Announcements

- Tiny Box Competition
 - Begins today
 - Form teams of 2-3
 - First assignment is individual
- Midterm
 - Tentatively Nov 5-9

Competition Specifications

The winning converter will be the unit which achieves the highest power density, i.e. fits in the smallest rectangular volume, while meeting the following specifications.

Parameter	Requirement	Comment
Voltage Input	48 Vdc	
Maximum Output Power	12 W	
Output Voltage	$1.2 \pm 0.1 \mathrm{Vdc}$	
Output Ripple Voltage	< 2%	Measured as $V_{pk,pk}/V_{avg}$ from the DC supply, in steady state, at full output power
TPE Efficiency	> 85%	Measured using TPE method ¹
No-load Power Loss	< 3W	Measured with load disconnected, but output voltage within specified range
Volume	< 6 in ³	Volume of minimum rectangle enclosing power stage

¹Tennessee Power Electronics (TPE) efficiency is a weighted power efficiency defined as:

 $\eta_{TPEF} = 0.1\eta_{P_{out}=0.25 \cdot P_{max}} + 0.15\eta_{P_{out}=0.5 \cdot P_{max}} + 0.25\eta_{P_{out}=0.75 \cdot P_{max}} + 0.5\eta_{P_{out}=P_{max}}$

Example Applications

How Volume is Measured

Additional Details

- Full competition specifications and example testing report on course webpage
- No regulation requirements
- First Deliverable: Friday October 26th
 - Design comparison of 3 topologies
 - Due per individual
 - All other deliverables as a team

Design and Comparison Report (10/26)

- 1. Select three topologies from the table and compare based on
 - I. Efficiency at full power
 - II. Power loss at zero load
 - III. Output voltage ripple
 - IV. Volume of main passive components

	Class I	Class II	Class III	Class IV
Definition	Two-switch PWM topologies	Isolated variants of PWM topologies	AC-link topologies	Any topology not conforming to Class I-III
Examples	Buck, Boost, Buck- Boost, Cuk, SEPIC, etc.	Flyback, Forward, push-pull, half- bridge, full-bridge	DAB, DAHB, SRC, LLC, Full Bridge, etc.	Switched capacitor, sigma-delta, multilevel, etc.
Required number			<mark>ا</mark> د	≥ ₁

- 2. Select (and justify) one topology, and provide a complete design including (but not limited to)
 - I. Power Devices
 - II. Gate Driver Circuitry
 - III. Passive Devices and implementation
 - IV. Switching Frequency

Modulation Signal Board

- FPGA + PWM isolation
 - 4 low-side (common ground)
 - 4 high-side (isolated grounds)
- Reference code to generate open-loop PWM signals
- Layout in Altium starter package on course website

Schedule

Select teams of 2-3 M 10/15
Paper Design and Comparison F 10/26
PCB Layout and BOM F 11/2
Testing Report F 11/30

Course Schedule				
L 24 - Oct. 22	L25 - Oct. 24	L26 - Oct. TBC Desig		
2 7 - Oct. 29	L28 - Oct. 31	L29 - Nov. <i>TBC PCB</i>		
L 30 - Nov. 5	L31 - Nov. 7	L32 - Nov.		

TENNESSEE

26

DAB: Transformer Saturation

TENNESSEE TENNESSEE

Series Resonant Converter

R. Lenke, F. Mura and R. W. De Doncker, "Comparison of non-resonant and super-resonant dual-active ZVS-operated high-power DC-DC converters,'

high-power DC-DC converters,'

DAB vs SRC: Conclusions

- + Smaller resonant tank
- + Smaller RMS currents
- + Wider Soft-switching range

SRC

- + Can be designed with larger XF inductance
- + Lower AC winding losses
- + Reduced device turn-off losses

high-power DC-DC converters,"

