

Cores Per Die

Past

Present

More cores, more flops, but

 External memory bandwidth limited by pincount and power

 Intrachip communications limited by electronic interconnect power

The Memory Wall in the Many Core Era

Solution - Integrated Photonics

- Low power per bit fJ range
- Requires modulation, detection and transmission all in an integrated process
- Laser is off-chip
- Compatible with standard CMOS processes
- Chip stacking allows integration with specialization

Ring Resonators

One basic structure, 3 applications

- A modulator move in and out of resonance to modulate light on adjacent waveguide
- A switch transfers light between waveguides only when the resonator is tuned
- A wavelength specific detector add a doped junction to perform the receive function

Corona many core architecture

Optically enabled 256 core processor

Corona Chip Stack

- Stacking technology minimizes electrical path lengths
- Compatible layers, each tailored to their function
- Chip to chip and intrachip communications > 5mm are optical

Optically Connected Memory (OCM)

Corona Performance Projections

System Performance Simulation

- Compare 5 systems using:
 - Three different on-chip interconnects
 - Electrical 2D on-chip mesh, 0.64 TB/s and 5 cycle hops (LMesh)
 - Electrical 2D on-chip mesh, 1.28 TB/s and 5 cycle hops (HMesh)
 - Optical crossbar, 20.48 TB/s and 8 cycles total
 - Two different memory interconnects
 - Electrical 0.96 TB/s, 1536 signal pins, memory latency is 20 ns
 - Optical 10.24 TB/s, 256 fibers, memory latency is 20 ns

Methodology

- Simulate using COTSon + M5
- Workloads:
 - 5 synthetic benchmarks
 - SPLASH-2

Bandwidth

Latency

Relative Performance

Power comparison

Corona Benefits from Optics

- Bandwidth scales to 1,000 threads
 - 10 TB/s off-chip bandwidth
 - 20 TB/s bandwidth between cores
 - Modest power requirements
- Low, uniform latencies between cores & memory
 - Optical crossbar
- Coherent shared memory

Acknowledgements

- Ray Beausoleil, Marco Fiorentino, David Fattal
- Jung Ho Ahn, Nate Binkert, Al Davis, Norm Jouppi, Matteo Monchiero, Dana Vantrease

Some interesting programming issues

- When do large scale shared memory codes win over MPI codes?
- What factors limit the scalability of large scale shared memory codes?
- If you can have 256 cache coherent cores in one socket what should the programming model be between sockets?

LABShp

