

Corona project solving the many core interconnect crisis

Cores Per Die

羽ast

Present

Future

More cores, more flops, but

- External memory bandwidth limited by pincount and power
- Intrachip
communications limited by electronic interconnect power

The Memory Wall in the Many Core Era

(LABS ${ }^{\text {hp }}$)

Solution - Integrated Photonics

- Low power per bit - fJ range
- Requires modulation, detection and transmission all in an integrated process
- Laser is off-chip

- Compatible with standard CMOS processes
- Chip stacking allows integration with specialization

Ring Resonators

One basic structure, 3 applications

- A modulator - move in and out of resonance to modulate light on adjacent waveguide
- A switch - transfers light between waveguides only when the resonator is tuned
- A wavelength specific detector - add a doped junction to perform the receive function

Corona many core architecture

 Optically enabled 256 core processor

Corona Chip Stack

- Stacking technology minimizes electrical path lengths
- Compatible layers, each tailored to their function
- Chip to chip and intrachip communications $>5 \mathrm{~mm}$ are optical

Optically Connected Memory (OCM)

The Optical Interconnect

Corona Performance Projections

System Performance Simulation

- Compare 5 systems using:
- Three different on-chip interconnects
- Electrical 2D on-chip mesh, 0.64 TB/s and 5 cycle hops (LMesh)
- Electrical 2D on-chip mesh, 1.28 TB/s and 5 cycle hops (HMesh)
- Optical crossbar, 20.48 TB/s and 8 cycles total
- Two different memory interconnects
- Electrical 0.96 TB/s, 1536 signal pins, memory latency is 20 ns
- Optical 10.24 TB/s, 256 fibers, memory latency is 20 ns

Methodology

- Simulate using COTSon + M5
- Workloads:
- 5 synthetic benchmarks
- SPLASH-2

Bandwidth

(LABS ${ }^{\text {hp }}$]

Latency

[LABS ${ }^{\text {hp }}$]

Relative Performance

[LABS ${ }^{\text {hp }}$]

Power comparison

(LABS ${ }^{h p}$)

Corona Benefits from Optics

- Bandwidth scales to 1,000 threads
- 10 TB/s off-chip bandwidth
- 20 TB/s bandwidth between cores
- Modest power requirements
- Low, uniform latencies between cores \& memory
- Optical crossbar
- Coherent shared memory

Acknowledgements

- Ray Beausoleil, Marco Fiorentino, David Fattal Jung Ho Ahn, Nate Binkert, Al Davis, Norm Jouppi, Matteo Monchiero, Dana Vantrease

Some interesting programming issues

- When do large scale shared memory codes win over MPI codes?
- What factors limit the scalability of large scale shared memory codes?
- If you can have 256 cache coherent cores in one socket what should the programming model be between sockets?

