

4
State Plane Analysis of DAB Converter
(1)
(II)

$$
\begin{aligned}
& \frac{\left(I_{1}+\Gamma_{1}\right)}{t_{2} \omega_{0}}=\frac{2 \sqrt{y_{y}}}{L_{1} \omega_{0}} \\
& \frac{(I+I)}{B}=\frac{2 V_{g}}{4 \cdot \sqrt{14 \theta}}=\frac{2 V_{g}}{R_{0}}
\end{aligned}
$$

(11)

$$
\begin{aligned}
& \begin{array}{l}
\left.J_{2}+J_{1}=2 \beta\right] 5 \\
\delta^{\prime}=\sin ^{-1}\left(\frac{2 n t}{J^{\prime}}\right) \\
J_{S}^{\prime}=\sqrt{(2 n t)^{2}+J_{2}^{\prime 2}} \quad \text { anolei }
\end{array}
\end{aligned}
$$

(1) $\rightarrow x$

$$
\begin{aligned}
& \text { Averaging Step } \\
& n_{t}\left\langle i_{\text {alt }}\right\rangle=\frac{2}{T_{s}} \int_{0}^{n_{s} / 2} i_{\omega \alpha}(t) d t=\frac{2}{T_{s}}\left[q_{1}+q_{2}+f_{3}+q_{4}\right] \\
& \frac{1}{I_{\text {er }}} \eta_{r}\left\langle L_{\text {ar }}\right\rangle=\frac{2}{T_{s}}\left[2 C_{p} V_{g}+t_{2} \frac{I_{1}-I_{2}}{2}+\phi+t_{4} I_{p}\right] \cdot \frac{1}{I_{\text {Base }}}
\end{aligned}
$$

$$
\begin{aligned}
& J=2 f_{5}\left[\frac{2}{\omega_{0}}+t_{2} \frac{s_{1}-s_{2}}{2}+t_{4} J_{p}\right] \cdot \frac{\omega_{0}}{\omega_{0}} \\
& J=\frac{1 f_{s}}{2 \pi f_{0}}\left[2+\beta \frac{s_{1}-s_{2}}{2}+\ell_{p}\right] \\
& J=\frac{F}{\pi}\left[2+\frac{\beta}{2}\left(J_{1}-J_{2}\right)+h_{\sim} J_{p}\right] \\
& \uparrow
\end{aligned}
$$

Output Plane

$$
\begin{aligned}
& J=\frac{n\left\langle i_{\text {out }}\right\rangle}{I_{\text {base }}}=\frac{F}{\pi}\left[2+\frac{1}{4}\left(J_{1}^{2}-J_{2}^{2}\right)+J_{p}\left(\frac{\pi}{F}-\alpha-\beta-\delta\right)\right] \leftharpoonup \downarrow \\
& F \equiv \frac{f_{s}}{f_{0}} \\
& F \rightarrow 1 \quad t_{0}=f_{s} U \\
& F \rightarrow 0 \text { fo } \gg f_{s} t \\
& \text { aus os very fast witt ts }
\end{aligned}
$$

Selection of Tank Inductance

- State plane analysis gives equation of the form:

$$
P_{\text {out }}=f\left(C_{l}, C_{p}, C_{s}, f_{s}, U_{0}\right) \longleftarrow=f\left(\text { daish, } J_{p}\right)
$$

- If we select some minimum power $P_{\text {min }}$ for ZVS design to place ZVS boundary $\left(J_{p}=2\right)$, at $P_{\text {min }}$ $P_{\text {min }}=f\left(L_{l}\right.$, devices, $\left.f_{s}\right)$
- From resulting equation, L_{I} determined from converter devices, application requirements, and placement of ZVS boundary
- Now select devices for minimum loss in converter

Selecting MOSFETs for DAB

150 V FETS 12 V FETS									
Device Variant	Type	$\begin{gathered} r_{o n} \\ {[\mathrm{~m} \Omega]} \end{gathered}$	$\begin{gathered} C_{\text {oss }} \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} Q_{g} \\ {[\mathrm{nC}]} \end{gathered}$	Device Variant	Type	$\begin{gathered} r_{o n} \\ {[\mathrm{~m} \Omega]} \end{gathered}$	$\begin{gathered} C_{\text {oss }} \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} Q_{g} \\ {[\mathrm{nC}]} \end{gathered}$
EPC1012	GaN 2	70	80	1.9	EPC1014	GaN	12.0	150	3.0
EPC1010	GaN	18	310	7.5	EPC1015	GaN	3.2	575	11.6
FDMS2672	MOS 7	64	95	30	CSD16325Q5C	MOS	1.7	2190	18.0
IPD320N	MOS	S. 35	135	12.0	STD60N3LH5	MOS	8.8	265	8.8
IRFS4020	MOS	85	91	18.0	CSD16411Q3	MOS	12.0	330	2.9

- Representative sample of HV and LV devices, including Si and GaN devices
- Above $P_{\text {min }}$, all devices have no switching loss, so efficiency only depends on conduction losses

$$
P_{\text {cond }}=P_{\text {cond }, p}+P_{\text {cond }, s}=2 r_{\text {on }, p} i_{g, r m s}^{2}+2 r_{\text {on,s }} i_{\text {out,rms }}^{2}
$$

Selecting MOSFETs for DAB

150 V FETS					12V FETS				
Device Variant	Type	$\begin{gathered} r_{o n} \\ {[\mathrm{~m} \Omega]} \end{gathered}$	$\begin{gathered} C_{p} \\ {[\mathrm{pF}]} \\ \hline \end{gathered}$	$\begin{gathered} Q_{g} \\ {[\mathrm{nC]}]} \\ \hline \end{gathered}$	Device Variant	Type	$\begin{gathered} r_{o n} \\ {[\mathrm{~m} \Omega]} \end{gathered}$	$\begin{gathered} C_{s} \\ {[\mathrm{pF}]} \\ \hline \end{gathered}$	$\begin{gathered} Q_{g} \\ {[\mathrm{nC}]} \\ \hline \end{gathered}$
EPC1012	GaN	70	8	- 9	EPC1014	GaN	12.0	241	
EPC1010	GaN	18			EPC1015	GaN	3.2	000	
FDMS2672	MOS	64	177	30	CSD16325Q5C	MOS	7	3200	18.0
IPD320N	MOS	35	379	12.0	STD60N3LH5	MOS	8.8	713	8.8
IRFS4020	MOS	85	140	18.0	CSD16411Q3	MOS	12.0	486	2.9

- Representative sample of HV and LV devices, including Si and GaN devices
- Above $P_{\text {min }}$, all devices have no switching loss, so efficiency only depends on conduction losses
- Initial conclusion is to select lowest $r_{o n}$ devices
- Can solve analytical loss model from state plane analysis

- Analysis predicts that optimal selection consists of lowest C_{p} primary device and lowest $r_{\text {on }}$ secondary device

\square
 Device Loss Comparison: 150-12 V

DAB: Experimental Results

D. Costinett, H. Nguyen, R. Zane, and D. Maksimovic, "GaN-FET based dual active bridge DC-DC converter," in Proc. Appl. Power Electron. Conf. (APEC), march 2011, pp. 1425-1432.
D. Costinett, D. Maksimovic, and R. Zane, "Design and control for high efficiency in high step-down dual active bridge converters operating at high switching frequency," IEEE Trans. Power Electron., vol. PP, no. 99, p. 1, 2012.

Linear Model Comparison to Simulation

- At high output power and low switching frequency, square wave model of DAB converter accurately predicts behavior of full circuit simulation

High Frequency, Low Power Operation

- At low output power and high switching frequency, square wave model is poor fit to circuit behavior
- Effect of switching transitions need to be considered

Application Example: Automotive

Efficiency Results

Fig. 12. (Solid lines) Predicted efficiencies and (\square) measured efficiencies for different operating conditions. The efficiencies are calculated with the improved DAB loss model which includes all methods discussed in Section IV.

Alternate Modulation Schemes

