Power Electronics Circuits

Prof. Daniel Costinett

ECE 482 Lecture 1 January 14, 2016

Transportation Electrification

Motivation

- Improve efficiency: reduce energy consumption
- Displace petroleum as primary energy source
- Reduce impact on environment
- Reduce cost

 ${\sf US} \ {\sf Energy} \ {\sf Information} \ {\sf Administration} :$

- Transportation accounts for 28% of total U.S. energy use
- Transportation accounts for 33% of CO₂ emissions
- Petroleum comprises 90% of US transportation energy use

(Prius-sized vehicle example)							
	Tank + Internal Combustion Engine	Electric Vehicle (EV) Battery + Inverter + AC machine					
Regenerative braking	NO	YES					
Tank-to-wheel efficiency	≈ 20%	≈ 85%					
	1.2 kWh/mile, 28 mpg	0.17 kWh/mile, 200 mpg equiv.					
Energy storage	Gasoline energy content	LiFePO ₄ battery					
	12.3 kWh/kg, 36.4 kWh/gallon	0.1 kWh/kg, 0.8 kWh/gallon					
Refueling	5 gallons/minute	Level I (120Vac): 1.5 kW, <8 miles/hour					
	11 MW, 140 miles/minute	Level II (240Vac): 6 kW, <32 miles/hour Level III (DC): 100 kW, <9 miles/minute					
Cost	12 ¢/mile [\$3.50/gallon]	2 ¢/mile [\$0.12/kWh]					
CO ₂ emissions	≈ (300, 350) g CO ₂ /mile	(0, ≈120) g CO ₂ /mile					
(tailpipe, total)		[current U.S. electricity mix]					

	(Ford Focus comparison)			
	Tank + Internal Combustion Engine (Ford Focus ST)	Electric Vehicle (EV) Battery + Inverter + AC machine (Ford Focus Electric)		
Purchase Price	\$24,495	\$39,995		
Significant \$5,000 Maintenance (Major Engine Repair)		\$0 - 13,500 (Battery Pack Replacement)		
Energy Costs (10-year, 15k mi/yr)	\$18,000	\$3,000		
Range	> 350 mi	< 100 mi		
	160 hp @ 6500 rpm	123 hp, 2000-12000 rpm		
Performance	0-60 mph : 8.7 sec	0-60 mph: 9.6 sec		
	¼ mile: (16.4 sec @ 85.4 mph)	¼ mile: (17.2 sec @ 82.1 mph)		
Curb Weight	3,000 lb	3,700 lb		

Electric Bicycles Worldwide

- E-bikes accounted for \$6.9 billion in revenue in 2012
- By utilizing sealed lead-acid (SLA) batteries, the cost of ebicycles in China averages about \$167 (compared to \$815 in North America and \$1,546 in Western Europe)
- · China accounts for 90% of world market
- Western Europe accounts for majority of remaining 10% despite \$1,546 average cost
- North America: 89,000 bicycles sold in 2012

THE UNIVERSITY OF TENNESSEE T

Course Details

Course Introduction

- Hands-on course in design and implementation of power converters
 - http://web.eecs.utk.edu/~dcostine/ECE482
- http://web.eecs.utk.edu/courses/spring2016/ece482/
- Course uses electric bicycle platform as framework for the investigation of practical issues in SMPS construction
- Unlike ECE 481, this is not a theory-focused course; expect to spend most of your effort on construction/debugging
- Goal of course is practical experience in designing, building, testing, and debugging power electronics
- System, components, architectures can be modified based on student
- Course is difficult; will require design effort and significant hands-on time outside of class. Expect to experience circuit failures.
- Prerequisites: undergraduate circuits sequence, Microelectronics, ECE 481 -Power Electronics

Contact Information

• Instructor: Daniel Costinett

• Office: MK502

• OH during canceled lectures, in-lab, individually scheduled

• E-mail: Daniel.Costinett@utk.edu

- Email guestions will be answered within 24 hours (excluding weekends)
- Please use [ECE 482] in the subject line

Course Structure

- Scheduled for one lecture and one 3-hr lab session. per week
 - Lectures as needed; many weeks will have two lab sessions
 - Check course website often for schedule
- Theory is presented as necessary for practical design
- Additional theory may be presented in brief sessions during lab time
- Plan to spend 9-12 hours per week on course; mostly lab time

Textbook and materials

Portions of the Textbook

R.Erickson, D.Maksimovic, Fundamentals of Power Electronics, Springer 2001

will be used. The textbook is available on-line from campus network

- used; All installed in MK227 and in the Tesla Lab
- Lecture slides and notes, additional course materials, prelabs, experiments, etc. posted on the course website
- Lab kit is required (purchased from circuits store) in ~1-2
 - Price: \$100-150 per group
 - Additional resistors and capacitors, etc. purchased as needed
 - Need to buy any replacement parts

Grading

Group

- · Lab Completion and Reporting
 - 50% of total grade
 - Turn in one per group
- Labs will be complete in groups of 2-3
 - Choose groups by Tuesday, 1/19
- Late work will not be accepted except in cases of documented emergencies
- Due dates posted on website course schedule

Individual

- Pre-Lab Assignments
 - 15% of total grade
 - Turn in one per individual
- In-lab Demonstrations
 - 10% of total grade
 - Questions asked to each group member
- Midterm Exam
 - 15% of total grade
 - Open book/notes, in-class
 - Covers material from experiments
- Peer Evaluation
 - 10% of total grade

Use of Lab Time

- · Attendance is required during all lectures and scheduled lab time
 - Make use of designated time with Instructor present
 - Informal Q&A and end-of-experiment demonstrations
- Work efficiently but do not work independently
 - Understand all aspects of design
- · Outside of normal lab hours, key access will be granted (one per group)

Topics Covered

- Course Topics
 - Battery Modeling
 - Modeling and Characterization of AC Machines
 - DC/DC Converter Analysis and Design
 - Loss Modeling of Power Electronics
 - Basic Magnetics and Transformers
 - Feedback Loop Design
 - Layout of Power Electronics Circuits
 - Electric Motor Drivers
 - BLDC and PMSM Control Methods
 - System-Level Control Design

Design Expo

- No final exam
- Demo operational electric bicycles
- Competition to determine the most efficient and robust system

Electric Bicycle Safety and Law

- Traffic Law:
 - Electric motor with power output not more than 1000 W
 - Not capable of propelling or assisting at greater than 20 mph
- No helmet laws for riders over age 16; you may request one at any time
- Read Tennessee bicycle safety laws on website

General Safety

- Lab will work with high voltages (Up to 100 V)
- Will use various machinery with high power moving parts
- High temperatures for soldering
- Use caution at all times
- You may not work with electrical power alone in the lab
- No food or drink allowed in the lab

Safety training Requirements

- Log in to SkillSoft at https://oit2.utk.edu/cbt/login.php
- Once all training is completed print your Skillsoft Learner Records Progress Report and send it to Dr. Costinett
- Must complete with passing scores before Thursday 1/21

Close this window

Learner Records Progress Report: COMPLETED

Title	ID	Last Accessed	First Accessed	Completed	Current	
Workplace Safety Orientation	esh_sah_a65_sh_enus	Aug 15, 2014	Aug 15, 2014	Aug 15, 2014	100	100
Lockout/Tagout for Authorized Persons	esh_sah_a08_sh_enus	Aug 20, 2014	Aug 15, 2014	Aug 15, 2014	89	89
Hazard Communication: An Employee's Right to Know	esh_sah_b23_sh_enus	Aug 15, 2014	Aug 15, 2014	Aug 15, 2014	100	100
PPE: Eye and Face Protection	esh_sah_a68_sh_enus	Aug 15, 2014	Aug 13, 2014	Aug 15, 2014	100	100
Electrical Safety	esh_sah_b15_sh_enus	Aug 15, 2014	Aug 15, 2014	Aug 15, 2014	100	100
Portable Fire Extinguishers	esh_sah_a42_sh_enus	Aug 14, 2014	Aug 14, 2014	Aug 14, 2014	100	100
Job Hazard Analysis	esh_sah_b29_sh_enus	Aug 13, 2014	Aug 13, 2014	Aug 13, 2014	100	100
NFPA 70E Electrical Safety in the Workplace 2012 Edition	esh_sah_a78_sh_enus	Aug 15, 2014	Aug 13, 2014	Aug 13, 2014	99	100
Course Completions: 8						

TENNESSEE T

Introduction to Battery Modeling

THE UNIVERSITY OF TENNESSEE

Cell Equivalent-Circuit Models

Objective:

Dynamic circuit model capable of predicting cell voltage in response to charge/discharge current, temperature

Further key techniques discussed in [Plett 2004-Part 2] and [Plett 2004-Part 3]

- Model parameters found using least-square estimation or Kalman filter techniques based on experimental test data
- Run-time estimation of state of charge (SOC)

Approach: Pulsed current tests

TENNESSEE T

```
Battery Capacity and C-rate

• Known beforehand:

— Noninal Capacity: 10 Airhr

Noninal Voltage: 25.9V

Maximum discharge rate: 1.9C -> 19A

Maximum charge rate: 0.2 c -> 2A

Maximum charge rate: 1.9C -> 19A

The Exp 1 doing use more than 10A

The Exp 1 doing use more than 10A
```


$$\lambda_a(\theta_r) = \lambda_m \sin(\theta_r)$$

$$\lambda_b(\theta_r) = \lambda_m \sin\left(\theta_r - \frac{2\pi}{3}\right)$$

$$\lambda_c(\theta_r) = \lambda_m \sin\left(\theta_r - \frac{4\pi}{3}\right)$$

 $\lambda_c(\theta_r) = \lambda_m \sin\left(\theta_r - \frac{4\pi}{3}\right)$ If to the iteration out of phase simpoids

$$T_{m} = i_{a} \lambda_{m} \omega_{r} \cos \left(\theta_{r}\right) + i_{b} \lambda_{m} \omega_{r} \cos \left(\theta_{r} - \frac{2\pi}{3}\right) + i_{c} \lambda_{m} \omega_{r} \cos \left(\theta_{r} - \frac{4\pi}{3}\right)$$

