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Power Electronics Circuits

Prof. Daniel Costinett

ECE 482 Lecture 1
January 14, 2016

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Transportation Electrification

Motivation
* Improve efficiency: reduce energy consumption
* Displace petroleum as primary energy source
* Reduce impact on environment

¢ Reduce cost

US Energy Information Administration:

* Transportation accounts for 28% of
total U.S. energy use

* Transportation accounts for 33% of
CO, emissions

* Petroleum comprises 90% of US
transportation energy use
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Average power and energy

100

Vehicle ;speed [rﬁph]

80 B

60 B

v [mph]

40} B

20+ B

0 Prius-sized vehicle

0 160 260 360 460 500 600
80 T T
oPropulsion power [kW]

Dissipative braking
 Pugg = 11.3 kW

vavg

@

N " 235 Wh/mile
7/
g 201 _/,
= -==
a” 0 .
20l \\Regenerative braking
0 Pyavg=7.0 kW
s 100 200 300 - - oo 146 Wh/mile
time [s]

THE UNIVERSITY OF

TENNESSEE |8 §

KNOXVILLE

1/14/2016



TN
z ! \
= 10000 |
=
£ 8000 b
=
6000
4000 e
E———
2000
/
0
0 20 40 60 80 100 120 140 160 180 200

ICE vs ED 7w

18000 - . . - -
P \ Lotus Evora 414E Hybrid

16000 ]
/ \.\ L~ I
- -
14000 7 \
' \ \
12000 f \

Vehicle Speed / [mph]

= 414E == 1st =@~ 2nd 3rd =~ 4th == 5th =8=6th

THE UNIVERSITY OF

“Full Acceleration”, proactive Magazine, Oct. 2012 TENNESSEE

KNOXVILLE
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* No need for multi-gear transmission
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Conventional Vs. Electric Vehicle

(Prius-sized vehicle example)

Electric Vehicle (EV) Battery +

Tank + Internal Combustion
Engine Inverter + AC machine
Regenerative NO YES
braking
Tank-to-wheel ~ 20% ~ 85%
efficiency 1.2 kWh/mile, 28 mpg 0.17 kWh/mile, 200 mpg equiv.
Energy storage Gasoline energy content LiFePO, battery
12.3 kWh/kg, 36.4 kWh/gallon 0.1 kWh/kg, 0.8 kWh/gallon
Refueling 5 gallons/minute Level | (120Vac): 1.5 kW, <8 miles/hour
11 MW, 140 miles/minute Level 1l (240Vac): 6 kW, <32 miles/hour
Level 11l (DC): 100 kW, <9 miles/minute
Cost 12 ¢/mile [$3.50/gallon] 2 ¢/mile [$0.12/kWh]
CO, emissions ~ (300, 350) g CO,/mile (0, ~120) g CO,/mile
(tailpipe, total) [current U.S. electricity mix]
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Energy and Power D

ensity of Storage
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Conventional Vs. Electric Vehicle

(Ford Focus comparison)

Tank + Internal Combustion Electric Vehicle (EV) Battery +
Engine Inverter + AC machine
(Ford Focus ST) (Ford Focus Electric)
Purchase Price $24,495 $39,995
Significant $5,000 S0 - 13,500
Maintenance (Major Engine Repair) (Battery Pack Replacement)
Energy Costs
(10-year, 15k $18,000 $3,000
mi/yr)
Range > 350 mi <100 mi
160 hp @ 6500 rpm 123 hp, 2000-12000 rpm
Performance 0-60 mph : 8.7 sec 0-60 mph: 9.6 sec
% mile: (16.4 sec @ 85.4 mph) % mile: (17.2 sec @ 82.1 mph)
Curb Weight 3,000 Ib 3,700 Ib
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Power Electronics in Electric Vehicles
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BEV Architecture

e —
Regenerative braking
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Example: Tesla Roadster
* 215kW electric drive ED1 (sport model)
* 53 kWh Li-ion battery

KNOXVILLE

Series HEV Architecture

In a PHEV, a (larger) battery can be
charged from the electric power grid

B EE—

T T
" vV "
ICE Electric 3-phase X 3-phase Electric
Fuel motor/ 1 inverter/ inverter/ ——  motor/ .
j generator [~ rectifier 1 rectifier 2 | generator % Transmission
1 ] ] 2
EDI Energy ED2
Battery charging (alternator) g torage Traction
- - = s
ICE starting Regenerative braking

Wheels
(radiusr )
v

Example: Chevy Volt, a PHEV with a drive-train
based on the series architecture:

+ 62 kW (83 hp, 1.4 L) ICE

* 55 kW electric drive ED1

*111 kW (149 hp) electric drive ED2
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Parallel HEV
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Example: 2011 Sonata HEV with a drive-train
based on the parallel architecture:
* 121 kW (163 hp, 2.0 L) ICE
* 30 kW electric drive ED1
8.5 kW hybrid starter/generator
connected to crankshaft

Series/Parallel HEV
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Example: 2010 Prius HEV with a drive-train based on the series/parallel architecture :
* 73 kW (98 hp, 1.8 L) ICE
* 60 kW electric drive ED2

*100 kW total power

*42 kW (149 hp) electric drive ED1
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Electric Bicycle Platform

Power Conversion
Battery and Control

Electric Motor

Electric Bicycle System

3| Pedals | 5f Gears L3
Rider Drive
input wheel
Motor 3
> control Motor
Battery Vehicle

> charger Battery =3 ieccoies




Growing Popularity of E-bikes

Electric Bicycle Sales by Region, World Markets: 2012-2018
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Electric Bicycles Worldwide

e E-bikes accounted for $6.9 billion in revenue in 2012

* By utilizing sealed lead-acid (SLA) batteries, the cost of e-
bicycles in China averages about $167 (compared to $815 in
North America and $1,546 in Western Europe)

* China accounts for 90% of world market

* Western Europe accounts for majority of remaining 10%
despite $1,546 average cost

* North America: 89,000 bicycles sold in 2012
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Course Details
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Course Introduction

* Hands-on course in design and implementation of power converters

. . ~ ; &
http://web.eecs.utk.edu/~dcostine/ECE482 A
* http://web.eecs.utk.edu/courses/spring2016/ece482/ &~ ==

* Course uses electric bicycle platform as framework for the investigation of
practical issues in SMPS construction

* Unlike ECE 481, this is not a theory-focused course; expect to spend most of
your effort on construction/debugging

* Goal of course is practical experience in designing, building, testing, and
debugging power electronics

* System, components, architectures can be modified based on student
initiative

* Course is difficult; will require design effort and significant hands-on time
outside of class. Expect to experience circuit failures.

* Prerequisites: undergraduate circuits sequence, Microelectronics, ECE 481 —
Power Electronics
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Contact Information

¢ Instructor: Daniel Costinett
e Office: MK502

* OH during canceled lectures, in-lab, individually
scheduled

* E-mail: Daniel.Costinett@utk.edu

* Email questions will be answered within 24 hours
(excluding weekends)

* Please use [ECE 482] inthe subject line

Course Structure

* Scheduled for one lecture and one 3-hr lab session
per week

— Lectures as needed; many weeks will have two lab sessions
— Check course website often for schedule
* Theory is presented as necessary for practical design
* Additional theory may be presented in brief sessions
during lab time

* Plan to spend 9-12 hours per week on course; mostly
lab time

1/14/2016
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Textbook and materials

e Portions of the Textbook

R.Erickson, D.Maksimovic, Fundamentals of Power Electronics,

Springer 2001

will be used. The textbook is available on-line from campus

network

* MATLAB/Simulink, LTSpice, Altium Designer, M will be
used; All installed in MK227 and in the Tesla Lab

* Lecture slides and notes, additional course materials, prelabs,
experiments, etc. posted on the course website

* Lab kit is required (purchased from circuits store) in ~1-2

weeks
— Price: $100-150 per group

— Additional resistors and capacitors, etc. purchased as needed

— Need to buy any replacement parts
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Grading

Group

e Lab Completion and Reporting
— 50% of total grade
— Turn in one per group

o Labs will be complete in groups of 2-3
e Choose groups by Tuesday, 1/19

o Late work will not be accepted except
in cases of documented emergencies

¢ Due dates posted on website course
schedule

Individual

Pre-Lab Assignments

— 15% of total grade

= Turn in one per individual
In-lab Demonstrations

— 10% of total grade

— Questions asked to each group
member

Midterm Exam

— 15% of total grade

— Open book/notes, in-class

— Covers material from experiments
Peer Evaluation

— 10% of total grade
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Use of Lab Time

* Attendance is required during all lectures and
scheduled lab time

— Make use of designated time with Instructor present
— Informal Q&A and end-of-experiment demonstrations

— Understand all aspects of design

* Qutside of normal lab hours, key access will be
granted (one per group)

* Work efficiently but do not work independently

Topics Covered

* Course Topics
— Battery Modeling
— Modeling and Characterization of AC Machines
— DC/DC Converter Analysis and Design
— Loss Modeling of Power Electronics
— Basic Magnetics and Transformers
— Feedback Loop Design
— Layout of Power Electronics Circuits
— Electric Motor Drivers
— BLDC and PMSM Control Methods
— System-Level Control Design

1/14/2016
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System Structure

Battery Boost | 3":’ / Motor
0 ‘ ’ nverter 0
Cc?ncv-elzjrfc:er Driver
BMS
A
D Vout 9'1-5 Iabc
v y
PWM 3-b PWM | _ Bpe
Controller Controller
N N
Throttle Filter v
iltering
Brake and o f
Control ref
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Experiment 1

Battery Motor

BMS

* Identification and characterization of motor
* Modeling of motor using simulink
* Derivation of model parameters from experimental data

T
KNOXVILLE
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Experiment 2-3

Battery Boost Motor
4P| opcoc
BMS Converter

D lvm

Eeabc
Throttle N * Open-loop o!aeratlon of Boost converter
Digital * Inductor design
Controller * Converter construction and efficiency
analysis
* Bidirectional operation using voltage

source / resistive load
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Experiment 2-3

Battery Boost Motor
4P| bcoc
BMS Converter

D lvm

Eeabc
Throttle * Open-loop operation of Boost converter
Digital * Inductor design
Controller * Converter construction and efficiency
analysis
* Bidirectional operation using voltage

source / resistive load
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Experiment 4

Battery Boost

4P| Dbcoc

Converter

BMS

* Closed loop operation of boost converter
* Feedback loop design and stability analysis
* Analog control of PWM converters

Motor
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Experiment 5

* Circuit layout and PCB design
* Device selection and implementation according to loss analysis

* Basic control of BLDC motors

Battery Boost 3-¢ Motor
0 DC-DC H Inl\;e.rter/ 0
river
BMS Converter
A
D \!L Vvout 916
PWM 3-¢p PWM Eeabc
Controller Controller
A
Vref
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Experiment 6

Battery Boost | 3-? / Motor
0 ‘ ’ nverter 0
Cc?n(i/_tlejrger Driver
BMS
A
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v y
PWM 3-b PWM Eeabc
Controller Controller
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Throttle o
Digital Vier
Controller I
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* System-level control techniques
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Experiment 7
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Example System Implementation

Experiment 3 -
<. < c;
@ oxD |, 2 le.x 2k =] 0.
= m ico
i
5 o2
g E i - oL .
a T v, o= Vius v, M
v, " A
- J_ _+_I : I
e
cn i Cre
o &, ] g‘% = ﬁem o E‘Qk
sl -
Experiment 2
v, > ci
Thvo 30Gate [T
_____ — x| ate
M G Driver with [ ¢
WM ] Dead-time [ 2
[V, | 1S, Gate | A [ Cic
Pulse-width Driver || HIP4086A | ¢,
modulator I Brak Central
LMs104 [ Controller v,
————— = (A =
T
Gud
Mojo v3 )
Experiment 6

Characterize

Experiment 5 & 7

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Experiment 1

1/14/2016

18



Design Expo

* No final exam
* Demo operational electric bicycles

* Competition to determine the most efficient
and robust system

Electric Bicycle Safety and Law

e Traffic Law:

* Electric motor with power output not more than
1000 W

* Not capable of propelling or assisting at greater
than 20 mph

* No helmet laws for riders over age 16; you
may request one at any time

* Read Tennessee bicycle safety laws on website

1/14/2016
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General Safety

* Lab will work with high voltages (Up to 100 V)

* Will use various machinery with high power
moving parts

* High temperatures for soldering
* Use caution at all times

* You may not work with electrical power alone
in the lab

* No food or drink allowed in the lab
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Safety training Requirements

* Log in to SkillSoft at https://oit2.utk.edu/cbt/login.php

* Once all training is completed print your Skillsoft Learner Records Progress
Report and send it to Dr. Costinett

*  Must complete with passing scores before Thursday 1/21

o his wi
Learner Records Progress Report: Login Name  JStude32
Learner Name J. Student
COMPLETED
Title D Last Accessed | First Accessed | Completed |Carrent High
Workplace Safety Orientation fesh_sah_a65_sh_enus. Aug 15, 2014 Aug 15, 2014 Aug 15, 2014 100 | 100
Lockout/Tagout for Authorized Persons lesh_sah_a0s_sh_enus Aug 20,2014 | Aug 15,2014 | Aug1s,2014 | 89 | 89
Hazard Communication: An Employee's Right to Know fesh_sah_b23_sh_enus Aug 15, 2014 Aug 15, 2014 Aug 15, 2014 100 | 100
PPE: Eye and Face Protection fesh_ Aug 15,2014 | Aug 13,2014 | Aug 15,2014 | 100 | 100
Electrical Safety fesh_ Aug 15,2014 | Aug 15,2014 | Aug 15,2014 100 | 100
Portable Fire Extinguishers fesh_s Aug 14,2014 | Aug 14,2014 | Aug 14,2014 | 100 | 100
Job Hazard Analysis fesh_ Aug 13,2014 | Aug 13,2014 | Aug 13,2014 100 | 100
NFPA 70E Electrical Safety in the Workplace 2012 Edition lesh_sah_a78_sh_enus. Aug 15, 2014 Aug 13, 2014 Aug 13, 2014 99 | 100

Course Completions: 8
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Lab 1

Introduction to Battery
Modeling

1/14/2016
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Example EV Batteries

Cutaway battery of Nissan Leaf electric vehicle. The Leaf includes a
24kWh lithium-ion battery with a city driving range of 160km (100 miles). The
battery fits under the floor of the car, weighs 272kg (600Ib) and is estimated
to cost $15,600 (2010). -

Tesla Model S frame-integrated battery. The Model S includes a 60-

85kWh lithium-ion battery with a city driving range of 480km (300miles). The
battery weighs 544kg (1200lb) and is estimated to cost $24-34,000

Toyota Prius HEV Battery. The
2004 Prius included a 1.3 kWh
NiMH battery consisting of 168 cells
and with a $3K retail replacement
cost

THE UNIVERSITY OF

TENNESSEE
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Cell Equivalent-Circuit Models

Objective:
* Dynamic circuit model capable of predicting cell voltage in response to
charge/discharge current, temperature

Further key techniques discussed in [Plett 2004-Part 2] and [Plett 2004-Part 3]

* Model parameters found using least-square estimation or Kalman filter
techniques based on experimental test data

* Run-time estimation of state of charge (SOC)
Approach: Pulsed current tests

SOC and current as a function of time during discharge SOC and current as a function of time during charge

g

— SOC
= Current {180

Current (A)

2
100 §
5
o

SOC (percent)
588583388

0 10 20 30 40 50 60 70 040 50
Time (min.) (b) Time (min.)

[Plett 2004-2] G. Plett, “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—

Part 2: Modeling and Identification,” Journal of Power Sources, Vol. 134, No. 2, August 2004, pp. 262—76.

1/14/2016
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Battery Capacity and C-rate

* Known beforehand:
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Model A: SOCand V,,

SOC bpar

Vbar

40 60 80 100
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Model B: Series Resistance

Xt batt 29V
13
batt+ 27v
batt- (1dis} 25V
23V-
X2 ‘L, model v
P— 2 19V : ; ‘
batt- 17v—+ T T T T
{Idis} 0.0V 0.2v 0.4v 0.6V 0.8v 1.0V
V(x1:soc)
.param Idis = 1 - V(model)
Aran 36000 .step param Idis 110 1 29.6V ‘ : 3

25.2v+

20.8V T I T T
0.0v 0.2v 0.4v 0.6V 0.8v 1.0V
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Model B: Series Resistance

Thl Drdor
-

10A
oad |
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6Af |
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‘ T 1 T 1
0 20 40 60 80 100 120
time/60s

* Dynamic performance characterized by
pulse train

* Constant percent of capacity per pulse
[%Ahr]
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Dynamic Performance
Discharge Charge
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Model C: Zero-state Hysteresis

[Plett 2004]

Lpat

Vbar
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Model C Performance
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Model C1: One-state Hysteresis

[Plett 2004]
I 1
i — > v
bat I+1s g
R+
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Model C1 Performance

20.4V- : V(batt:) : : V(mo:.iel)

28.2v+
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Model D: Diffusion (one-state)

[Plett 2004]
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Model D Performance
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Experimental Results

Voltage (V)

(b)

Voltage (V)

©

[Plett 2004-2] G. Plett, “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—

Part 2: Modeling and Identification,” Journal of Power Sources, Vol. 134, No. 2, August 2004, pp. 262—76.

Modeling discharge: ESC, 2 filter states

Modeling charge: ESC, 2 filter states

Truc voltage
ed voltage

Voltage (V)

w
@

w
o

w
b

o
N

o
°

True voltage
— Estim:

Time (min.)

Modeling discharge: ESC, 4 filter states

20 30 40 50 60 70
Time (min.)

Modeling charge: ESC, 4 filter states

True voltage
— Estimated voltage

Truc voltage
— Estimated voltage

Time (min.)

20 30 40 50 60 70 8 90
Time (min.)
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Implementation in LTSpice

.param R1 =1mC1l =10n
.model batdiode D(n=.001)
.param Rop = 1m Ron = 1m

.param VSOCO = .5 .paramVh=1Th =10
.param Cnom = 10

soC
\ —
B1 g2 VVOM  cchy {Ron}
T ECnom}
1=I(B2)/3600 V= VsocTable(V(50C))*7
.icV(SOC) = VS0Co
vh

¢B" ! ;lEl
[ Laplace = 1/(1+Th*s)

~
V=Vh*( IF( I(B2) < -1, 1, IF( I(B2) > .1, -1, 0)))
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.func VsocTable(x)= {table(x,0,3.0021, 0.01, 3.108, 0.02, 3.191, 0.03, 3.257, 0.04, 3.308, 0.05, 3.3...

PM Motor Operation
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Magnetic Circuit

A Aésow\c’
'?4-— ) DAY &S th‘bﬂﬁ- tnside
= “ O&:,,p.radl
! \ Ne o o
! N Oem?\’ Y% a¢r‘¥""&ﬂ

P! (B M 1 o §
'

Equivalent Circuit
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Single Phase Motor (Simplified)

Asso»c :

Winding Voltage Equation

. S
Ny ® )\mﬁ sinOr
08¢
Ng® R o5 D
J
Oy a.»a\\\w

‘\)*: )\m""f u\or

5?‘5 (‘
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Electromechanical Conversion
Powser into "\ wi»bbrj

L s b TR+ i A el
ak

? -4 ’\}ailq = l
trort Jorred fo
0{0 TMM wl‘*\\‘ '?WJGV’ ‘M‘P"
?ov‘-f oS /"/._”u

MW ?ovﬂf ‘ "\L,/( - Dr

e PMSM

Two-pole, two-phase PMSM
terminal characteristics in
stator reference frame

2,(6.)= 2, sin(8.)

a

2,(6.)= =4, cos(8.)

i

w, cos(6,)

in(6),)

dtM

dz, di,
v, =riy+—2 =i, + L2+ Ay, 0,
b b dt b dr M

T, = /i, cos(8.)+i, Sin(H ))

m
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3-Phase, 2-Pole PMSM

. m r 3
2.(6.)=4, sin(@r —4?”}
dotade AL 00 ootol phac

oimsoide

T2 7 Itk m

Different Number of Poles
1_?,\»\

F@H*% W]/\ —,
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3-Phase, P-Pole PMSM

P =4 example

Electrical and mechanical angle
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