Steady-State Large-Signal Analysis

$$\boldsymbol{x}(T_{S}) = \left(\prod_{i=n_{SW}}^{1} e^{A_{i}t_{i}}\right) \boldsymbol{x}(0) + \sum_{i=1}^{n_{SW}} \left\{ \left(\prod_{k=n_{SW}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

In steady-state, $\mathbf{x}(T_s) = \mathbf{x}(0)$

$$\boldsymbol{x}(T_{S}) = \left(I - \prod_{i=n_{SW}}^{1} e^{A_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{SW}} \left\{ \left(\prod_{k=n_{SW}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

Gives explicit solution for steady-state operation of any switching circuit

TENNESSEE KNOXVILLE

Small Signal Modeling

Small Signal Modeling

Small Signal Modeling

Complete Small Signal Model

This completes the small-signal model

$$\widehat{\boldsymbol{x}}[n+1] = \boldsymbol{\Phi}\widehat{\boldsymbol{x}}[n] + \boldsymbol{\Psi}\widehat{\boldsymbol{u}}[n] + \boldsymbol{\Gamma}\widehat{\boldsymbol{d}}[n]$$

where

$$\boldsymbol{\Gamma} = e^{A_2 D' T_s} \big((A_1 - A_2) X_D + (B_1 - B_2) U \big) T_s$$

with $X_D = x(DT_s)$ in steady-state

L. Corradini et. al. Digital Control of High Frequency Switched-Mode Power Converters, Section 3.2

Inclusion of Delay

Current Control

Discrete Time Analysis: Results

$$\boldsymbol{X}_{ss} = \left(I - \prod_{i=n_{sw}}^{1} e^{A_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{sw}} \left\{ \left(\prod_{k=n_{sw}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

- Valid for any switched circuit, as long as
 - 1. Inputs, *U*, are constant or slowly varying
 - 2. All times t_i are known
 - 3. Every subinterval can be described by a linear circuit
- Requires no dedicated analysis other than finding $m{A}_i$ and $m{B}_i$
- Decisively not a design-oriented equation

TENNESSEE TENNESSEE

Example: DAB Design Using Dedicated Analysis

- Design of a high step-down DAB for Data Centers
- 150-to-12V, 120 W, 1MHz, design
- Prototype achieved 98.4% peak efficiency

DAB Topology

- Near-DCX Operation
- Phase-shift modulation to control power flow
- Zero-voltage switching of all devices at high power

THE UNIVERSITY OF TENNESSEE TENNESSEE

Linear Averaged Modeling of DAB

- Modeling $\dot{x_i}$ as constant within any subinterval, waveforms are PWL
- Can solve low-frequency behavior from waveforms

$$\left\langle i_{o}\right\rangle \Big|_{T_{s}} \approx \int_{0}^{T_{s}} \frac{i_{o}(t)dt}{T_{s}} = \frac{v_{g}(t)}{n_{t}L_{l}T_{s}} \left(T_{s}t_{\varphi} - 2t_{\varphi}^{2}\right)$$

DAB Operated at High Frequency

- Resonance between *L₁* and transistor capacitance distorts waveforms
- Resonance may need to be modeled when operating at high frequency

DAB Waveforms

Linear Waveform Approximation

TENNESSEE TENNESSEE

Linear Waveform Approximation

Second Order Approximation

TENNESSEE

Second Order Approximation

State Plane Analysis of DAB Converter

State Plane Solution

Different Operating Modes

- As control, input and load vary, operating mode changes
- · In each mode, solution is a set of transcendental equations

State Plane Analysis Characteristics

For analysis

- State plane analysis is simple and intuitive
- Plots give insight into converter operation
- Easy to write equations for single parameter of interest

For Design

• Complete solution is not solvable in closed-form

TENNESSEE

- No loss mechanisms included inherently
- Can only be computed, inverted numerically
- Design intuition comes only from repeated numerical evaluation

Different Operating Modes

TENNESSEE KNOXVILLE

Discrete Time Model Validation

D. Costinett, R. Zane, and D. Maksimovic, "Discrete-time small-signal modeling of a 1 MHz efficiency-optimized dual active bridge converter with varying load," in Proc. IEEE Workshop Contr. Modl. (COMPEL), june 2012, pp. 1–7.

Discrete Time Dynamic Model Validation

D. Costinett, R. Zane, and D. Maksimovic, "Discrete-time small-signal modeling of a 1 MHz efficiency-optimized dual active bridge converter with varying load," in Proc. IEEE Workshop Contr. Modl. (COMPEL), june 2012, pp. 1–7.

Different Operating Modes

$$\boldsymbol{X}_{ss} = \left(I - \prod_{i=n_{sw}}^{1} e^{\boldsymbol{A}_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{sw}} \left\{ \left(\prod_{k=n_{sw}}^{i+1} e^{\boldsymbol{A}_{k}t_{k}}\right) \boldsymbol{A}_{i}^{-1} (e^{\boldsymbol{A}_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

TENNESSEE

Applications of Analysis

- Dedicated analysis (e.g. State Plane) useful to obtain detailed knowledge of circuit operation
 - Effort required precludes consideration of broad range of vastly different designs
 - In complex, high-performance circuits, result is often still not "invertible"
- Discrete time analysis is general, and requires no dedicated analysis
 - Can we get the same level of design intuition
 - By supplementing with dedicated analysis
 - By using computational design

Analytical Approach: Selective Linearization

Model ZVS as Disturbance

Consider how model takes transition into account:

$$\boldsymbol{\Phi} = e^{\mathbf{A}_3 t_3} e^{\mathbf{A}_2 t_2} e^{\mathbf{A}_1 t_1} \boldsymbol{I}_{HC}$$

where

$$\widehat{\boldsymbol{x}}(t_1) = \boldsymbol{e}^{\mathbf{A}_1 \boldsymbol{t}_1} \widehat{\boldsymbol{x}}(t_0)$$

with $\mathbf{A}_1 \in \Re^{3x3}$

Using dedicated analysis, solve new matrix $\mathbf{A}_{res} \in \Re^{2x^2}$ which models how ZVS transition affects states at $t=t_1$

Resonant Transition Matrix

Eliminating resonant interval reduces system to second order, $\mathbf{x} = [i_l \ v_{out}]^T$ New matrix takes the form

$$\boldsymbol{A_{res}} = \begin{bmatrix} \frac{\partial v_{out}(t_1)}{\partial v_{out}(0)} & \frac{\partial v_{out}(t_1)}{\partial i_l(0)} \\ \frac{\partial i_l(t_1)}{\partial v_{out}(0)} & \frac{\partial i_l(t_1)}{\partial i_l(0)} \end{bmatrix}$$

Linearized with respect to x(0), rather than time

Resonant Interval Solution

Linearized relations solved using circuit analysis

$$\begin{split} \frac{\Delta\lambda}{\Delta I} &= L_l - L_l \sqrt{1 - \left(\frac{2V_g}{R_0 I_0}\right)^2} \quad, \\ \frac{\Delta Q}{\Delta I} &= \frac{2V_g C_p}{I_0} \,\,, \end{split}$$

Relationships vary depending on operating mode

Linearized Result

Assuming small ripple on V_{out}

$$\boldsymbol{A}_{res} = \begin{bmatrix} \frac{\partial v_{out}(t_1)}{\partial v_{out}(0)} & \frac{\partial v_{out}(t_1)}{\partial i_l(0)} \\ \frac{\partial i_l(t_1)}{\partial v_{out}(0)} & \frac{\partial i_l(t_1)}{\partial i_l(0)} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\Delta Q}{\Delta I} \frac{1}{C_{out}} \\ 0 & 1 - \frac{\Delta \lambda}{\Delta I} \frac{1}{L_l} \end{bmatrix}$$

Resulting model is now

$$\boldsymbol{\Phi} = e^{\mathbf{A}_3 t_3} e^{\mathbf{A}_2 t_2} \mathbf{A}_{\text{res}} \boldsymbol{I}_{HC}$$
$$\boldsymbol{\Gamma} = e^{\mathbf{A}_3 t_3} (\mathbf{A}_2 - \mathbf{A}_3) \mathbf{X}_0$$

where $\boldsymbol{\Phi} \in \Re^{2x^2}$ and $\boldsymbol{\Gamma} \in \Re^{2x^1}$

Resulting Model

$$\boldsymbol{\Phi} = \begin{bmatrix} 1 - \frac{\omega_f^2 t_{\zeta}^2}{2n_t^2} & \frac{\frac{\Delta Q}{\Delta I} (L_l n_t - \frac{t_{\zeta}^2}{2C_{out} n_t}) + t_{\zeta} (\frac{\Delta \lambda}{\Delta I} - L_l)}{\frac{n_t}{w_f^2}} \\ \frac{t_{\zeta}}{L_l n_t} & -1 + \frac{\frac{\Delta \lambda}{\Delta I} (C_{out} n_t - \frac{t_{\zeta}^2}{2L_l n_t}) - t_{\zeta} \frac{\Delta Q}{\Delta I} + \frac{t_{\zeta}^2}{2n_t}}{\frac{n_t}{w_f^2}} \end{bmatrix}$$

Previously, an accurate, closed-form expression for ${oldsymbol{\varPhi}}$ was intractable

Model now of suitable complexity for designoriented analysis

Model Accuracy

THE UNIVERSITY OF TENNESSEE TENNESSEE

Numerical Approach: HDSC Example

- 4:1 Hybrid Dickson Switched-Capacitor Converter
- 48-to-5 V, 0-100 A output
- Including C_{oss}, 13 states, 3 subintervals

HDSC: Predicted Efficiency

- Inherent efficiency prediction
 - Full, large-signal models
 - No "ideal waveform" assumption
- Total computation time ~10ms per operating point
- No converterspecific derivation

100 -100 kHz Hard Charging 500 kHz ····· Soft Charging [%] μ 98 $= 1.2 \text{ m}\Omega$ r_{on} 96 MHz MHz100 ·l mΩ 2 mO [%]96 Ц mΩ 500 kHz 94 Hard Charging Soft Charging 20 40 60 80 100 0 $I_{out}\left[\mathbf{A}
ight]$

Model Validation

- Constructed 8:1 HDSC converter
 - Measured 96.7% peak efficiency at 30W
 - Model predicts 96.9% at 30.4W
- Model includes capacitor ESR

Limiting Assumptions of the Approach

- 1. Inputs are DC or slowly varying
- 2. All subinterval times are known
- 3. In each subinterval, converter reduces to a linear equivalent circuit

Limiting Assumptions of the Approach

- 1. Inputs are DC or slowly varying
- 2. All subinterval times are known
- 3. In each subinterval, converter reduces to a linear equivalent circuit

TENNESSEE KNOXVILLE

TENNESSEE KNOXVILLE

Nonlinear Losses: Switching Loss

 High frequency switching behaviors highly nonlinear

Switching Loss Modeling

- High frequency switching behaviors highly nonlinear
- Common approach: Empirical characterization
- Still reverts to "high-η" approximation

COURSE CONCLUSIONS

TENNESSEE KNOXVILLE

HF Power Electronics – When and Why

Thank you for all your hard work, and good luck with finals!

