Resonant Circuit Analysis

Soft Switching

- Advantages
 - Reduced switching loss
 - Possible operation at higher switching frequency
 - Lower EMI
- Disadvantages
 - Increased current and/or voltage stresses due to circulating current
 - Higher peak and rms current values
 - Complexity of analysis and modeling

Limitations: Gate Drive

Limitations: t_d/T_s

Limitations: Thermal

Kolar, J.W.; Drofenik, U.; Biela, J.; Heldwein, M.L.; Ertl, H.; Friedli, T.; Round, S.D., "PWM Converter Power Density Barriers," *Power Conversion Conference - Nagoya, 2007. PCC '07*, vol., no., pp.P-9,P-29, 2-5 April 2007

Limitations: Magnetics Design

Limitations: Circuit Modeling

Rodríguez, M.; Rodríguez, A; Miaja, P.F.; Lamar, D.G.; Zúniga, J.S., "An Insight into the Switching Process of Power MOSFETs: An Improved Analytical USINESSEE Model," Power Electronics, IEEE Transactions on , vol.25, no.6, pp.1626,1640, June 2010

1

150-to-400V, 150W Boost

EXPERIMENTAL EXAMPLE

ZVS with Si diode

- ZVS turn-ON
 - Eliminated losses due to C_{sw} discharge during turn-ON transient
 - Eliminated losses due to MOSFET di_F/dt during turn-ON transient
- Diode reverse recovery still impacts the waveforms and losses
- Increased current ripple
 - Increased conduction losses (by >30%)
 - Increased dv_{ds}/dt upon turn-OFF, MOSFET turn-OFF speed is more important

D. Costinett, D. Maksimovic, R. Zane, A. Rodríguez and A. Vázquez, "Comparison of reverse recovery behavior of silicon and wide bandgap diodes in high frequency power converters"

Loss Breakdown: Soft-Switched Si Boost

 $f_{\rm s}$ = 100 kHz

Reverse-recovery: 21% of the total loss

 $f_s = 1 \text{ MHz}$

Reverse-recovery: 68% of the total loss

RR

Soft-switched SiC diode

SiC diode, "soft-switched" operation

 $f_s = 1 \text{ MHz}$

MOSFET

- $di_{\rm F}/dt = 200 \, {\rm A}/{\rm \mu s}$
- $C_{ds,eq} = 45 \text{ pF}$
- $R_{on} = 0.15 \Omega$

SiC diode

- $t_{rr} = 0$, $Q_{rr} = 0$
- $2C_{d,Qeq}$ - $C_{d,eq}$ = 64 pF
- $V_D = 1.8 \text{ V}$

Soft-switched Boost with SiC diode

Conduction losses only, 2ndorder switching losses not included in the model

100 kHz or 1 MHz 98.5% efficiency $P_{loss} = 4.5 \text{ W}$

Experiments:

98.7% at 1 MHz 98.0% at 2 MHz

Power supply technology limits become dominated by:

- Magnetics
- 2nd-order switching loss mechanisms, e.g. gate-drive losses, parasitic inductances (layout and packaging)
- Gate-drive circuitry and controllers to support high-frequency operation

Speed Limitations with WBG Devices

D i_L C R_L V_{out}

TriQuint TGF2023-02 12W, DC-to-18 GHz RF/microwave HEMT

FOM for switching applications $C_{ds}R_{on}\approx 1~\Omega \mathrm{pF}$ $Q_{a}R_{on}\approx 10~\Omega \mathrm{pC}$

Standard hard-switched PWM operation at 50 MHz dv_{ds}/dt dominated by probe (4 pF) capacitance

Emerging GaN HEMT devices may enable completely new RF-based design approaches in power electronics

M. Rodríguez, G. Stahl, D. Costinett and D. Maksimović, "Simulation and characterization of GaN HEMT in high-frequency switched-mode power converters,"

VHF power electronics [11]

Resonant Design		
Component	Value	Type
L_F	33 nH	Coilcraft 1812SMS
L_{2F}	12.5 nH	Coilcraft A04TG
L_{rect}	22 nH	1812SMS
C_{2F}	39 pF	ATC100A
C_{rect}	10 pF	ATC100A
C_{out}	$75 \mu F$	Multilayer Ceramics
C_{in}	$22 \mu F$	Multilayer Ceramics
S_{main}		Freescale MRF6S9060
D		Fairchild S310
	Conventi	onal Design
Component	Value	Type
L_{boost}	10 μH	Coilcraft D03316T-103ML
C_{out}	$75 \mu F$	Multilayer Ceramics
C_{in}	$22 \mu F$	Multilayer Ceramics
S_{main}		LT1371HV
D		Fairchild S310

Topics Covered

Course Topics

- High Frequency Power Conversion
 - Switching losses and device selection
 - Resonance in power electronics
 - Soft switching (ZVS and ZCS)
 - Magnetics design
- Non-resonant soft switching converters
 - Constant frequency control
 - State-plane analysis
 - Resonant switches
 - Modeling and Simulation
 - Discrete time models
- Resonant Converters
 - Resonant converter topologies
 - Sinusoidal analysis
 - AC-modeling and frequency modulation
 - State-plane analysis
- Applications and practical issues of high frequency converters

