Series Resonant Converter

Subinterval Equivalent Circuits

Assumptions:
- \(V_{in} = nV_g \)
- Devices are ideal → no parasitic effects
Complete State Plane – Phase Shift Modulation

\[r_2^2 = (2r m_2)^2 + s_2^2 = (2r m_2)^2 + s_2^2 \]
\[\beta = \tan^{-1}\left(\frac{s_2}{2r m_2}\right) + \tan^{-1}\left(\frac{3s_2}{2r m_2}\right) \]

\[r_1^2 = m_1^2 + s_1^2 = m_1^2 + s_1^2 \]
\[\alpha = \tan^{-1}\left(\frac{m_1}{3s}\right) + \tan^{-1}\left(\frac{m_1}{3s}\right) \]

\[m_1^2 + s_1^2 = m_2^2 + s_2^2 \]
\[y + m_1^2 + y m_1 + s_1^2 = y + m_2^2 + y m_2 + s_2^2 \]
\[-y - y m_1 = -y - y m_1 \]
\[-y - y m_1 = -y - y m_1 \]

\[M_1 = M_2 \]
\[x = \beta \]
\[z = s_2 \]
Averaging Step

\[n \langle i_{out} \rangle = \frac{1}{T_5} \int_{0}^{T_5} i_c(t) \, dt \]

\[= \frac{2}{T_5} \left[B_1 + B_2 \right] \]

\[= \frac{2}{T_5} \left[C_r \left(\frac{V_1 + V_2}{2V_1} \right) + C_r \left(\frac{V_1 - V_2}{2V_1} \right) \right] \]

\[\approx \frac{2}{T_5} 2C_r V_1 \]

\[J = \frac{\pi \langle i_{out} \rangle}{2V_0} = \frac{2}{T_5} \frac{2C_r V_1}{V_0} \sqrt{\frac{V_0}{C_r}} = \frac{E}{\pi} \frac{2M_1}{2} = J \]

Complete Solution

\[J = \frac{E}{\pi} 2M_1 \]

\[\alpha = 2 \tan^{-1} \left(\frac{m_1}{3} \right) \]

\[\beta = 2 \tan^{-1} \left(\frac{3}{2 + m_1} \right) \]

\[\tan \left(\frac{\alpha}{2} \right) = \frac{3}{2 + m_1} \]

\[\tan \left(\frac{\beta}{2} \right) = \frac{3}{2 + m_1} \]

\[M_1 = \frac{\tan \left(\frac{\alpha}{2} \right) \tan \left(\frac{\beta}{2} \right)}{2 + m_1} \]

\[M_1 = \frac{2 \tan \left(\frac{\alpha}{2} \right) \tan \left(\frac{\beta}{2} \right)}{1 - \tan \left(\frac{\alpha}{2} \right) \tan \left(\frac{\beta}{2} \right)} \]

\[J = \frac{E}{\pi} 2 \left(\frac{2 \tan \left(\frac{\alpha}{2} - \frac{\beta}{2} \right) \tan \left(\frac{\beta}{2} \right)}{1 - \tan \left(\frac{\alpha}{2} \right) \tan \left(\frac{\beta}{2} \right)} \right) \]

\[\text{Det} = r_1 = \sqrt{M_1^2 + J^2} \]
SRC Control Trajectory

SRC Current Stress