

Fortress Programming Language Project Status

Guy Steele

Sun Fellow Sun Microsystems Laboratories September 2008

Fortress Status Report

- Fortress is a growable, mathematically oriented, parallel programming language
- Started under Sun/DARPA HPCS program, 2003–2006
- Fortress is now an open-source project with international participation
- The Fortress 1.0 release (March 2008) synchronized the specification and implementation
- Moving forward, we are growing the language and libraries and developing a compiler

A Parallel Language

High productivity for multicore, SMP, and cluster computing

- Hard to write a program that isn't potentially parallel
- Support for parallelism at several levels
 - > Expressions
 - > Loops, reductions, and comprehensions
 - > Parallel code regions
 - > Explicit multithreading
- Shared global address space model with shared data
- Thread synchronization through atomic blocks and transactional memory

These Are All Potentially Parallel

f(a) + g(b)

$$s = \sum_{k \leftarrow 1:n} c_k x^k$$

$$\begin{split} L &= \langle \operatorname{find}(k,x) \mid k \leftarrow 1 : n, x \leftarrow A \\ & \text{for } k \leftarrow 1 : n \text{ do} \\ & a_k := b_k \\ & sum + = c_k \, x^k \\ & \text{end} \end{split}$$

do f(a)also do g(b)end do

$$T_1 = \texttt{spawn} \ f(a)$$

 $T_2 = \texttt{spawn} \ g(b)$
 $T_1.wait(); T_2.wait()$
end

Designed to Grow

Technical design supports growth by an open-source community.

- Emphasis on replaceable components with multiple versions
- Language extensibility
 - > Parametric polymorphism with multiple inheritance
 - > Overloading of functions, methods, and operators
 - > User-defined syntactic extensions
- Plenty of room for experimentation
- Language encourages unit testing and explicit descriptions of code invariants and properties

Mathematical Syntax 1

Integrated mathematical and object-oriented notation

- Supports a stylistic spectrum that runs from Fortran to Java[™]—and sticks out at both ends!
 - > More conventionally mathematical than Fortran
 - Compare a*x**2+b*x+c and $a x^2 + b x + c$
 - > More object-oriented than Java
 - Multiple inheritance
 - Numbers, booleans, and characters are objects
 - > To find the size of a set S: either |S| or S.size
 - If you prefer #S, defining it is a one-liner.

Mathematical Syntax 2

• Full Unicode character set available for use, including mathematical operators and Greek letters:

Visit http://projectfortress.sun.com

An open-source project with international participation

- Open source since January 2007
- University participation includes:
 - > University of Tokyo: matrix algorithms
 - > Rice University: code optimization
 - > Aarhus University: syntactic abstraction
 - > University of Texas at Austin: static type checking
- Also participation by many individuals

A Growing Library

The Fortress library now includes over 10,000 lines of code.

- Integer, floating-point, and string operations
- Big integers, rational numbers, intervals
- Collections (lists, sets, maps, heaps, etc.)
- Multidimensional arrays
- Sparse vectors and matrices
- Generators and reducers
 - > Implement loops, comprehensions, and reductions
 - > Support implicit parallelism
- Fortress abstract syntax trees
- Sorting

Tools: 'Fortify' Code Formatter

- Emacs-based tool
- Fortress programs can be typed on ASCII keyboards
- Code automatically formatted for processing by LATEX

All code on these slides was formatted by this tool.

Tools: Editing Environments

- Fortress mode for Emacs
 - > Provides syntax coloring
 - > Some automatic formatting
 - > Unicode font conversion
- Fortress NetBeans[™] plug-in
 - > Syntax highlighting
 - > Mark occurrences
 - > Instant rename
- These tools were contributed by people outside Sun

Syntax Coloring Screen Shot

```
🔹 guicksort
 ㅋ 🧰 💾
                     2
                                        8
(* Quicksort *)
quicksort[[T]](lt:(T,T)\rightarrowBoolean, arr:Array[[T,\mathbb{Z}32], left:\mathbb{Z}32, right:\mathbb{Z}32) =
 if right > left
 then pivotIndex = left
     pivotNewIndex = mypartition(lt, arr, left, right, pivotIndex)
     do
      quicksort(lt, arr, left, pivotNewIndex-1)
     also do
      quicksort(lt, arr, pivotNewIndex+1, right)
     end
 end
1:-- quicksort All(3,0)
                                  (Fortress)
Wrote /Users/gls/quicksort
```


Fortress 1.0

- With the Fortress 1.0 release in March 2008, we synchronized the specification and implementation
- Implementation expanded and made more reliable since Fortress 1.0β
- Many features in the 1.0β specification were removed for 1.0
 - > But with every intention of adding them back as the language grows
 - > And we have done so over the last six months

Automated Testing During Spec Build

- Consistent with our emphasis on unit testing, all code examples in the specification are:
 - > Automatically tested
 - > Automatically formatted as part of our build process
 - > Included in our open source distribution
- All examples in this talk are working code taken from the Fortress 1.0 distribution and tested on every build

This slide...

$\{\,x^2\mapsto x^3\mid x\leftarrow\{0,1,2,3,4,5\},x\,\text{MOD}\,2=0\}$

... is auto-rendered from this LaTeX

\begin{slide}{This slide...}
\begin{center}

```
{ x^2 |-> x^3 | x <- {0, 1, 2, 3, 4, 5}, x MOD 2 = 0}
```

 \end{center}

 \end{slide}

This example in the Fortress spec...

$$A: \mathbb{Z}32[2,2] = \begin{bmatrix} 3 \ 4 \\ 5 \ 6 \end{bmatrix}$$

... is auto-extracted from this test file

component Expr.Array.b
export Executable

```
f() = do
(** EXAMPLE **)
  A: ZZ32[2,2] = [3 4]
                   5 6]
(** END EXAMPLE **)
  A[1,0]
end
run(args: String...) = println f()
end
```


- Parallelism in loops, reductions, comprehensions, tuples
- Automatic load balancing via work-stealing

for
$$i \leftarrow 0 \ \# | children' | do$$

 $children'_i := generate_tail [[Key, Val]](children_{i+lsize+1}, 1)$
end

$$\begin{aligned} &factorial(n:\mathbb{Z}32) = \prod_{i \leftarrow 1:n} i \\ &\text{opr } (n:\mathbb{Z}32)! = \prod_{i \leftarrow 1:n} i \\ &\langle x^2 \mid x \leftarrow \{0, 1, 2, 3, 4, 5\}, x \text{ MOD } 2 = 0 \end{aligned}$$


```
• Spawn
```

spawn do $s := \operatorname{Done} \llbracket T \rrbracket (\mathit{old.val}())$ end

• Atomic blocks with transactional memory

 $\begin{array}{l} attempt() \colon (\operatorname{State}\llbracket T \rrbracket, \operatorname{Boolean}) = \operatorname{\texttt{atomic}} \ \operatorname{\texttt{do}} \\ old = s \\ computed := old.isDone() \\ \operatorname{\texttt{if}} \neg old.isDone() \ \operatorname{\texttt{then}} \\ \quad \operatorname{\texttt{if}} \ old.isPending() \ \operatorname{\texttt{then}} \ abort() \ \operatorname{\texttt{end}} \\ s := \operatorname{Pending}\llbracket T \rrbracket \\ (old, true) \end{array}$

else

(old, false)

end

- Object-oriented type system with multiple inheritance
- Overloaded methods and operators with dynamic multimethod dispatch
- Sets, arrays, lists, maps, skip lists
- Pure queues, deques, priority queues
- Integers, floating-point, strings, booleans
- Big integers, rational numbers, interval arithmetic
- Syntactic abstraction (just barely)

Next steps:

- Full static type checker (almost there!)
- Static type inference to reduce "visual clutter"
- Parallel nested transactions
- Compiler
 - > Initially targeted to JVM for full multithreaded platform independence
 - > After that, VM customization for Fortress-specific optimizations

It is an exciting time for the project

- External contributions and feedback are increasing
 Thank you!
- Many implementation tasks are being done outside Sun
- The language is growing
- A community of developers is participating in its evolution

guy.steele@sun.com http://research.sun.com/projects/plrg http://projectfortress.sun.com

