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Announcements

* No Lecture Wednesday (& Friday)
e Design Competition Begins Today

e
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Competition Specifications

The winning converter will be the unit which achieves the highest power density, i.e. fits
in the smallest rectangular volume, while meeting the following specifications.

Parameter Requirement Comment

Voltage Input 60 Vdc, 10 Q series resistor

Maximum Output Power 60 W

Output Voltage 12+ 1Vde

Il’lpllt Rlpple Current <5% Measured as 7,,/1,,, from the DC supply, in
steady state, at full output power

Output Rlpple Voltage <2% Measured as ¥,/ ¥, from the DC supply, in
steady state, at full output power

TPE Efﬁciency >90% Measured using TPE method'

No-load Power Loss <3W Measured with load disconnected, but output
voltage within specified range

Volume <61in3 Volume of minimum rectangle enclosing power
stage

ITennessee Power Electronics (TPE) efficiency is a weighted power efficiency defined as:

Nrper = 0.1Mpo=15w + 0.150po=30w + 0.250pg=asw + 0.51po=gow
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Testing Setup
)
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How Volume is Measured

External Signal Connections

External Power Connections

External Test Points

< Maximum PCB Area
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Schedule

--

(e,

Additional Details

* Full competition specifications and example
testing report on course webpage

* No regulation requirements

P

* First Deliverable: Monday October 17t

— Design comparison of 4 topologies
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Magnetics Losses

Physical Origin of Core Loss

¢ Magnetic material is divided into “domains” of saturated material
¢ Both Hysteresis and Eddy Current losses occur from domain wall shifting
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Direction of magnetization in saturated domains: #4444 +44¢
Direction of domain wall movement. —
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Inductor Core Loss

* Governed by Steinmetz
Equation:

P, = ngfsf(AB)ﬁ [MW/cm?3]

* Parameters K., a, and
extracted from

manufacturer data

Pfe = B Acly [mW]

* Only valid for sinusoidal
waveforms

10

Minor B-H loop, —|
Sfilter inductor

B-H loop,

, large excitation

TENNESSEE [py

KNOXVILLE

Steinmetz Parameter Extraction
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Fig.7  Specific power loss for several
Fig.6 Specific power loss as a function of peak frequency/flux density combinations
flux density with frequency as a parameter. as a function of temperature.
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Non-Sinusoidal Waveforms

* Modified Steinmetz Equation (MSE)
— “Guess” that losses depend on 48/,
— Calculate (*B/,,) and find frequency of equivalent
sinusoid - | |

—*—measurement
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Fig. 8. Comparison between measurement and calculation as a function of
duty cycle.
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Reinert, Brockmeyer, and Doncker, 1999

NSE/iGSE
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where [ is the operating frequency; i A ':.;.qa-—"r'- it S by
AB /2 is the peak induction; 50
D is the duty ratio of the square wave voltage.
Note: The second and third harmonics are dominant at 0
moderate values of duty ratic 2. For extreme values of D 05 08 o7 D 08 09 1

(95%), a higher value of & could give better matching to
the actual losses.

Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.; , "Measurement and loss model of ferrites with non-sinusoidal waveforms,” THE UNIVERSITY OF

K. Venkatachalam; C. R. Sullivan; T. Abdallah; H. Tacca, “Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only TENNESSEE I
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Additional Approaches

* History of Core Loss Approximation
Techniques:

https://engineering.dartmouth.edu/inductor/Sullivan APEC 2012 core loss
%20overview with references.pdf

* Seminar on magnetic loss modeling:

. https://www.pes.ee.ethz.ch/uploads/tx ethpublications/APEC20
12 MagneticTutorial.pdf
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Minimization of Losses

—— Total Loss

—— Core Loss
—— Copper Loss

Power Loss [mW]

Number of Turns
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Spreadsheet Design
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Matlab (Programmatic) Design

function [n, lg, Pqgl, Pg2, Pl, eta, Cmin ] = TestBoostDesign(Pmax, fs, L, dt, core geom, core mat, MOSFET)
E%Testjoms:DEsign calculate boost conveter efficiency and temperature rise
%for various designs

L3 fs = switching frequency (in Hz)

L] L = inductance (in Henries)

% n = number of turns on inductor

% dt = switching dead time (in seconds)

% core geom = core geometry, chosen from 'EFD25', 'ETD28', 'ETD39', 'ETD44', or 'ETD49'

% core_mat = core material, chosen from '3F3', '3C90', or '3F4'

%

r%

MOSFET = MOSFET selection, chosen from 'A0T', 'FDP', 'IPP2', 'IRF',

'CSD' or 'IPFO'

* Matlab, or similar, permits

Vout = 50;

Yout — Pma/ouc more powerful iteration and

Ts = 1/fs;

e plotting/insight into design

variation

rho = 1.724e-6; %onms*cm
Fu0 = 4*pi*le-7;

-1%% Indoctor Datasheet Parameters
switch core_geom
- case 'EFD25'
MLT = 46.4; Imm
Ac = 58; 3Imm"2
Ve = 3300; %mm"3
r Wa = 40.2; %nm"2
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Planar Inductors

o iR

{

(1
1%
13
{
{
i
M
1
i
|

THE UNIVERSITY OF

TENNESSEE 9Y

10



