2:1 Converter Charge Vector Analysis

Dickson Charge Vector Analysis

Charge Vector Analysis in FSL

DISCRETE TIME MODELING

TENNESSEE TENNESSEE

Converter Analysis

Switched Circuits

Historical Perspective

Robert D Middlebrook PhD, Standford, 1955 CalTech Professor, 1955-1998

Slobodan Cúk PhD CalTech, 1976 CalTech Prof, 1977-1999

> Modelling, analysis, and design of switching converters

Model a switched system as an averaged, time-invariant system with

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

where

 $A = DA_1 + D'A_2$ $B = DB_1 + D'B_2$

Large Signal Modeling of SMPS: Averaging

TENNESSEE KNOXVILLE

Linear Circuit Modeling Using State Space

Switching Signal

Converting to Linear System

Approximate Steady State Waveforms

Approximate Steady State Waveforms

$$\langle x(t) \rangle = \frac{1}{T_s} \int_0^{T_s} x(t) dt$$

Approximate Steady State Waveforms

The Averaging Approximation

The Averaged System

TENNESSEE KNOXVILLE

Buck State Space Averaging

Buck Averaged Model

