
1

Multicore and Cloud Futures
CCGSC

September 15 2008

Geoffrey Fox
Community Grids Laboratory, School of informatics

Indiana University

gcf@indiana.edu, http://www.infomall.org

mailto:gcf@indiana.edu
http://www.infomall.org/

2

Gartner 2008
Technology Hype Curve

Clouds, Microblogs and Green IT
appear
Basic Web Services, Wikis and SOA
becoming mainstream

MPI way out on plateau?

Grids?

C Y B E R I N F R A S T R U C T U R E C E N T E R F O R P O L A R S C I E N C E (C I C P S)

3

Gartner 2006
Technology Hype Curve

Grids did exist

Grids become Clouds
Grids solve problem of too little computing: We need to
harness all the world’s computers to do Science
Clouds solve the problem of too much computing: with
multicore we have so much power that we need to make usage
much easier
Key technology: Virtual Machines (dynamic deployment)
enable more dynamic flexible environments
• Is Virtual Cluster or Virtual Machine correct primitive?

Data Grids seem fine as data naturally distributed
GGF/EGA false assumption: Web 2.0 not Enterprise defined
commercial software stack
• Some Web 2.0 applications (MapReduce) not so different

from data-deluged eScience
Citizen Science requires light weight friendly
Cyberinfrastructure 4

MPI on Nimbus for clustering
Note fluctuations in runtime but performance OK for
large enough problems
8 Nodes

5

Plans for QuakeSpace
QuakeSim supports Earthquake Scientists who want some
features of their kid’s (under 40) world
Rebuild QuakeSim using Web 2.0 and Cloud Technology
Applications, Sensors, Data Repositories as Services
Computing via Clouds
Portals as Gadgets
Metadata by tagging
Data sharing as in YouTube
Alerts by RSS
Virtual Organizations via Social Networking
Workflow by Mashups
Performance by multicore
Interfaces via iPhone, Android etc. 6

Enterprise Approach Web 2.0 Approach

JSR 168 Portlets Gadgets, Widgets

Server‐side integration and
processing

AJAX, client‐side integration and
processing, JavaScript

SOAP RSS, Atom, JSON

WSDL REST (GET, PUT, DELETE, POST)

Portlet Containers Open Social Containers (Orkut,
LinkedIn, Shindig); Facebook;
StartPages

User Centric Gateways Social Networking Portals

Workflow managers (Taverna, Kepler,
etc)

Mash‐ups

Grid computing: Globus, Condor, etc Cloud computing: Amazon WS Suite,
Xen Virtualization, still Condor!

Different Programming Models
(Web) services, "farm" computations, Workflow
(including AVS, HeNCE from past), Mashups, MPI,
MapReduce run functionally or data decomposed
execution units with a wide variety of front ends
Front-end: Language+communication library,
Scripting, Visual, Functional, XML, PGAS, HPCS
Parallel Languages, Templates, OpenMP
Synchronize/Communicate with some variant of
messaging (zero size for locks) with performance,
flexibility, fault-tolerance, dynamism trade-offs
Synchronization: Locks Threads Processes CCR CCI
SOAP REST MPI Hadoop; not much difference for
user? 9

MPI becomes Ghetto MPI
Multicore best practice not messaging will drive
synchronization/communication primitives
Party Line Programming Model: Workflow (parallel--
distributed) controlling optimized library calls
• Core parallel implementations no easier than before;

deployment is easier
MPI is wonderful; it will be ignored in real world unless
simplified
CCI notes MPI is HPCC Ghetto
CCI is high performance distributed message passing ghetto?
CCR from Microsoft – only ~7 primitives – is one possible
commodity multicore driver
• It is roughly active messages
• Will run MPI style codes fine on multicore

10

Parallel
Overhead =
(PT(P)/T(1)-1)
On P processors
= (1/efficiency)-1

CCR Threads per Process
1 1 1 2 1 1 1 2 2 4 1 1 1 2 2 2 4 4 8 1 1 2 2 4 4 8 1 2 4 8

Nodes
1 2 1 1 4 2 1 2 1 1 4 2 1 4 2 1 2 1 1 4 2 4 2 4 2 2 4 4 4 4

MPI Processes per Node
1 1 2 1 1 2 4 1 2 1 2 4 8 1 2 4 1 2 1 4 8 2 4 1 2 1 8 4 2 1

32-way

16-way
8-way

4-way

2-way

Deterministic Annealing Clustering
Scaled Speedup Tests on 4 8-core Systems

1,600,000 points per C# thread

1, 2, 4. 8, 16, 32-way parallelism

• Overhead PT(P)/T(1)‐1 of the messaging runtime for the different data sizes

• All perform well for large enough datasets

Number of Data Points

MPI

MPI

MR
Java

MR
MR

Java

MPI

HADOOP

MPI

In memory MapReduce

Factor of 103

Factor of 30

Number of Data Points

N=3000
sequences each
length ~1000
features
Only use pairwise
distances

will repeat with 0.1
to `0.5 million
sequences with a
larger machine
C# with CCR and
MPI

14

	Multicore and Cloud Futures �
	Slide Number 2
	Gartner 2006 Technology Hype Curve
	Grids become Clouds
	MPI on Nimbus for clustering
	Plans for QuakeSpace
	Slide Number 7
	Slide Number 8
	Different Programming Models
	MPI becomes Ghetto MPI
	Slide Number 11
	MPI, MapReduce, Java Threads for Clustering
	Hadoop v MPI and faster MapReduce for Clustering
	N=3000 sequences each length ~1000 features�Only use pairwise distances��will repeat with 0.1 to `0.5 million sequences with a larger machine�C# with CCR and MPI

