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What is an Erasure Code?

A technique that lets you 
take k pieces of data: And have the entire 

system be resilient to up 
to m failures:

Encode them onto m 
additional pieces of data:



  

What is an Erasure Code?

A technique that lets you 
take k pieces of data: And rebuild the original

k pieces of data from
as few as k of the 

collection:

Encode them onto m 
additional pieces of data:

Or, alternatively...



  

When are they useful?

Anytime you need to tolerate failures.

For example:

Disk Array Systems
(RAID-5/RAID-6)



  

When are they useful?

Anytime you need to tolerate failures.

“Digital
Fountains”

Client

Client

Client

Information Source



  

When are they useful?

Anytime you need to tolerate failures.

Distributed Data
or

Object Stores:

Client

Client



  

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.



  

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.

Replicas: 
Can lose data 

with two failures.



  

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.

Erasure Codes: 
Only lose data 
with m failures.



  

Why should we care at CCGSC?

Archival
Storage:

Distributed 
Object Stores:

Client

Client

Diskless
Checkpointing

Systems:



  

In Fact...

If we've already reached the point where our data
to store is larger than our storage capacity...

Then we should be living in a world where
erasure coding, rather than replication, is the norm.



  

What is the state of the world with
respect to erasure coding?

A mess!

Disk Arrays
1987

Noisy 
Communication

Lines:
1960

Digital
Fountains

1997



  

What is the state of the world with
respect to erasure coding?

Noisy 
Communication

Lines:
1960

Reed-Solomon Coding

- Any k
- Any m

Rebuild with any k blocks
(“MDS”).

Expensive: (k-1) XORs plus k Galois Field Multiplications.



  

What is the state of the world with
respect to erasure coding?

RAID-5 / RAID-6

- k typically < 20
- m = 1 or 2.

Rebuild with any k blocks
(“MDS”).

Faster: Approximately (k-1) XORs per coding word.

Disk Arrays
1987

• RAID-5: 1987
• EVENODD: 1996
• RDP: 2004
• Liberation: 2008 



  

What is the state of the world with
respect to erasure coding?

LDPC Codes

“Low Density Parity Check”

k, m are very large.

Distinctly non-MDS.

Blazingly Fast: O(1) per coding word (“Low Density”).

• Tornado Codes: 1997
• LT Codes: 2002
• Raptor Codes: 2003 
• Staircase Codes: 2008

Digital
Fountains

1997



  

• Products: 

– RAID: Netapp, Panasas, EMC, etc.

– Deduplication: Data Domain.

– Archival: Allmydata, Permabit.

– Wide-Area Distribution: Cleversafe.

• Research:

– Microsoft (Pyramid Codes).

– IBM (Weaver, Hover Codes).

– HP (1-Row Horizontal Codes).

Who is doing Erasure Coding?



  

• RAID-6 Liberation Codes: 

– FAST 2008, NCA 2008.

– Excellent performance, non-patented, new codes.

• A(x) = B in GF(2):

– An NP-Complete Problem?

• Jerasure: Open Source Coding Library:

– Reed-Solomon, RAID-6, others.

What Have I Been Doing?
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 Reed-Solomon Coding Primer

D4

D3

D2

D0

D1

k

0

0

X00

0

0

1

0

0

X01

0

0

1

0

0

X02

0

0

1

0

0

X03

0

0

1

0

0

X04

0

0

1

[Generator Matrix]T

k+m

k

(Message)

*

D4

D3

D2

D0

D1

=

Data+“Parity”

Encoding is a matrix-vector product: All elements are w-bit words.

(Codeword)

X10 X11 X12 X13 X14

X20 X21 X22 X23 X24

C0

C1

C2

k+m ≤ 2w



  

• Addition is XOR.

• Multiplication in GF(2w).

– Table lookup for w = 8.

– Discrete logs for w = 16.

– More complex for w = 32.

• Decoding = Matrix Inversion & 

Reed-Solomon Coding Primer
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 Cauchy Reed-Solomon Coding

0

0

X00

0

0

1

0

0

X01

0

0

1

0

0

X02

0

0

1

0

0

X03

0

0

1

0

0

X04

0

0

1
k+m

k
Explode matrix by a factor of w in both dimensions:

X10 X11 X12 X13 X14

X20 X21 X22 X23 X24

k+m ≤ 2w

wk

w(k+m)



  

=*

C2

C3

C1

 Cauchy Reed-Solomon Coding

Allows you to break data into large packets, and encode with XOR.



  

 Cauchy Reed-Solomon Coding

Allows you to break data into large packets, and encode with XOR.
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• You want sparse matrices.

– Small w better than large?

– Can optimize for RAID-6.

• Do extra XOR's make up for GF(2w) 
Multiplications?

• Are large packets a big win?

Cauchy Reed-Solomon Coding 

=*



  

• Open Source Library for C/C++

– Reed-Solomon Codes

– Cauchy Reed-Solomon Codes

– General Bit-Matrix Codes

– Optimized Reed-Solomon for RAID-6

– Optimized CRS for RAID-6

– RAID-6 Liberation Codes (Minimal Density)

– Version 1.2, September, 2008

Jerasure



  

• Split a 1GB file into k pieces & encode into m.
• Compare jerasure with open source libraries:

– Schifra (RS: C++*)

– Zfec (RS: C – descendent of Rizzo)

– Luby (CRS: C)

– Cleversafe (CRS: Java)

• Four configurations: [k,m]

– RAID-6: [6,2], [14,2]

– [12,4], [10,6]

Encoding Performance:



  

[6,2] Encoding Performance

Conclusion #1:
Special-Purpose RAID-6
codes rock.

w



  

Conclusion #1:
Special-Purpose RAID-6
codes rock.

Conclusion #2:
Optimized CRS & RS
codes perform better.

[6,2] Encoding Performance

w



  

Conclusion #1:
Special-Purpose RAID-6
codes rock.

Conclusion #2:
Optimized CRS & RS
codes perform better.

Conclusion #3:
The choice of w matters!

(w = 8, 16, 32 in CRS...)

[6,2] Encoding Performance

w



  

[12,4] Encoding Performance

Conclusion #1:
XOR's win, but not
if you're sloppy.



  

[12,4] Encoding Performance

Conclusion #1:
XOR's win, but not
if you're sloppy.

Conclusion #2:
Normalized performance
bad compared to RAID-6.



  

[12,4] Encoding Performance

Conclusion #1:
XOR's win, but not
if you're sloppy.

Conclusion #2:
Normalized performance
bad compared to RAID-6.

Conclusion #2A:
This is the place where 
research should be focused.



  

But what I'm hoping you've gotten out of this:

• Think coding instead of replication.

• There are good open-source tools.

• There is immediate opportunity for research in this 
area.

There's a whole lot more...
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• Inverted matrices for Liberation decoding are 
not sparse.

A(x) = B in GF(2)

A decoding matrix for k=5, w=5

This is a problem for efficient decoding:
12.3 XOR's per coding word instead of 4 (optimal)



  

• Take inspiration from RDP – intermediate 
coding elements may be used as starting 
points.

RDP matrices for k = w = 4.

A(x) = B in GF(2)



  

• Take inspiration from RDP – intermediate 
coding elements may be used as starting 
points.

RDP matrices for k = w = 4.

First Q packet only
requires 3 XORs
when you start
with the second

P packet.

A(x) = B in GF(2)



  

• Take inspiration from RDP – intermediate 
coding elements may be used as starting 
points.

RDP matrices for k = w = 4.

2nd Q packet only
requires 3 XORs
when you start
with the third

P packet.

A(x) = B in GF(2)



  

• The idea: you use intermediate results to perform a 
bit-matrix vector product with fewer XOR's than 
the number of ones.

A decoding matrix for k=5, w=5

Row 0: 4 XORs instead of 15 when you start with row 5.

A(x) = B in GF(2)



  

• Two arrays: 

– Start, initialized to -1

– XOR, initialized to # ones minus one.

The Algorithm

-1
-1
-1
-1

15
13
14

-1
11
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

A decoding matrix for k=5, w=5



  

• Find row with minimal XOR. 

– That row will be created from scratch with 
 the given number of XORs.

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
-1
-1

15
13
14

-1
11
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR



  

• For every other row:

– See if fewer XOR's are required if that 
row is used as a starting point and update 
the arrays accordingly. 

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
-1
-1

15
13
14

-1
11
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

E.g. Creating row 0 from row 8 requires 18 XORs, so no update.



  

• For every other row:

– See if fewer XOR's are required if that 
row is used as a starting point and update 
the tables accordingly. 

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
-1
8

15
13
14

-1
4
13

-1
-1
-1
-1

13
13
12

-1
7
12

Start XOR

E.g. However, row 3 only requires 4 XORs: Update the tables.



  

• Repeat the process

– Find row with minimum XORs

– Update Start/XOR of other rows.

The Algorithm

A decoding matrix for k=5, w=5

-1
-1
8
8

15
13
13

8
4
12

-1
-1
-1
-1

13
13
12

8
7
9

Start XOR



  

• The Final Result:

– 45 XORs instead of 123.

– Works with RDP too (but not EVENODD).

The Algorithm

A decoding matrix for k=5, w=5

5
6
7
8

4
4
4

9
4
4

4
0
1
-1

5
4
5

3
7
5

Start XOR



  

• Put graphically:

Bit-matrix Scheduling



  

Still, A(x) = B is A(x) = B!!!

x = B



  

• The algorithm you just saw: 

– “Code-Specific Hybrid Reconstruction” [Hafner04].

• Common Subexpression Removal.

– Implemented with matching [Huang07].

– Problem shown to be NP-Complete.

– Works well with EVENODD & RDP.

A(x) = B in GF(2): Current Approaches

EVENODD, k=5, w=4



  

Where common subexpression won't work.



  

• Dynamic Programming? Graph Algorithms?: 

– It doesn't have to be blazingly fast.

• Hard-wire it in for given k/m/w.

– Doesn't A(x) = B sound like an HPC problem?

A(x) = B in GF(2)



  

But what I'm hoping you've gotten out of this:

• Think coding instead of replication.

• There are good open-source tools.

• There is immediate opportunity for research in this 
area.

There's a whole lot more...
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