

Circuit Simulation

- Matlab, Simulink, LTSpice
 - Other tools accepted, but not supported
- Choose model type (switching, averaged, dynamic)
- Supplement analytical work rather than repeating it
- Show results which clearly demonstrate what matches and what does not with respect to experiments (i.e. ringing, slopes, etc.)

LTSpice Modeling Examples

• Example files added to course materials page

Manufacturer Device Model

- Text-only netlist model of device including additional parasitics and temperature effects
- May slow or stop simulation if timestep and accuracy are not adjusted appropriately

Name	Description	Units	Default	Example
Vto	Threshold voltage	V	0	1.0
Kp	Transconductance parameter	A/V²	1.	.5
Phi	Surface inversion potential	V	0.6	0.65
Lambda	Channel-length modulation	1/V	0.	0.02
mtriode	Conductance multiplier in triode region (allows independent fit of triode and saturation regions	-	1.	2.
subtreas	Current(per volt Vds) to switch from square law to exponential subthreshold conduction	A/V	0.	1n
BV	Vds breakdown voltage	V	Infin.	40
IBV	Current at Vds=BV	A	100pA	1u
NBV	Vds breakdown emission coefficient	-	1.	10
Rd	Drain ohmic resistance	Ω	0.	1.
Rs	Source ohmic resistance	Ω	0.	1.
Rg	Gate ohmic resistance	Ω	0.	2.
Rds	Drain-source shunt resistance	Ω	Infin.	10Meg
Rb	Body diode ohmicresistance	Ω	0.	.5
Cjo	Zero-bias body diode junction capacitance	F	0.	1n
Cgs	Gate-source capacitance	F	0.	500p
Cgdmin	Minimum non-linear G-D capacitance	F	0.	300p
Cgdmax	Maximum non-linear G-D capacitance	F	0.	1000p
A	Non-linear Cgd capacitance parameter	-	1.	.5
Is	Body diode saturation current	A	1e-14	1e-15
N	Bulk diode emission coefficient	-	1.	
Vj	Body diode junction potential	V	1.	0.87
M	Body diode grading coefficient	-	0.5	0.5
Fc	Body diode coefficient for forward-bias depletion capacitance formula	-	0.5	
tt	Body diode transit time	sec	0.	10n
Eg	Body diode activation energy for temperature effect on Is	eV	1.11	
Xti	Body diode saturation current temperature exponent	-	3.	
L	Length scaling	-	1.	
W	Width scaling	-	1.	
Kf	Flicker noise coefficient	-	0.	
Af	Flicker noise exponent	-	1.	
nchan[*]	N-channel VDMOS	-	(true)	-
pchan[*]	P-channel VDMOS	-	(false)	-
Tnom	Parameter measurement temperature	°C	27	50

Switching Model Simulation Results

• Simulation Time ≈ 15 minutes

U

Full Switching Model

- Gives valuable insight into circuit operation
 - Understand expected waveforms
 - Identify discrepancies between predicted and experimental operation
- Slow to simulate; significant high frequency content
- Cannot perform AC analysis

Averaged Switch Modeling: Motivation

- A large-signal, nonlinear model of converter is difficult for hand analysis, but well suited to simulation across a wide range of operating points
- Want an averaged model to speed up simulation speed
- Also allows linearization (AC analysis) for control design

U

Nonlinear, Large-Signal Equations

Circuit Averaging and Averaged Switch Modeling

- Historically, circuit averaging was the first method known for modeling the small-signal ac behavior of CCM PWM converters
- It was originally thought to be difficult to apply in some cases
- There has been renewed interest in circuit averaging and its corrolary, averaged switch modeling, in the last two decades
- Can be applied to a wide variety of converters
 - We will use it to model DCM, CPM, and resonant converters
 - Also useful for incorporating switching loss into ac model of CCM converters
 - Applicable to 3ø PWM inverters and rectifiers
 - Can be applied to phase-controlled rectifiers
- Rather than averaging and linearizing the converter state equations, the averaging and linearization operations are performed directly on the converter circuit

Circuit Averaging

Averaged Switch Modeling: Further Comments

- Model is slightly different but can be produced in same manner for
 - Inclusion of loss models
 - Transformer isolated converters
 - Converters in DCM
- See book appendix B.2 for further notes

