Modulation Signal Board

• Mates on Mojo v3 (stacked headers)
• 4-pin (male) header connections
• Layout in Altium starter package on course website

Deliverables Next Wed.

• Login info to account with PCB layout that has passed Sierra Circuits’ AFV with
 – 6 mil spacing – 2 boards
 – 15 mil holes – Up to 6 layers
 – 4-day turn
• Excel spreadsheet of all parts, showing $150 requirements met
• Actionable ordering links/quotes for all parts
Output Characteristic

Transfer Function in Standard Form

\[H(s) = \frac{R_C}{R_C + sL + \frac{1}{sC}} = \frac{R_sC}{\omega_sC + sL + \frac{1}{sC}} + 1 = \frac{s}{\omega_sC} + \frac{s}{\omega_sC} + 1 \]

\[R_0 = \sqrt{\frac{L}{C}} \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

\[Q_e = \frac{R_0}{R_C} \]

\[Q_e\omega_0 = \frac{1}{R_C} + \frac{1}{\omega_0} = \frac{1}{\omega_0} \]

\[F = \frac{F}{F_0} = \frac{\omega}{\omega_0} \]

\[H(s) = \frac{\omega_sC}{\omega_sC + sL + \frac{1}{sC}} \]

\[\left(1 - F^2\right) \frac{F}{\omega_0} + \frac{F^2}{Q_e^2} = \frac{\omega_sC}{\omega_sC + sL + \frac{1}{sC}} \]

\[\left(1 - F^2\right) + \frac{F^2}{Q_e^2} \]
Series Resonant Tank

$E_{in} = E_{in}$ \(R_e \to \text{Short} \)

$E_{in} = E_{in}$ \(R_e \to \text{Open} \)

As \(R_e \) goes from zero to \(\infty \),

\(Z_l \) increases

\(\to \) Good!

\(\to \) Conduction losses decrease at low \(P \).
Subharmonic Modes - High Q

Subharmonic Modes – Low Q

Control by
switching frequency modulation

Voltage-controlled oscillator