

Erasure Coding:
Views from 10,000 Feet

and Through a Magnifying Glass

James S. Plank

Professor
Department of EECS

University of Tennessee
plank@cs.utk.edu

CCGSC
September 16, 2008

What is an Erasure Code?

A technique that lets you
take k pieces of data: And have the entire

system be resilient to up
to m failures:

Encode them onto m
additional pieces of data:

What is an Erasure Code?

A technique that lets you
take k pieces of data: And rebuild the original

k pieces of data from
as few as k of the

collection:

Encode them onto m
additional pieces of data:

Or, alternatively...

When are they useful?

Anytime you need to tolerate failures.

For example:

Disk Array Systems
(RAID-5/RAID-6)

When are they useful?

Anytime you need to tolerate failures.

“Digital
Fountains”

Client

Client

Client

Information Source

When are they useful?

Anytime you need to tolerate failures.

Distributed Data
or

Object Stores:

Client

Client

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.

Replicas:
Can lose data

with two failures.

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.

Erasure Codes:
Only lose data
with m failures.

Why should we care at CCGSC?

Archival
Storage:

Distributed
Object Stores:

Client

Client

Diskless
Checkpointing

Systems:

In Fact...

If we've already reached the point where our data
to store is larger than our storage capacity...

Then we should be living in a world where
erasure coding, rather than replication, is the norm.

What is the state of the world with
respect to erasure coding?

A mess!

Disk Arrays
1987

Noisy
Communication

Lines:
1960

Digital
Fountains

1997

What is the state of the world with
respect to erasure coding?

Noisy
Communication

Lines:
1960

Reed-Solomon Coding

- Any k
- Any m

Rebuild with any k blocks
(“MDS”).

Expensive: (k-1) XORs plus k Galois Field Multiplications.

What is the state of the world with
respect to erasure coding?

RAID-5 / RAID-6

- k typically < 20
- m = 1 or 2.

Rebuild with any k blocks
(“MDS”).

Faster: Approximately (k-1) XORs per coding word.

Disk Arrays
1987

• RAID-5: 1987
• EVENODD: 1996
• RDP: 2004
• Liberation: 2008

What is the state of the world with
respect to erasure coding?

LDPC Codes

“Low Density Parity Check”

k, m are very large.

Distinctly non-MDS.

Blazingly Fast: O(1) per coding word (“Low Density”).

• Tornado Codes: 1997
• LT Codes: 2002
• Raptor Codes: 2003
• Staircase Codes: 2008

Digital
Fountains

1997

• Products:

– RAID: Netapp, Panasas, EMC, etc.

– Deduplication: Data Domain.

– Archival: Allmydata, Permabit.

– Wide-Area Distribution: Cleversafe.

• Research:

– Microsoft (Pyramid Codes).

– IBM (Weaver, Hover Codes).

– HP (1-Row Horizontal Codes).

Who is doing Erasure Coding?

• RAID-6 Liberation Codes:

– FAST 2008, NCA 2008.

– Excellent performance, non-patented, new codes.

• A(x) = B in GF(2):

– An NP-Complete Problem?

• Jerasure: Open Source Coding Library:

– Reed-Solomon, RAID-6, others.

What Have I Been Doing?

Data

 Reed-Solomon Coding Primer

D4

D3

D2

D0

D1

k

0

0

X00

0

0

1

0

0

X01

0

0

1

0

0

X02

0

0

1

0

0

X03

0

0

1

0

0

X04

0

0

1

[Generator Matrix]T

k+m

k

(Message)

*

D4

D3

D2

D0

D1

=

Data+“Parity”

Encoding is a matrix-vector product: All elements are w-bit words.

(Codeword)

X10 X11 X12 X13 X14

X20 X21 X22 X23 X24

C0

C1

C2

k+m ≤ 2w

• Addition is XOR.

• Multiplication in GF(2w).

– Table lookup for w = 8.

– Discrete logs for w = 16.

– More complex for w = 32.

• Decoding = Matrix Inversion &

Reed-Solomon Coding Primer

Recalculation

D4

D3

D2

D0

D1

0

0

X00

0

0

1

0

0

X01

0

0

1

0

0

X02

0

0

1

0

0

X03

0

0

1

0

0

X04

0

0

1

*

D4

D3

D2

D0

D1

=

X10 X11 X12 X13 X14

X20 X21 X22 X23 X24

C0

C1

C2

 Cauchy Reed-Solomon Coding

0

0

X00

0

0

1

0

0

X01

0

0

1

0

0

X02

0

0

1

0

0

X03

0

0

1

0

0

X04

0

0

1
k+m

k
Explode matrix by a factor of w in both dimensions:

X10 X11 X12 X13 X14

X20 X21 X22 X23 X24

k+m ≤ 2w

wk

w(k+m)

=*

C2

C3

C1

 Cauchy Reed-Solomon Coding

Allows you to break data into large packets, and encode with XOR.

 Cauchy Reed-Solomon Coding

Allows you to break data into large packets, and encode with XOR.

C1*

=

+ + +
+ + +
+

=

• You want sparse matrices.

– Small w better than large?

– Can optimize for RAID-6.

• Do extra XOR's make up for GF(2w)
Multiplications?

• Are large packets a big win?

Cauchy Reed-Solomon Coding

=*

• Open Source Library for C/C++

– Reed-Solomon Codes

– Cauchy Reed-Solomon Codes

– General Bit-Matrix Codes

– Optimized Reed-Solomon for RAID-6

– Optimized CRS for RAID-6

– RAID-6 Liberation Codes (Minimal Density)

– Version 1.2, September, 2008

Jerasure

• Split a 1GB file into k pieces & encode into m.
• Compare jerasure with open source libraries:

– Schifra (RS: C++*)

– Zfec (RS: C – descendent of Rizzo)

– Luby (CRS: C)

– Cleversafe (CRS: Java)

• Four configurations: [k,m]

– RAID-6: [6,2], [14,2]

– [12,4], [10,6]

Encoding Performance:

[6,2] Encoding Performance

Conclusion #1:
Special-Purpose RAID-6
codes rock.

w

Conclusion #1:
Special-Purpose RAID-6
codes rock.

Conclusion #2:
Optimized CRS & RS
codes perform better.

[6,2] Encoding Performance

w

Conclusion #1:
Special-Purpose RAID-6
codes rock.

Conclusion #2:
Optimized CRS & RS
codes perform better.

Conclusion #3:
The choice of w matters!

(w = 8, 16, 32 in CRS...)

[6,2] Encoding Performance

w

[12,4] Encoding Performance

Conclusion #1:
XOR's win, but not
if you're sloppy.

[12,4] Encoding Performance

Conclusion #1:
XOR's win, but not
if you're sloppy.

Conclusion #2:
Normalized performance
bad compared to RAID-6.

[12,4] Encoding Performance

Conclusion #1:
XOR's win, but not
if you're sloppy.

Conclusion #2:
Normalized performance
bad compared to RAID-6.

Conclusion #2A:
This is the place where
research should be focused.

But what I'm hoping you've gotten out of this:

• Think coding instead of replication.

• There are good open-source tools.

• There is immediate opportunity for research in this
area.

There's a whole lot more...

Erasure Coding:
Views from 10,000 Feet

and Through a Magnifying Glass

James S. Plank

Professor
Department of EECS

University of Tennessee
plank@cs.utk.edu

CCGSC
September 16, 2008

• Inverted matrices for Liberation decoding are
not sparse.

A(x) = B in GF(2)

A decoding matrix for k=5, w=5

This is a problem for efficient decoding:
12.3 XOR's per coding word instead of 4 (optimal)

• Take inspiration from RDP – intermediate
coding elements may be used as starting
points.

RDP matrices for k = w = 4.

A(x) = B in GF(2)

• Take inspiration from RDP – intermediate
coding elements may be used as starting
points.

RDP matrices for k = w = 4.

First Q packet only
requires 3 XORs
when you start
with the second

P packet.

A(x) = B in GF(2)

• Take inspiration from RDP – intermediate
coding elements may be used as starting
points.

RDP matrices for k = w = 4.

2nd Q packet only
requires 3 XORs
when you start
with the third

P packet.

A(x) = B in GF(2)

• The idea: you use intermediate results to perform a
bit-matrix vector product with fewer XOR's than
the number of ones.

A decoding matrix for k=5, w=5

Row 0: 4 XORs instead of 15 when you start with row 5.

A(x) = B in GF(2)

• Two arrays:

– Start, initialized to -1

– XOR, initialized to # ones minus one.

The Algorithm

-1
-1
-1
-1

15
13
14

-1
11
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

A decoding matrix for k=5, w=5

• Find row with minimal XOR.

– That row will be created from scratch with
 the given number of XORs.

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
-1
-1

15
13
14

-1
11
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

• For every other row:

– See if fewer XOR's are required if that
row is used as a starting point and update
the arrays accordingly.

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
-1
-1

15
13
14

-1
11
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

E.g. Creating row 0 from row 8 requires 18 XORs, so no update.

• For every other row:

– See if fewer XOR's are required if that
row is used as a starting point and update
the tables accordingly.

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
-1
8

15
13
14

-1
4
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

E.g. However, row 3 only requires 4 XORs: Update the tables.

• Repeat the process

– Find row with minimum XORs

– Update Start/XOR of other rows.

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
8
8

15
13
13

8
4
12

-1
-1
-1
-1

13
13
12

8
7
9

Start XOR

• The Final Result:

– 45 XORs instead of 123.

– Works with RDP too (but not EVENODD).

The Algorithm

A decoding matrix for k=5, w=5

5
6
7
8

4
4
4

9
4
4

4
0
1
-1

5
4
5

3
7
5

Start XOR

• Put graphically:

Bit-matrix Scheduling

Still, A(x) = B is A(x) = B!!!

x = B

• The algorithm you just saw:

– “Code-Specific Hybrid Reconstruction” [Hafner04].

• Common Subexpression Removal.

– Implemented with matching [Huang07].

– Problem shown to be NP-Complete.

– Works well with EVENODD & RDP.

A(x) = B in GF(2): Current Approaches

EVENODD, k=5, w=4

Where common subexpression won't work.

• Dynamic Programming? Graph Algorithms?:

– It doesn't have to be blazingly fast.

• Hard-wire it in for given k/m/w.

– Doesn't A(x) = B sound like an HPC problem?

A(x) = B in GF(2)

But what I'm hoping you've gotten out of this:

• Think coding instead of replication.

• There are good open-source tools.

• There is immediate opportunity for research in this
area.

There's a whole lot more...

Erasure Coding:
Views from 10,000 Feet

and Through a Magnifying Glass

James S. Plank

Professor
Department of EECS

University of Tennessee
plank@cs.utk.edu

CCGSC
September 16, 2008

	Slide 1
	What is an Erasure Code?
	Slide 3
	When are they useful?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

