
Fault Tolerance & PetaScale Systems: Fault Tolerance & PetaScale Systems: yy
Current Knowledge, Challenges and Current Knowledge, Challenges and

OpportunitiesOpportunitiesOpportunitiesOpportunities

Franck Cappello
INRIA

fci@lri.fr

CCGSC Workshop, September 2008, Asheville, USA

1

CCGSC Workshop, September 2008, Asheville, USA

AgendaAgenda

•Why Fault Tolerance is Challenging?
What are the main reasons behind failures?•What are the main reasons behind failures?

•Rollback Recovery Protocols?
R d i R llb k R Ti ?•Reducing Rollback Recovery Time?

•Rollback Recovery without stable storage?
•Alternatives to Rollback Recovery?
•Where are the opportunities?

Classic approach for FT: Classic approach for FT:
CheckpointCheckpoint RestartRestartCheckpointCheckpoint--RestartRestart

Typical “Balanced Architecture” for PetaScale Computers
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

Compute nodes

Parallel file system
(1 to 2 PB)

40 to 200 GB/s
Total memory:

RoadRunner

Network(s)

I/O nodes

(1 to 2 PB)100-200 TB

1000 sec. < Ckpt < 2500 sec.
TACC Ranger

Without optimization, CheckpointWithout optimization, Checkpoint--Restart needs Restart needs
about 1h! (about 1h! (~30 minutes each)~30 minutes each)
Systems Perf. Ckpt time Source

RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL LLNL BG/L

CkptCkpt--rest on local disc does not help to reduce the ckpt timerest on local disc does not help to reduce the ckpt time
----> need to save (async.) checkpoint on stable storage.> need to save (async.) checkpoint on stable storage.
Restarting a failed node from local storage does help sinceRestarting a failed node from local storage does help since

XXX SGI Altix 100 TF ~40 min. estimation

IDRIS BG/P 100 TF ~30 min. IDRIS

Restarting a failed node from local storage does help sinceRestarting a failed node from local storage does help since
it needs 10 to 100 hours (MTTR) in case of hardware failure.it needs 10 to 100 hours (MTTR) in case of hardware failure.

Failure rate and #socketsFailure rate and #sockets
In Top500 machine performance X2 per year (See Jack slide on top500)
--> more than Moore’s law and increase of #cores in CPUs
If we consider #core X 2, every 18, 24 and 30 months AND fixed Socket
MTTIMTTI:

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Figures from
Garth Gibson

RR TR 1h. wall

We may reach the 1h. wall as soon as in 2012-2013
Another projection from CHARNG-DA LU gives similar results
P j ti b t ! C t k th i k f t id i th ?Projections may be correct or wrong! Can we take the risk of not considering them?

It’s urgent to optimize RollbackIt’s urgent to optimize Rollback--Recovery for PetaScale Recovery for PetaScale
systems and to investigate alternatives.systems and to investigate alternatives.

Understanding Approach:Understanding Approach:
Failure logsFailure logsFailure logsFailure logs

• The computer failure data repository (CFDR)
http://cfdr usenix org/http://cfdr.usenix.org/
From 96 until now…
HPC systems+Google

• failure logs from LANL, NERSC, PNNL, ask.com,
SNL, LLNL, etc.
ex: LANL released root cause logs for: 23000
events causing apps. Stop on 22 Clusters (5000
nodes), over 9 years

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aQ
TIFF (Uncompressed) decompressor

are needed to see this picture.

What are the main reasons of failures?What are the main reasons of failures?
• In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most

number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5
hours). Hardware problems, albeit rarer, need 6.3-100.7 hours to solve.”

• In 2007 (Garth Gibson, ICPP Keynote):

0%

Hardware

• In 2008 (Oliner and J. Stearley, DSN Conf.):

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

50%

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Conclusion1: Both Hardware and Software failures have to be considered
Conclusion2: Oliner: logging tools fail too, some key info is missing, better
filtering (correlation) is neededfiltering (correlation) is needed

FT system should cover all causes of failuresFT system should cover all causes of failures
(Rollback Recovery is consistent with this requirement*)(Rollback Recovery is consistent with this requirement*)

RollRoll--Back Recovery Protocols?Back Recovery Protocols?
Cl i h (MPICHMPICH VV) Bandwidth of OpenMPI V compared to others•Classic approach (MPICHMPICH--VV)

implements Message Logging at the
device level: all messages are copied
•High speed MPI implementations use

Bandwidth of OpenMPI-V compared to others

•High speed MPI implementations use
Zero Copy and decompose Recv in:
a) Matching, b) Delivery

Fig. from
Boutieller

••OpenMPIOpenMPI--VV implements Mes. Log. within
MPI: different event types are managed
differently, distinction between determ. and

OpenMPI-V Overhead on NAS (Myri 10g)
non determ. events, optimized mem. copy

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Coordinated and message logging protocols have Coordinated and message logging protocols have
been improved been improved ----> improvements are probably still> improvements are probably still

ibl b t diffi lt t bt i !ibl b t diffi lt t bt i !possible but very difficult to obtain!possible but very difficult to obtain!

Reducing Checkpoint size 1/2Reducing Checkpoint size 1/2
Fraction of Memory Footprint Overwritten during Main Iteration

• Incremental Checkpointing:
A runtime monitor detects memory regions that
have not been modified between two adjacent
CKPT d it th f th b t CKPT

60
70
80
90

100

Full memory footprintBelow the full
memory footprint

Fraction of Memory Footprint Overwritten during Main Iteration

CKPT. and omit them from the subsequent CKPT.
OS Incremental Checkpointing uses
the memory management subsystem
to decide which data change

0
10
20
30
40
50

between consecutive checkpoints 0
Sage

1000MB
Sage
500MB

Sage
100MB

Sage
50MB

Sweepd3D SP LU BT FT

Fig. from J.-C.
Sancho• Application Level Checkpointing

“Programmers know what data to save and when to save the state of the execution”.
Programmer adds dedicated code in the application to save the state of the execution.
Few results available:
Bronevetsky 2008: MDCASK code of the ASCI Blue Purple BenchmarkBronevetsky 2008: MDCASK code of the ASCI Blue Purple Benchmark

Hand written Checkpointer eliminates 77% of the application state
Limitation: impossible to optimize checkpoint interval (interval should be well
chosen to avoid large increase of the exec time --> cooperative checkpointing)

Challenge (not scientific): establish a base of codes withChallenge (not scientific): establish a base of codes with
Application Level CheckpointingApplication Level Checkpointing

g p p g)

Reducing Checkpoint size 2/2Reducing Checkpoint size 2/2
Compiler assisted application level checkpoint
•From Plank (compiler assisted memory exclusion)
•User annotate codes for checkpoint
Th il d t t d d d t (t

Fig. from G.
Bronevetsky100%

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

•The compiler detects dead data (not
modified between 2 CKPT) and omit them
from the second checkpoint.
•Latest result (Static Analysis 1D arrays)(y y)
excludes live arrays with dead data:
--> 45% reduction in CKPT size for
mdcask, one of the ASCI Purple
benchmarks

22%

benchmarks

s•Inspector Executor (trace based) checkpoint

M
em

or
y

ad
dr

es
se

sp () p
(INRIA study)
Ex: DGETRF (max gain 20% over IC)
Need more evaluation

Execution Time (s) Challenge: Reducing checkpoint size (probably one of Challenge: Reducing checkpoint size (probably one of
the most difficult problems). the most difficult problems).

Diskless Checkpointing 1/2Diskless Checkpointing 1/2
Principle: Compute a checksum of the processes’ memory and c p e Co pute a c ec su o t e p ocesses e o y a d
store it on spare processors

Advantage: does not require ckpt on stable storage.

Images from
George Bosilca

P1P1 P2P2 P3P3 P4P4 4 computing processors

P1P1 P2P2 P3P3 P4P4 PcPcP4P4 Add fifth “non computing”
processor

A) E
p

P1P1 P2P2 P3P3 P4P4 Start the computationPcPcP4P4

A) Every process
saves a copy of its
local state of in
memory or local disc

P1P1 P2P2 P3P3 P4P4 Perform a checkpointPcPc+ P4P4+ + =

P1P1 P2P2 P3P3 P4P4 Continue the computationPcPcP4P4
B) Perform a global
bitstream or floating
point operation on all

d l l t t.... saved local states

P1P1 P2P2 P3P3 P4P4 FailurePcPcP4P4

P1P1 P3P3 P4P4 R d fPPP4P4

All processes
restore its local
state from the oneP1P1 P3P3 P4P4 Ready for recoveryPcPcP4P4

P1P1 P3P3 P4P4 Recover P2 dataPcPcP2P2 - - -=

state from the one
saved in memory
or local disc

Diskless Checkpointing 2/2Diskless Checkpointing 2/2 Images from
CHARNG-DA LU

•Could be done at application and system levels

QuickTime™ and a

pp y

•Process data could be considered (and encoded)
either as bit-streams or as floating point numbers.
Computing the checksum from bit-streams uses operations QuickTime and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

Computing the checksum from bit streams uses operations
such as parity. Computing checksum from floating point
numbers uses operations such as addition

•Can survive multiple failures of arbitrary patternsp y p
Reed Solomon for bit-streams and weighted checksum for
floating point numbers (sensitive to round-off errors).

•Work with with incremental ckpt.

•Need spare nodes and double the memory occupation (to survive failures
during ckpt.) --> increases the overall cost and #failures
•Need coordinated checkpointing or message logging protocol•Need coordinated checkpointing or message logging protocol
•Need very fast encoding & reduction operations
•Need automatic Ckpt protocol or program modifications

Challenge: experiment more Diskless CKPT and Challenge: experiment more Diskless CKPT and
in very large machines in very large machines (current result are for (current result are for ~~1000 CPUs)1000 CPUs)

Proactive OperationsProactive Operations
•Principle: predict failures and trigger preventive actions when a node is
suspected
•Many researches on proactive operations assume failures could predicted.y p p p

Only few papers are based on actual data.
•Most of researches refer 2 papers published in 2003 and 2005 on a 350Most of researches refer 2 papers published in 2003 and 2005 on a 350
CPUs cluster and and BG/L prototype (100 days, 128K CPUs)

BG/L prototype

Traces from either a rather small system (350 CPUs) or
the first 100 days of a large system not yet stabilized

switch
Node cards

Graphs from
R. Sahoo

p yp

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.A lot of fatal failures
(up to >35 a day!)

MemoryAPP-IO

Everywhere in
the system

From manyFrom many
sourcessources

Network

y
Challenge: Analyze more traces, Identify more Challenge: Analyze more traces, Identify more
correlations, Improve predictive algorithmscorrelations, Improve predictive algorithms

OpportunitiesOpportunities
May come from a strong modification of the problem statement:

FailuresFailures
Exceptions Normal events

From system side: “Alternatives FT Paradigms”:y g
–Replication (mask the effect of failure),
–Self-Stabilization (forward recovery: push the system towards a legitimate state),
–Speculative Execution (commit only correct speculative state modifications),

From applications&algorithms side: “Failures Aware Design”:
–Application level fault management (FT-MPI: reorganize computation)
–Fault Tolerance Friendly Parallel Patterns (Confine failure effects),
–Algorithmic Based Fault tolerance (Compute with redundant data),
–Naturally Fault Tolerant Algorithms (Algorithms resilient to failures).

Since these opportunities have received only little attention (recently),
they need further explorations in the context of PetaScale systems.

Does Replication make sens?Does Replication make sens?
Slide from
Garth Gibson

QuickTime™ and a
TIFF (Uncompressed) decompressorTIFF (Uncompressed) decompressor

are needed to see this picture.

Need investigation on the processes slowdown with high speed networks
Currently too expensive (double the Hardware & power consumption)

•Design new parallel architectures with very cheap and low power nodes
•Replicate only nodes that are likely to fail --> failure prediction

I 1984 H d Ab h d th ABFT t d t t d t i

“Algorithmic Based Fault Tolerance”“Algorithmic Based Fault Tolerance”
In 1984, Huang and Abraham, proposed the ABFT to detect and correct errors in
some matrix operations on systolic arrays.

ABFT encodes data & redesign algo. to operate on encoded data. Failure are g g p
detected and corrected off-line (after execution).

ABFT variation for on-line recovery (runtime detects failures + robust to failures):

From G.
Bosilca

•Similar to Diskless ckpt., an extra processor is
added, Pi+1, store the checksum of data:
(vector X and Y in this case)
Xc = X1 + +Xp Yc = Y1 + +Yp

P1P1 P2P2 P3P3 P4P4 PcPcP4P4

X1 X2 X3 X4 Xc
+Xc X1 +…+Xp, Yc Y1 +…+Yp.

Xf = [X1, …Xp, Xc], Yf = [Y1, …Yp, Yc],
• Operations are performed on Xf and Yf
instead of X and Y : Zf=Yf+Zf

Y1 Y2 Y3 Y4 Yc

Z1 Z2 Z3 Z4 Zc

+

=
Works for many Linear Algebra operations:
Matrix Multiplication: A * B = C -> Ac * Br = Cf
LU Decomposition: C = L * U -> Cf = Lc * Ur
Addition: A + B = C -> Af + Bf = Cf

• Compared to diskless
checkpointing, the memory
AND CPU of Pc take part of Addition: A B C Af Bf Cf

Scalar Multiplication: c * Af = (c * A)f
Transpose: AfT = (AT)f
Cholesky factorization & QR factorization

AND CPU of Pc take part of
the computation):
• No global operation for Checksum!
• No local checkpoint!

“Naturally fault tolerant algorithm”
Natural fault tolerance is the ability to tolerate failures through the mathematical

Figure from
A. Geist

Natural fault tolerance is the ability to tolerate failures through the mathematical
properties of the algorithm itself, without requiring notification or recovery.

The algorithm includes natural compensation for the lost information.

For example, an iterative algorithm may require more iterations to converge, but it
still converges despite lost information

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Assumes that a maximum of 0.1% of tasks may fail

Ex1 : Meshless iterative methods+chaotic relaxation
Meshless formulation of 2-D
finite difference application

(asynchronous iterative methods)

Ex2: Global MAX (used in iterative methods to determine convergence)

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

This algorithm share some features
with SelfStabilization algorithms:
detection of termination is very hard!

it provides the max « eventually »…sont requis pour visionner cette image. it provides the max « eventually »…
BUT, it does not tolerate Byzantine
faults (SelfStabilization does for
transient failures + acyclic topology)

WrappingWrapping--up up
Fault tolerance is becoming a major issue for users of large
scale parallel systems.

Many Challenges:
•Reduce the cost of Checkpointing (checkpoint size & time)p g (p)
•Design better logging and analyzing tools
•Design less expensive replication approaches
•Integrate Flash mem tech while keeping cost low and MTTI high•Integrate Flash mem. tech. while keeping cost low and MTTI high
•Investigate scalability of Diskless Checkpointing
•Collect more traces, Identify correl., new predictive algo.

Opportunities may come from Failure Aware application
Design and the investigation of Alternatives FT Paradigms,Design and the investigation of Alternatives FT Paradigms,
in the context of HPC applications.

Questions?Questions?Questions?Questions?
•Novel methods and algorithms
(inherently tolerant to failures)

•FT Aware Paradigm & Design
•Replication, SelfStab.,Speculative?
Specific hardware?

•Optimizations:

Specific hardware?
•Rewrite Apps. in MW or D&C

Time
Optimizations:

•Checkpoint Storage & transfers
(Additional Local disk, Flash mem.)
•Reduce ckeckpoint sizeReduce ckeckpoint size
•Diskless checkpointing
•Proactive actions (Prediction)

