

U

Driving a Power MOSFET Switch

- MOSFET is off when $v_{gs} < V_{th} \approx$ 3 V
- MOSFET fully on when v_{gs} is sufficiently large (10-15 V)
- Warning: MOSFET gate oxide breaks down and the device fails when $v_{gs} > 20 \text{ V}$.
- Fast turn on or turn off (10's of ns) requires a large spike (1-2 A) of gate current to charge or discharge the gate capacitance
- MOSFET gate driver is a logic buffer that has high output current capability

U

Driving a Power MOSFET Switch

- MOSFET gate driver is used as a logic buffer with high output current (~1.8 A) capability
- The amplitude of the gate voltage equals the supply voltage VCC
- Decoupling capacitors are necessary at all supply pins of LM5104 (and all ICs)
- Gate resistance used to slow dv/dt at switch node

Half Bridge Gate Drive Waveforms

- Gate driver chip must implement v_{gs} waveforms Sources will have pulsating currents and need
- Sources will have pulsating currents and need decoupling

U

MOSFET Gate Charge

- Charge is supplied to both C_{gs} and C_{gd} in order to move gate voltage and switch MOSFET
- Would like to supply the charge in minimum time to quickly switch FET
- Results in high peak currents

U

Gate Drive Implementation

- Gate driver is cascades back half-bridges of decreasing size to obtain quick rise times
- Reminder: keep loops which handle pulsating current small by decoupling and making close connections

U

Capacitor Sizing Notes

- Area of current pulse is total charge supplied to gate of capacitor
- All charge must be supplied from gate drive decoupling capacitor

U

Gate Drive Losses

- Gate charge is supplied through driver resistance during switch turn-on
- Gate charge is dissipated in gate driver on switch turn-off

High Side Signal Ground v_{dec} v_{ed} $v_$

Uľ

Wiring Advice

• Take the time to wire board cleanly

 Very difficult to find a short in sloppy-wired circuit