and Demonstrations (~7 labs total): 50% of total grade
 - Turn in one lab writeup per group
 - Submit electronically via e-mail to Daniel.Costinett@utk.edu
- Demonstrations each lab session: 10% of grade
 - Show functionality/progress and demonstrate understanding
 - Questions asked to each individual group member
- Pre-labs completed prior to starting each experiment: 20% of grade
 - Turn in one pre-lab assignment per person
- Midterm exam (open book/notes, in-class), 20% of the grade
- Late work will not be accepted except in cases of documented emergencies
- Due dates posted on website course schedule

Use of Lab Time

- Attendance is required during all lectures and scheduled lab time
 - Make use of designated time with Instructor present
 - Informal Q&A and end-of-experiment demonstrations
- Work efficiently but do not work independently
 - Understand all aspects of design
- Build in stages; test one stage at a time
- Outside of normal lab hours, key access will be granted per group

Topics Covered

Course Topics

- Battery Modeling
- Modeling and Characterization of AC Machines
- DC/DC Converter Analysis and Design
- Loss Modeling of Power Electronics
- Basic Magnetics and Transformers
- Feedback Loop Design
- Layout of Power Electronics Circuits
- Electric Motor Drivers
- BLDC and PMSM Control Methods
- System-Level Control Design

Transportation Electrification

Motivation

- Improve efficiency: reduce energy consumption
- Displace petroleum as primary energy source
- Reduce impact on environment
- Reduce cost

EIA:

- Transportation accounts for 28% of total U.S. energy use
- Transportation accounts for 33% of CO2 emissions
- Petroleum comprises 93% of US transportation energy use

	(Prius-sized vehicle e	xample)
	Tank + Internal Combustion Engine	Electric Vehicle (EV) Battery + Inverter + AC machine
Regenerative braking	NO	YES
Tank-to-wheel efficiency	≈ 20%	≈ 85%
	1.2 kWh/mile, 28 mpg	0.17 kWh/mile, 200 mpg equiv.
Energy storage	Gasoline energy content	LiFePO₄ battery
	12.3 kWh/kg, 36.4 kWh/gallon	0.1 kWh/kg, 0.8 kWh/gallon
Refueling	5 gallons/minute	Level I (120Vac): 1.5 kW, <8 miles/hour
	11 MW, 140 miles/minute	Level II (240Vac): 6 kW, <32 miles/hour Level III (DC): 100 kW, <9 miles/minute
Cost	12 ¢/mile [\$3.50/gallon]	2 ¢/mile [\$0.12/kWh]
CO ₂ emissions (tailpipe, total)	≈ (300, 350) g CO ₂ /mile	(0, ≈120) g CO ₂ /mile
		[current U.S. electricity mix]

	Tank + Internal Combustion	Electric Vehicle (EV) Battery +
	Engine	Inverter + AC machine
	(Ford Focus ST)	(Ford Focus Electric)
	(10141064331)	(Ford Focus Electric)
Purchase Price	\$24,495	\$39,995
Significant	\$5,000	\$0 - 13,500
Maintenance	(Major Engine Repair)	(Battery Pack Replacement)
Energy Costs		
(10-year, 15k	\$18,000	\$3,000
mi/yr)		
Range	> 350 mi	< 100 mi
Performance	160 hp @ 6500 rpm	123 hp, 2000-12000 rpm
	0-60 mph : 8.7 sec	0-60 mph: 9.6 sec
	¼ mile: (16.4 sec @ 85.4 mph)	¼ mile: (17.2 sec @ 82.1 mph)
Curb Weight	3,000 lb	3,700 lb

Electric Bicycles Worldwide

- E-bikes accounted for \$6.9 billion in revenue in 2012
- By utilizing sealed lead-acid (SLA) batteries, the cost of ebicycles in China averages about \$167 (compared to \$815 in North America and \$1,546 in Western Europe)
- · China accounts for 90% of world market
- Western Europe accounts for majority of remaining 10% despite \$1,546 average cost
- North America: 89,000 bicycles sold in 2012

Design Expo

- No final exam
- Demo operational electric bicycles with system improvements
- Competition to determine the most efficient and well-controlled system

Electric Bicycle Safety and Law

- Traffic Law:
 - Electric motor with power output not more than 1000 W
 - Not capable of propelling or assisting at greater than 20 mph
- No helmet laws for riders over age 16; you may request one at any time
- Read Tennessee bicycle safety laws on website

U

General Safety

- Lab will work with high voltages (Up to 100 V)
- Will use various machinery with high power moving parts
- Use caution at all times