
## **Capacitor Charging: Resonant**



THE UNIVERSITY OF TENNESSEE

$$E_{\Omega} = \frac{nRC}{2} \frac{\left(V_2 - V_1\right)^2}{4Ro} = \frac{Rr}{4Ro} \left[ \frac{1}{2}C\left(V_2 - V_1\right)^2 \right]$$

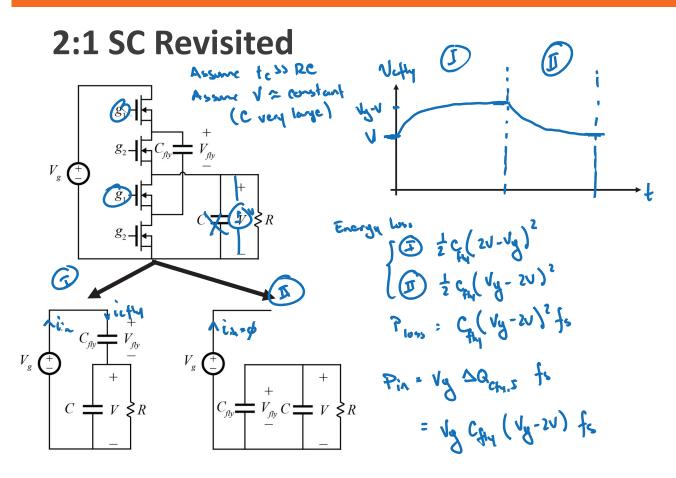
$$\frac{Rr}{4Ro} = \frac{Rr}{4\frac{1}{Cuo}} = \frac{RC\pi}{4\left(\frac{\pi}{te}\right)} = \frac{\pi^2}{4\frac{RC}{te}}$$

$$E_{\Omega} = \frac{\pi^2}{4\frac{RC}{te}} \left[ \frac{1}{2}C\left(V_2 - V_1\right)^2 \right]$$

$$E_{\Omega} = \frac{\pi^2}{4\frac{RC}{te}} \left[ \frac{1}{2}C\left(V_2 - V_1\right)^2 \right]$$

## **Comparison of Capacitor Charging**

Cap charged from 
$$V_1$$
 to  $V_2$  in time to


Elow

Voltage

 $E_{cv} = \frac{E_{low}}{2c(V_2 - V_1)^2}$ 
 $E_{cv} = \frac{1}{2} \frac{1}{2}$ 

High - Q resonance





## **Equivalent Circuit Model**