

Converter Loss Analysis

ECE 482 Lecture 3 January 20, 2015

Announcements

- Finish Experiment 1: report due Tuesday, 1/27
- This week: Experiment 2
 - Intro to FPGA programming
- Next week: Experiment 3
 - Boost converter design and construction
 - Open-loop, steady-state efficiency analysis
- Component kits available in circuits store later this week
 - \$100 per group for components for Labs 3 and after
 - Plan to spend additional ~\$5.00 on resistors, etc.

Words of Caution

- Very easy to blow pins on FPGA
 - 4V maximum!
 - Use resistor dividers when necessary
 - Double- and Triple-check I/O and connections before operating device

Basics of FPGA programming

- Microcontroller
 - Processor, ram, etc.
 - Code is instruction set; executed sequentially
- FPGA
 - Application specific circuitry
 - Code is hardware design language; all in parallel

Speed	Technology	Performance/Cost	Time until running	Time to high performance	Time to change code functionality		
	ASIC	Very High	Very Long	Very Long	Impossible		
	Custom Processor/ DSP FPGA Generic	Medium	Long	Long	Long	Flexibility	
		Low-Medium	Short	Short	Short	Œ	
		neric Low-Medium	Short	Not Attainable	Short		
					wp	212 12 001104	

Figure 12: Design Choices⁴

http://www.xilinx.com/support/documentation/white_papers/wp213.pdf

U

Configurable Logic Block

Figure 1: Arrangement of Slices within the CLB

Getting Started with Mojo v3

- Resources from board developer:
 - Tutorials
 - https://embeddedmicro.com/tutorials/mojo
 - Base Project
 - https://github.com/embmicro/mojo-baseproject/archive/master.zip
- Will be coding in Xilinx ISE
- Mojo Loader used to write .bit file to on-board RAM/Flash

Base Project

```
module mojo_top(
    // 50MHz clock input
    input clk,
    // Input from reset button (active low)
    input rst n,
    // cclk input from AVR, high when AVR is ready
    input cclk,
    // Outputs to the 8 onboard LEDs
    output[7:0]led,
    // AVR SPI connections
    output spi_miso,
    input spi_ss,
    input spi_ss,
    input spi_ss,
    input spi_sck,
    // AVR ADC channel select
    output [3:0] spi_channel,
    // Serial connections
    input avr_tx, // AVR Tx => FPGA Tx
    output avr_rx, // AVR Rx buffer full
    );

wire rst = ~rst_n; // make reset active high

// these signals should be high-z when not used
assign spi_miso = 1'bz;
assign svi_miso = 1'bz;
assign spi_channel = 4'bzzzz;
assign led = 8'b0;
endmodule
```


User Constraints File (.ucf)

Digital Implementation

Converter Loss Modeling

Analytical Loss Modeling

- High efficiency approximation is acceptable for hand calculations, as long as it is justified
 - Solve ideal waveforms of lossless converter, then calculate losses
- Argue which losses need to be included, and which may be neglected

Conduction Loss Modeling

19

MOSFET Equivalent Circuit

- Considering only power stage losses (gate drive neglected)
- MOSFET operated as power switch
- Intrinsic body diode behaviors considered using normal diode analysis

Boost Converter RMS Currents

• MOSFET conduction losses due to $(r_{ds})_{on}$ depend given as

$$P_{cond,FET} = I_{di,rms}^{2} (r_{ds})_{on}$$

MOSFET Conduction Losses Pulsating waveform with linear ripple, Fig. A.6: $rms = I \sqrt{D} \sqrt{1 + \frac{1}{3} \left(\frac{\Delta t}{I}\right)^{2}} \qquad (A.6)$ Fig. A.6 • RMS values of commonly observed waveforms appendix from Power Book

Semiconductor Switch Conduction Loss

- Equivalent circuit of MOSFET with external antiparallel diode has two, non-ideal diodes
- Diodes, even when matched, will not share current equally, but $v_d = v_{ds}$ must remain true
- Silicon rectifier diodes are minority carrier devices
 - Concentration of minority carriers depends heavily on temperature

DC Inductor Resistance

• DC Resistance given by

$$R_{DC} = \rho \frac{l_b}{A_w}$$

- At room temp, $\rho = 1.724 \cdot 10^{-6} \,\Omega$ -cm
- At 100°C, $\rho = 2.3 \cdot 10^{-6} \,\Omega$ -cm
- Losses due to DC current:

$$P_{cu,DC} = I_{L,rms}^{2} R_{DC}$$

Inductor Conduction Losses DC plus linear ripple, Fig. A.2:

Fig. A.2

(A.2)

Conduction losses dependent on RMS current through inductor

Primary winding

Proximity Effect

• In *foil* conductor closely spaced with $h \gg \delta$, flux between layers generates additional current according to Lentz's law.

$$P_1 = I_{L,rms}^2 R_{ac}$$

• Power loss in layer 2:

$$P_2 = I_{L,rms}^2 R_{ac} + (2I_{L,rms})^2 R_{ac}$$
$$P_2 = 5P_1$$

Needs modification for non-foil conductors

density

Capacitor Loss Model

- Operation well below resonance
- All loss mechanisms in a capacitor are generally lumped into an empirical loss model
- Equivalent Series Resistance (ESR) is highly frequency dependent
- Datasheets may give effective impedance at a frequency, or loss factor:

$$\delta = \frac{\pi}{2} - \theta$$

$$D = \tan(\delta)$$

Lump Switched Node Capacitance

 Consider a single equivalent capacitor at switched node which combines energy storage due to all four semiconductor devices

Inductor Core Loss

 Governed by Steinmetz Equation:

$$P_v = K_{fe} f_s^{\alpha} (\Delta B)^{\beta} \text{ [mW/cm}^3]$$

- Parameters K_{fe} , α , and β extracted from manufacturer data
- $\Delta B \propto \Delta i_L \rightarrow \text{small losses}$ with small ripple

$$P_{fe} = P_v A_c l_m \text{ [mW]}$$

Steinmetz Parameter Extraction

Ferroxcube Curve Fit Parameters

Power losses in our ferrites have been measured as a function of frequency (f in Hz), peak flux density (B in T) and temperature (T in $^{\circ}$ C). Core loss density can be approximated $^{(2)}$ by the following formula :

$$P_{\text{core}} = C_m \cdot f^x \cdot B_{\text{peak}}^y (\text{ct}_0 - \text{ct}_1 T + \text{ct}_2 T^2)$$
 [3]

$= C_m \cdot C_T$	f^{x} . B_{peak}^{y}	[mW/cm ³]
-------------------	--------------------------	-----------------------

ferrite	f (kHz)	Cm	x	y	ct ₂	ct ₁	ct ₀
3C30	20-100	7.13.10 ⁻³	1.42	3.02	3.65.10 ⁻⁴	6.65.10 ⁻²	4
	100-200	7.13.10 ⁻³	1.42	3.02	4.10-4	6.8 .10 ⁻²	3.8
3C90	20-200	3.2.10 ⁻³	1.46	2.75	1.65.10 ⁻⁴	3.1.10 ⁻²	2.45
3C94	20-200	2.37.10 ⁻³	1.46	2.75	1.65.10 ⁻⁴	3.1.10 ⁻²	2.45
	200-400	2.10 ⁻⁹	2.6	2.75	1.65.10 ⁻⁴	3.1.10 ⁻²	2.45
3F3	100-300	0.25.10 ⁻³	1.63	2.45	$0.79.10^{-4}$	1.05.10 ⁻²	1.26
	300-500	2.10 ⁻⁵	1.8	2.5	$0.77.10^{-4}$	1.05.10 ⁻²	1.28
	500-1000	3.6.10 ⁻⁹	2.4	2.25	$0.67.10^{-4}$	0.81.10 ⁻²	1.14
3F4	500-1000	12.10 ⁻⁴	1.75	2.9	0.95.10 ⁻⁴	1.1.10 ⁻²	1.15
	1000-3000	1.1.10 ⁻¹¹	2.8	2.4	0.34.10-4	0.01.10 ⁻²	0.67
Table 1: Fit parameters to calculate the power loss density							

U

NSE/iGSE

• More complex empirical loss models exist, and remain valid for non-sinusoidal waveforms

• NSE/iGSE:

$$P_{NSE} = \left(\frac{\Delta B}{2}\right)^{\beta - \alpha} \frac{k_N}{T} \int_0^T \left|\frac{dB}{dt}\right|^{\alpha} dt$$

Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.;, "Measurement and loss model of ferrites with non-sinusoidal waveforms," Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol.6, no., pp. 4814-4818 Vol.6, 20-25 June 2004 doi: 10.1109/PESC.2004.1354851

Inductor Design

Minimization of Losses For given core, number of turns can be used to index possible designs, with air gap solved after (and limited) to get correct inductance A minimum sum of the two exists and can be solved for

Spreadsheet Design

- Use of spreadsheet permits simple iteration of design
- Can easily change core, switching frequency, loss constraints, etc.

K_g and K_{gfe} Methods

- Two closed-form methods to solve for the optimal inductor design *under certain constraints/assumptions*
- Neither method considers losses other than DC copper and (possibly) steinmetz core loss
- Both methods particularly well suited to spreadsheet/iterative design procedures

	K_g	K_{gfe}
Losses	DC Copper (specified)	DC Copper, SE Core Loss (optimized)
Saturation	Specified	Checked After
B _{max}	Specified	Optimized

U

K_a Method

- Method useful for filter inductors where ΔB is small
- Core loss is not included, but may be significant particularly if large ripple is present
- Copper loss is specified through a set target resistance
- The desired B_{max} is given as a constraint
- Method does not check feasibility of design; must ensure that air gap is not extremely large or wire size excessively small
- Simple first-cut design technique; useful for determining approximate core size required
- Step-by-step design procedure included on website

K_{gfe} Method

- Method useful for cases when core loss and copper loss are expected to be significant
- Saturation is not included in the method, rather it must be checked afterward
- Enforces a design where the sum of core and copper is minimized

K_{gfe} Procedure

ed, using the units note	ed:
, 0	$(\Omega\text{-cm})$
•	(A)
λ_1^2	(V-sec)
P_{tot}	(W)
K''	
β	
K_{fe}	(W/cm^3T^{β})
ns:	
A_c	(cm ²)
W_{A}	(cm ²)
MLT	(cm)
ℓ_e	(cm)
A_{w1}, \dots	(cm ²)
$\Delta \stackrel{\scriptscriptstyle{W1}}{B}$	(T)
	P_{tot} K_u β K_{fe} ns: A_c W_A MLT ℓ_e A_{w1} ,

U

K_{qfe} Method: Summary

- Method enforces an operating ΔB in which core and copper losses are minimized
- Only takes into account losses from standard Steinmetz equation; not correct unless waveforms are sinusoidal
- Does not consider high frequency losses
- Step-by-step design procedure included on website

טר		