
0-0

Fortress Status Report

• Fortress is a growable, mathematically oriented, parallel

programming language

• Started under Sun/DARPA HPCS program, 2003–2006

• Fortress is now an open-source project with international

participation

• The Fortress 1.0 release (March 2008) synchronized the

specification and implementation

• Moving forward, we are growing the language and

libraries and developing a compiler

1

A Parallel Language

High productivity for multicore, SMP, and cluster computing

• Hard to write a program that isn’t potentially parallel

• Support for parallelism at several levels

> Expressions

> Loops, reductions, and comprehensions

> Parallel code regions

> Explicit multithreading

• Shared global address space model with shared data

• Thread synchronization through atomic blocks and

transactional memory

2

These Are All Potentially Parallel

f(a) + g(b) L = 〈 find(k, x) | k ← 1 :n, x← A 〉

s =
∑

k←1:n

ck x
k

for k ← 1 :n do

ak := bk
sum += ck x

k

end

do

f(a)

also do

g(b)

end

do

T1 = spawn f(a)

T2 = spawn g(b)

T1.wait();T2.wait()

end
3

Designed to Grow

Technical design supports growth by an open-source community.

• Emphasis on replaceable components with multiple versions

• Language extensibility

> Parametric polymorphism with multiple inheritance

> Overloading of functions, methods, and operators

> User-defined syntactic extensions

• Plenty of room for experimentation

• Language encourages unit testing and explicit

descriptions of code invariants and properties

4

Mathematical Syntax 1

Integrated mathematical and object-oriented notation

• Supports a stylistic spectrum that runs from Fortran

to JavaTM—and sticks out at both ends!

> More conventionally mathematical than Fortran
− Compare a*x**2+b*x+c and a x2 + b x+ c

> More object-oriented than Java
− Multiple inheritance
− Numbers, booleans, and characters are objects

> To find the size of a set S : either |S| or S.size
− If you prefer #S , defining it is a one-liner.

5

Mathematical Syntax 2

• Full Unicode character set available for use, including

mathematical operators and Greek letters:

× ÷ ⊕ ª ⊗ ® ¯ ≈ α β γ δ

¢ ¯ £ ↔ ∧ ∨ ≡ 6≡ ε ζ η θ

≤ ≥ ∑ ∏ ≺ 4 < Â ι κ λ µ

∩ ∪] ⊂ ⊆ ⊇ ⊃ ∈ ξ π ρ σ

u t @ v w A ¬ 6∈ φ χ ψ ω

b c d e 〈 〉 f g Γ Θ and so on

• Use of “funny characters” is under the control of libraries

(and therefore users)

6

Visit http://projectfortress.sun.com

An open-source project with international participation

• Open source since January 2007

• University participation includes:

> University of Tokyo: matrix algorithms

> Rice University: code optimization

> Aarhus University: syntactic abstraction

> University of Texas at Austin: static type checking

• Also participation by many individuals

7

A Growing Library

The Fortress library now includes over 10,000 lines of code.

• Integer, floating-point, and string operations

• Big integers, rational numbers, intervals

• Collections (lists, sets, maps, heaps, etc.)

• Multidimensional arrays

• Sparse vectors and matrices

• Generators and reducers

> Implement loops, comprehensions, and reductions

> Support implicit parallelism

• Fortress abstract syntax trees

• Sorting
8

Tools: ‘Fortify’ Code Formatter

• Emacs-based tool

• Fortress programs can be typed on ASCII keyboards

• Code automatically formatted for processing by LATEX

sum: RR64 := 0

for k<-1:n do

a[k] := (1-alpha)b[k]

sum += c[k] x^k

end

sum:R64 := 0

for k ← 1 :n do

ak := (1− α)bk
sum += ck x

k

end

All code on these slides was formatted by this tool.

9

Tools: Editing Environments

• Fortress mode for Emacs

> Provides syntax coloring

> Some automatic formatting

> Unicode font conversion

• Fortress NetBeansTM plug-in

> Syntax highlighting

> Mark occurrences

> Instant rename

• These tools were contributed by people outside Sun

10

Syntax Coloring Screen Shot

11

Fortress 1.0

• With the Fortress 1.0 release in March 2008, we

synchronized the specification and implementation

• Implementation expanded and made more reliable since

Fortress 1.0β

• Many features in the 1.0β specification were removed

for 1.0

> But with every intention of adding them back as the

language grows

> And we have done so over the last six months

12

Automated Testing During Spec Build

• Consistent with our emphasis on unit testing, all code

examples in the specification are:

> Automatically tested

> Automatically formatted as part of our build process

> Included in our open source distribution

• All examples in this talk are working code taken from

the Fortress 1.0 distribution and tested on every build

13

This slide...

{ x2 7→ x3 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0}

14

...is auto-rendered from this LaTeX

\begin{slide}{This slide...}

\begin{center}

‘

{ x^2 |-> x^3 | x <- {0, 1, 2, 3, 4, 5}, x MOD 2 = 0}

‘

\end{center}

\end{slide}

15

This example in the Fortress spec...

A:Z32[2, 2] = [3 4

5 6]

16

...is auto-extracted from this test file

component Expr.Array.b

export Executable

f() = do

(** EXAMPLE **)

A: ZZ32[2,2] = [3 4

5 6]

(** END EXAMPLE **)

A[1,0]

end

run(args: String...) = println f()

end
17

What works NOW

• Parallelism in loops, reductions, comprehensions, tuples

• Automatic load balancing via work-stealing

for i← 0 # |children ′| do
children ′i := generate tailJKey,ValK(children i+lsize+1, 1)

end

factorial(n:Z32) =
∏

i←1:n

i

opr (n:Z32)! =
∏

i←1:n

i

〈x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0〉
18

What works NOW

• Spawn

spawn do

s := DoneJT K(old .val())
end

19

What works NOW

• Atomic blocks with transactional memory

attempt(): (StateJT K,Boolean) = atomic do

old = s

computed := old .isDone()

if ¬old .isDone() then

if old .isPending() then abort() end

s := PendingJT K
(old , true)

else

(old , false)

end

end 20

What works NOW

• Object-oriented type system with multiple inheritance

• Overloaded methods and operators with dynamic

multimethod dispatch

• Sets, arrays, lists, maps, skip lists

• Pure queues, deques, priority queues

• Integers, floating-point, strings, booleans

• Big integers, rational numbers, interval arithmetic

• Syntactic abstraction (just barely)

21

Next steps:

• Full static type checker (almost there!)

• Static type inference to reduce “visual clutter”

• Parallel nested transactions

• Compiler

> Initially targeted to JVM for full multithreaded

platform independence

> After that, VM customization for Fortress-specific

optimizations

22

It is an exciting time for the project

• External contributions and feedback are increasing

> Thank you!

• Many implementation tasks are being done outside Sun

• The language is growing

• A community of developers is participating in its evolution

23

23-1

