Announcements

- No Lecture Wednesday (& Friday)
- Design Competition Begins Today

Competition Specifications

The winning converter will be the unit which achieves the highest power density, i.e. fits in the smallest rectangular volume, while meeting the following specifications.

Parameter	Requirement	Comment
Voltage Input	60 Vdc, 10Ω series resistor	
Maximum Output Power	60 W	
Output Voltage	12 ± 1 Vdc	
Input Ripple Current	< 5%	Measured as I_{pk-pk}/I_{avg} from the DC supply, in steady state, at full output power
Output Ripple Voltage	< 2%	Measured as $V_{pk,pk}/V_{avg}$ from the DC supply, in steady state, at full output power
TPE Efficiency	> 90%	Measured using TPE method ¹
No-load Power Loss	< 3W	Measured with load disconnected, but output voltage within specified range
Volume	< 6 in ³	Volume of minimum rectangle enclosing power stage

¹Tennessee Power Electronics (TPE) efficiency is a weighted power efficiency defined as:

 $\eta_{TPEF} = 0.1\eta_{Po=15W} + 0.15\eta_{Po=30W} + 0.25\eta_{Po=45W} + 0.5\eta_{Po=60W}$

Additional Details

- Full competition specifications and example testing report on course webpage
- No regulation requirements
- First Deliverable: Monday October 17th
 - Design comparison of 4 topologies

Magnetics Losses

Physical Origin of Core Loss

- Magnetic material is divided into "domains" of saturated material
- Both Hysteresis and Eddy Current losses occur from domain wall shifting

Direction of magnetization in saturated domains: ↑↑↑↑ ↓↓↓↓↓ Direction of domain wall movement: →

Reinert, J_{\cdot} Brockmeyer, A_{\cdot} De Doncker, $R.W_{\cdot}$, "Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation,"

Inductor Core Loss

 Governed by Steinmetz Equation:

 $P_v = K_f (f_s)^{\alpha} (\Delta B)^{\beta} \text{ [mW/cm}^3]$

• Parameters K_{fe} , α , and β extracted from manufacturer data

$$P_{fe} = P_v A_c l_m \text{ [mW]}$$

Only valid for sinusoidal waveforms

ntera, b ran

TENNESSEE 7

Steinmetz Parameter Extraction

TENNESSEE TENNESSEE

Non-Sinusoidal Waveforms

- Modified Steinmetz Equation (MSE)
 - "Guess" that losses depend on $^{dB}/_{dt}$
 - Calculate $\langle {}^{dB}/{}_{\underline{dt}} \rangle$ and find frequency of equivalent

sinusoid

Fig. 8. Comparison between measurement and calculation as a function of

Reinert, Brockmeyer, and Doncker, 1999

Additional Approaches

 History of Core Loss Approximation Techniques:

https://engineering.dartmouth.edu/inductor/Sullivan APEC 2012 core loss %20overview with references.pdf

• Seminar on magnetic loss modeling:

https://www.pes.ee.ethz.ch/uploads/tx ethpublications/APEC20 12 MagneticTutorial.pdf

THE UNIVERSITY OF TENNESSEE

Minimization of Losses

Total Loss
Core Loss
Copper Loss

Number of Turns

