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Biomedical Informatics ConsortiaBiomedical Informatics Consortia
What are these guys up to anyway?What are these guys up to anyway?What are these guys up to anyway?What are these guys up to anyway?



Example: Example: caBIGcaBIG Organization Structure Organization Structure 

General ContractorGeneral Contractor

caBIG OversightcaBIG Oversight

General ContractorGeneral Contractor

Clinical Trials
Integrative 
Cancer 

Tissue Banks & 
Pathology Tools Imaging

Architecture

Research

Vocabulary & 
C

Open to all, not just funded participants.Open to all, not just funded participants.
190 institutions, 190 institutions, 2000 2000 people involved thus farpeople involved thus far..

Common 
Data 

Elements

Strategic Working GroupsStrategic Working Groups



“Big” Design Patterns“Big” Design Patterns
for Translational Researchfor Translational Research

◦ Deep Integrative Analyses◦ Deep Integrative Analyses
◦ Multiscale Investigations that encompass genomics, 

epigenetics, (micro)anatomic structure and functionepigenetics, (micro)anatomic structure and function



The Reynolds StudyThe Reynolds Study

Prospective clinical research study –
Deep Integrative Clinical AnalysisDeep Integrative Clinical Analysis

Large subject cohort (~ 1,200) at high 
risk for sudden cardiac death

All have:
Genetic Variability Gene Expression

Profiling
All have:
◦ CAD 

◦ LV dysfunction 

◦ received ICD placement

Multi-scale data from each patient

Challenge – discover biomarkers 

Protein Expression
Profiling

Electrophysiological
Data

Multi-Modal

g
predictive of high risk

Test biomarkers on novel (currently 
~500) subject population

Imaging
Data Analysis
And Modeling
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Data Analysis and Exploration: MultiData Analysis and Exploration: Multi--Scale Scale 
Cardiovascular DataCardiovascular DataCardiovascular DataCardiovascular Data
Investigate genotype-phenotype characteristics among a subset of 
patients in the Reynolds studypatients in the Reynolds study
Combine features across different levels of biological organization
◦ SNP

◦ mRNA 

◦ Protein 

I i

SNP DataECG Data Image Data

◦ Imaging

◦ Electrophysiology

(ECG)
Clinical Data

A l d t

Protein 
Data 

◦ Clinical
• Analyze data
• Filter and integrate different 

data types
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CVRG: Primary AimsCVRG: Primary Aimsyy
Support collaborative cardiovascular research
◦ Integrative data analysis using heterogeneous  distributed ◦ Integrative data analysis using heterogeneous, distributed 

resources
◦ Securely share data and analysis methods with collaboratorsy y
◦ Establish common set of services, data sources, vocabulary and 

common data elements for cardiovascular research community
L  G d BIGTM  BIRN◦ Leverage caGrid, caBIGTM, BIRN
◦ Initial driving application is the Reynolds study -- an example of  

deep integrative clinical analysisdeep integrative clinical analysis
◦ PI – Rai Winslow PhD,  Center spans Hopkins, Emory, UCSD, 

Ohio State
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Biomedical Informatics ServicesBiomedical Informatics Services

Security
Semantic interoperability
Data structure interoperabilityata st uctu e te ope ab ty
Interoperability with existing standards (e.g. HL-7, 
DICOM)DICOM)
Ability to compose services to create application
Abilit  t  ffi i tl  i k  HPC iAbility to efficiently invoke HPC services
Efficient and expressive federated query
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Image Management WorkflowImage Management Workflowg gg g

F i l I  Functional Image 
Analysis

(Virtual)
PACS

AIM Annotation 
Database



CT Cardiac Shape Analysis WorkflowCT Cardiac Shape Analysis Workflowp yp y

Affine RegistrationHeart Images
(H  CT)

Isotropic preprocessing 
and segmentation to 

(Human CT) isolate left ventricle.

Register Heart Images 
to template and perform 

Statistical Analysis 
(Principal Component 

Generate Templates for 
end-systole and end- p p

LDDMM mapping
( p p

Analysis)
y

diastole phases
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CCALGBALGB IINTERNTERSSPOREPORE AACRIN CRIN NNCICBCICB

IInvestigationnvestigation ofof
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I SPY TRIAL DesignI SPY TRIAL DesignI SPY TRIAL DesignI SPY TRIAL Design

Neoadjuvant Chemotherapy Surgeryg y

Serial Core Biopsies
Serial MR Imaging OutcomesOutcomes

••Residual DiseaseResidual Disease••Residual DiseaseResidual Disease
••RecurrenceRecurrence



Surgery 

& RT

Anthracycline Taxane

Tam if ER+
Clinical 
Study

& RT
y

Serum markers, 

MRI
proteomics

Classification of Morphologic Pattern/Volume Response

Tissue: Core or Surgical )
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Pathology Coordinated ReviewPathology Coordinated Review

caMicroscopeMultiheaded Microscope caMicroscopeMultiheaded Microscope



ComputerComputer--assisted Histopathologyassisted Histopathology

Analyze images by 
computercomputer

Analyze the whole 
tissue, several slides

Provide quantitative 
information to the 
pathologist

Reduce inter- and 
intra-reader 
variability

Morphological characterization of tissue used for 
prognosis

Neuroblastoma – Shimada Classification
(Gurcan-OSU, Shimada – LA Children’s)



caMicroscopecaMicroscope parallel processingparallel processing
caGridcaGrid//caOScaOS//DataCutterDataCuttercaGridcaGrid//caOScaOS//DataCutterDataCutter

Whole-slide image Image tiles (40X magnification)

`
Parallel Classification

Classification map
Processor 1 Processor N………

Label 1 background

Assign classification labels

Label 1
Label 2

background
undetermined

Hiro Shimada CHLA, Metin Gurcan OSU



Example Algorithm Results:Example Algorithm Results:
NeuroblastomaNeuroblastoma Grade of DifferentiationGrade of DifferentiationNeuroblastomaNeuroblastoma Grade of DifferentiationGrade of Differentiation

UD:  Undifferentiating
PD:  Partially differentiating
D:    Differentiating



Design Pattern Driven RequirementsDesign Pattern Driven Requirementsg qg q

Semantics: Design template involves deep integration of many 
types of information to synthesize knowledge
Interoperability: Information drawn from 
commercial/enterprise s stems e  health information records  commercial/enterprise systems e.g. health information records, 
PACS, Lab information systems, as well as genetic, genomic, 
epigenetic, microscopy databasesp g , py
HPC requirements arise from many sources: natural language 
processing, whole genome analyses, coordinated analysis of 

l ipl  p  f l l  i  dmultiple types of molecular, image data



Design Pattern Driven RequirementsDesign Pattern Driven Requirementsg qg q

Composition of computationally modest and HPC services – caGrid, 
OS  D CcaOS, DataCutter

Composition of services written in multiple languages running in 
varied environments – Wings/Pegasus/Taverna/Introduce/gRAVIvaried environments Wings/Pegasus/Taverna/Introduce/gRAVI
Workflow engines capable of efficient inter-service large scale data 
transfer, security delegation – New caOSWorkflow Engine
Libraries of optimized components/services – GPU/Cell 
DataCutter libraries for image analysis
Integrated analysis/human review may require soft real time Integrated analysis/human review may require soft real time 
response



Design Pattern Driven RequirementsDesign Pattern Driven Requirementsg qg q

Flexibility: ability to accommodate different data formats, y y ff f ,
different semantic classifications
Interoperability: composition of caGrid, myGrid, BIRN, CVRG 
and unaffiliated web services
Goal of caGrid Roadmap – plug and play workflow scripting 
environment, service level execution environment, fine grained 
execution environment

 T  G id OS  D C  ◦ e.g. Taverna, caGrid, caOS, DataCutter; 
◦ Wings, Pegasus, Condor, DataCutter; 
◦ WEEP caGRID MPI◦ WEEP, caGRID, MPI



“Big” Design Patterns“Big” Design Patterns
for Translational Researchfor Translational Research

◦ Deep Integrative Analyses◦ Deep Integrative Analyses
◦ Multiscale Investigations that encompass genomics, 

epigenetics, (micro)anatomic structure and functionepigenetics, (micro)anatomic structure and function



Tumor MicroenvironmentTumor Microenvironment

Cancer is a complex phenomenon

A tumor is an organ
Tumors are organs consisting of 
many interdependent cell typesA tumor is an organ

Structural and functional 
differentiation within tumor

M l l  h    d 

many interdependent cell types

Molecular pathways are time and 
space dependent

“Field effects” – gradient of 
genetic, epigenetic changes

Experiments to elucidate integrate 
microscopy, high throughput genetic, 
genomic, epigenetic studies, flow 
cytometry, microCT, nanotechologies
…

Simulation is next frontier
• From John E. Niederhuber, M.D. Director 

National Cancer Institute, NIH



Tumor MicroenvironmentTumor Microenvironment

Slide Scanning Ducts

Imaging Team led by Raghu Marchiraju
Kun Huang OSU



“GIS type service”: Semantic Annotation and Spatial Reasoning“GIS type service”: Semantic Annotation and Spatial Reasoning

Ontology
Endothelial cells touch blood vessel 
lumen
Protein C is expressed only in 
endothelial cells

Instance Data
R i  A i   ll (f  i  Region A is a cell (from image 
analysis)
Region A expresses protein C (from 
molecular assay)
Region B (from expert markup)

Spatial Rule
touches(Region B, Region A) –
l i h i ll  l   algorithmically evaluates to true

Spatial and Ontological Inference
Region A is an endothelial cell
R i  B i   bl d lRegion B is a blood vessel



Mouse Placenta: Understand function of Rb geneMouse Placenta: Understand function of Rb gene



Wild vs MutantWild vs Mutant

Wild type - Labyrinth neat well-ordered maternal blood sinusoidsWild type Labyrinth neat, well ordered, maternal blood sinusoids 
and trophoblasts evenly dispersed among fetal blood cells. 

Mutant - Trophoblasts grow wildly, clump together and disrupt fetal and 
maternal cells layers necessary for proper embryonic growth



Wild Type Wild Type vsvs Mutant:  Analysis of Mutant:  Analysis of 
Entire PlacentaEntire PlacentaEntire PlacentaEntire Placenta

3-D Reconstruction
Quantitative tissue analysisQuantitative tissue analysis

Intravascular Fraction
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Design Pattern Driven Requirements Design Pattern Driven Requirements 
for for MultiscaleMultiscale

Complex, hierarchical annotation of microanatomic structures; 
molecular composition: “ducts  a specific duct  epithelial cells molecular composition: ducts, a specific duct, epithelial cells 
surrounding a specific duct, a particular epithelial cell in the 
neighborhood of a particular duct, the nucleus of a specific epithelial 

ll i  th  i hb h d f  p ti l  d t ”cell in the neighborhood of a particular duct …”
Spatial/semantic queries:  What is the morphological/molecular 
effect on cell type 1 if we make a genetic change in cell type 2 ff yp f g g yp
Algorithm annotation and composition:  Interoperability critically 
dependent on semantic modeling of application domain
Interplay between spatial and molecular data underlies increasing 
fraction of biomedical research studies  – “GIS type” service



When are we going to get serious about When are we going to get serious about 
simulation?simulation?simulation?simulation?

29



caGridcaGrid Roadmap planning processRoadmap planning process
Engage the Computer Science Systems Software CommunityEngage the Computer Science Systems Software Community

Data and Analytic Services – Present and Future

◦ Easy integration of existing database systems,  High-performance Grid Nodes, Easy integration of existing database systems,  High performance Grid Nodes, 
multi-core systems,  on-demand computing, data intensive computing,  parallel 
database and file systems.

Workflows and Orchestration

◦ Interoperability between different workflow execution environments;  hierarchical 
workflow systems; HPC and large scale data support

Federated Query

◦ Semantic, federated, spatial query support

Semantic Infrastructure

◦ Semantic annotations for services, relationship  between semantics and data Semantic annotations for services, relationship  between semantics and data 
structures, systematic curation vs community freedom, semantic query support.

Security

◦ Security middleware support for complex organizations, complex workflows. Security middleware support for complex organizations, complex workflows. 
Compliance with regulatory guidelines
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