Resonant Circuit Analysis

Soft Switching

- Advantages
- Reduced switching loss
- Possible operation at higher switching frequency
- Lower EMI
- Disadvantages
- Increased current and/or voltage stresses due to circulating current
- Higher peak and rms current values
- Complexity of analysis and modeling

Limitations: Gate Drive

Limitations: t_{d} / T_{s}

Limitations: Thermal

Limitations: Magnetics Design

Flux density

Current Density

Limitations: Circuit Modeling

ZVS with Si diode

- ZVS turn-ON
- Eliminated losses due to $C_{s w}$ discharge during turn-ON transient
- Eliminated losses due to MOSFET $d i_{F} / d t$ during turn-ON transient
- Diode reverse recovery still impacts the waveforms and losses
- Increased current ripple
- Increased conduction losses (by >30\%)
- Increased $d v_{d s} / d t$ upon turnOFF, MOSFET turn-OFF speed is more important

Loss Breakdown: Soft-Switched Si Boost

$$
\begin{gathered}
f_{s}=100 \mathrm{kHz} \\
P_{\text {loss }}=5.7 \mathrm{~W}, \eta=98.1 \%
\end{gathered}
$$

Reverse-recovery: 21% of the total loss
$f_{s}=1 \mathrm{MHz}$
$P_{\text {loss }}=17.7 \mathrm{~W}, \eta=94.4 \%$
Experiment: $\eta=95.1 \%$

Reverse-recovery:
68% of the total loss

Soft-switched SiC diode

SiC diode, "soft-switched" operation

$f_{s}=1 \mathrm{MHz}$

MOSFET

- $d i_{/} / d t=200 \mathrm{~A} / \mu \mathrm{s}$
- $C_{d s, e q}=45 \mathrm{pF}$
- $R_{\text {on }}=0.15 \Omega$

SiC diode

- $t_{r r}=0, Q_{r r}=0$
- $2 C_{d, Q e q} C_{d, e q}=64 \mathrm{pF}$
- $V_{D}=1.8 \mathrm{~V}$

Soft-switched Boost with SiC diode

Conduction losses only, $2^{\text {nd- }}$ order switching losses not included in the model

Power supply technology limits become dominated by:

- Magnetics
- $2^{\text {nd }}-$ order switching loss mechanisms, e.g. gate-drive losses, parasitic inductances (layout and packaging)
- Gate-drive circuitry and controllers to support high-frequency operation

Speed Limitations with WBG Devices

TriQuint TGF2023-02
12W, DC-to-18 GHz
RF/microwave HEMT
FOM for switching applications
$C_{d s} R_{\text {on }} \approx 1 \Omega p F$
$Q_{g} R_{o n} \approx 10 \Omega p C$

Standard hard-switched PWM operation at 50 MHz $d v_{d s} / d t$ dominated by probe (4 pF) capacitance

Emerging GaN HEMT devices may enable completely new RF-based design approaches in power electronics

VHF power electronics

	Resonant Design Value	Type	
Component	Coilcraft 1812SMS		
L_{F}	33 nH	Coilcraft A04TG	
$L_{2 F}$	12.5 nH	1812SMS	
$L_{\text {rect }}$	22 nH	ATC100A	
$C_{2 F}$	39 pF	ATC100A	
$C_{\text {rect }}$	10 pF	Multilayer Ceramics	
$C_{\text {out }}$	$75 \mu \mathrm{~F}$	Multilayer Ceramics	
$C_{\text {in }}$	$22 \mu \mathrm{~F}$	Frescale MRF6S9060	
$S_{\text {main }}$		Fairchild S310	
D		Conventional Design	
Type			
Component	Value		
$L_{\text {boost }}$	$10 \mu \mathrm{H}$	Coilcraft D03316T-103ML	
$C_{\text {out }}$	$75 \mu \mathrm{~F}$	Multilayer Ceramics	
$C_{\text {in }}$	$22 \mu \mathrm{~F}$	Multilayer Ceramics	
$S_{\text {main }}$		LT1371HV	
D		Fairchild S310	

Topics Covered

- Course Topics

- High Frequency Power Conversion
- Switching losses and device selection
- Resonance in power electronics
- Soft switching (ZVS and ZCS)
- Magnetics design
- Non-resonant soft switching converters
- Constant frequency control
- State-plane analysis
- Resonant switches
- Modeling and Simulation
- Discrete time models
- Resonant Converters
- Resonant converter topologies
- Sinusoidal analysis
- AC-modeling and frequency modulation
- State-plane analysis
- Applications and practical issues of high frequency converters

