Converter Topologies

Resonant (AC-link)

QSW & QR Converters

PWM (small ripple)

Converter Analysis

Sinusoidal Analysis

State Plane

QSW & QR Converters

Averaging

(waveform, switch, state space)

Converter Topologies

Converter Analysis

Major Remaining Topics in ECE 581

- Switched Capacitor Converters
- Discrete Time Modeling

SWITCHED CAPACITOR CONVERTERS

Switched Capacitor Converters

R. Pilawa Podgurski, "Extreme Power Density Converters - Fundamental Techniques and Selected Applications"

A 2:1 SC Converter

SC Converters

- Fixed conversion ratio
 - No regulation (except linear)
- Not lossless, even with ideal elements
- Can be very small, fully integrated
- Resonant versions can reduce loss
- Hybrid versions can allow regulation

Capacitor Charging: Voltage Source

Capacitor Charging: Current Source

Capacitor Charging: Resonant

Comparison of Capacitor Charging