
Piotr Łuszczek

MATLAB on Multi-core Clusters

Yes, there is a parallel MATLAB

September 14-17, 2008
CCGSC 2008

2/24

Is There Parallel MATLAB?
● Cleve's Corner by Cleve Moler

– Title: Why there isn't a parallel MATLAB
● Memory model

– Distribution of data takes longer than computation
● Granularity

– Not much MATLAB's internal functionality can be made in paralell
● Business situation

– No customers with parallel computers
– Year of publication: 1995

– Machines of the time:
● Ardent Titan
● Intel iPSC (128 nodes)

● 2008: parallel MATLAB is a must

– Clusters are everywhere

– I cannot buy a single-core processors

September 14-17, 2008
CCGSC 2008

3/24

Parallel MATLAB? Really?
● Programming environment for matrices

– Programming language with \ as an operator

● Shell environment

– System command shell
● ! ls

– GUI shell
● fig = figure()

– Java shell
● str = java.lang.String('Hello world!')

● Set of toolboxes (80+)

– SymBio, ...

● Parallel RAD IDE?

– pafor, spmd, parallel job management, multi-cores, clusters

September 14-17, 2008
CCGSC 2008

4/24

Overview
● Multithreading

● parfor keyword

● spmd keyword

● Parallel jobs

● Distributed arrays

September 14-17, 2008
CCGSC 2008

5/24

Multithreading
● No changes to the code

● Control of parallelism

– GUI menu

– oldThreadCount =
maxNumCompThreads(new)

● Functional scope

– BLAS

– LAPACK

– Built-in operators

– Built-in functions

● Test

– for n = 1:1000
● max(svd(randn(n)))

– end

● Efficiency (lack of it)

– 1 core 100%

– 2 cores 52%

– 3 cores 35%

– 4 cores 26%

● Questions:

– Why multithreading didn't work?

– No multithreading in MATLAB?

– Multithreading no good?

September 14-17, 2008
CCGSC 2008

6/24

Overview
● Multithreading

● parfor keyword

● spmd keyword

● Parallel jobs

● Distributed arrays

September 14-17, 2008
CCGSC 2008

7/24

for → parfor
● for n = 1:1000

– max(svd(randn(n)))

● end

●

● Efficiency (complete lack of it)

– 1 100%

– 2 50%

– 3 33%

– 4 25%

● parfor n = 1:1000

– max(svd(randn(n)))

● end

●

● Efficiency

– 1 core 100%

– 2 cores 89%

– 3 cores 83%

– 4 cores 79%

September 14-17, 2008
CCGSC 2008

8/24

Example parfor Loop
● for j = 1:N

–

– total1 = total1 + j

–

–

– total2 = max(total2, foo(j))

–

–

– total3 = bar(total3, j)

● end

● parfor j = 1:N

– % operator as a reduction

– total1 = total1 + j

–

– % intrinsic as a reduction

– total2 = max(total2, foo(j))

–

– % user function as a reduction

– total3 = bar(total3, j)

● end

September 14-17, 2008
CCGSC 2008

9/24

Parallel for Loops with parfor
● Minimal changes to code for → parfor

● Control of parallelism

– matlabpool()

● Random order of iterations

– Helps load balancing

● Built-in and custom reductions

– Heavy code analysis

● Requirements

– Iteration independence

– Code transparency

● Different than OpenMP

– No need for shared memory

– No need for special syntax/pragmas

September 14-17, 2008
CCGSC 2008

10/24

Overview
● Multithreading

● parfor keyword

● spmd keyword

● Parallel jobs

● Distributed arrays

September 14-17, 2008
CCGSC 2008

11/24

parfor → spmd
● parfor n = 1:1000

– max(svd(randn(n)))

● end

● spmd

– for n = 1000:100000
● cdstr = codistributor
● A = randn(n, cdstr)
● max(svd(A))

– end

● end

September 14-17, 2008
CCGSC 2008

12/24

spmd: Remoteness and Persistence
● Automatic variable classification

– In = 1

– InOut = 3

– spmd
● Out = 2
● InOut = In + Out

– end

● Automatic data transfer

● Persistence

– spmd
● x = 1

– end

– z = 2

– spmd
● y = x + z

– end

September 14-17, 2008
CCGSC 2008

13/24

spmd and Composites
● Composites

– A = rand(1000)

– class(A) % 'double'

– spmd
● svd(A)

– end

– class(A) % 'Composite'

● Remote reference

– No data transfer unless explicitly dereferenced

● Cell-like interface

– clientA = A{1}

September 14-17, 2008
CCGSC 2008

14/24

spmd Varieties
● spmd same as spmd(0, Inf)

– x = numlabs;

● end

● spmd(3) same as spmd(3, 3)

– x = numlabs;

● end

● spmd(3, 6)

– x = numlabs;

● end

● spmd(0, Inf) same as spmd

– x = numlabs;

● end

September 14-17, 2008
CCGSC 2008

15/24

Controlling Resources with Matlabpool
● Matlabpool syntax – quick reference

– matlabpool open

– matlabpool close

– matlabpool size

– matlab open local 3

– matlab open MyCluster 127

● Controls toolboxes that already use parfor

September 14-17, 2008
CCGSC 2008

16/24

Overview
● Multithreading

● parfor keyword

● spmd keyword

● Parallel jobs

● Distributed arrays

September 14-17, 2008
CCGSC 2008

17/24

Parallel Jobs: Syntax
● mpirun -machine MyCluster

●

● -np 127

● ModelSimulation.exe
inputDataFile outputDataFile

● qsub ModelSimulation.pbs

● while [true]

– If [qstat] break

● end while

● sched = findResource('Conf',
'MyCluster')

● job = createParallelJob(sched)

● set(job,
MinimumNumberNumberOfWork
ers, 127)

● task = createTask(job,
@ModelSimulation, 1 inputData)

● submit(job)

● waitForState(job, 'finished')

● oargs =
getAllOutputArguments(job)

September 14-17, 2008
CCGSC 2008

18/24

Parallel Jobs: Overview
● Schedulers and batch systems

– local
● For a laptop, desktop, single

multi-core node

– Job Manager
● Allows callbacks from cluster

– PBS Pro, Torque

– Platform LSF

– Sun Grid Engine

– Windows CCE: CCS1, CCS2

– mpiexec
● Shell command: mpirun.

mpiexec, ...

– <generic>
● Condor, ...

● Debugging

– Deadlock detection

● Profiling

– mpiprofile() function
● Switch on or off

– Not based on PMPI layer

● Swappable MPI implementation

– Must be MPICH2 binary
compatible

● HP
● Intel
● Microsoft
● MVAPICH2
● Myricom

– MPI 3.0 request: ABI for MPI

September 14-17, 2008
CCGSC 2008

19/24

MPI vs. MATLAB
● MPI_Comm_rank

● MPI_Comm_size

● MPI_Send

● MPI_Recv

● MPI_Sendrecv

● MPI_Barrier

● MPI_Broadcast

● MPI_Probe

● MPI_Reduce(..., MPI_SUM)

● MPI_Reduce(..., MyFunction)

● mpirun -machinefile MyCluster
xterm -e MySimulation.exe

● labindex

● numlabs

● labSend

● labReceive

● labSendReceive

● labBarrier

● labBroadcast

● labProbe

● gplus

● gop

● pmode start MyCluster

September 14-17, 2008
CCGSC 2008

20/24

pmode
● Parallel shell

● Think: “inside spmd”

– spmd
● <parallel shell>

– end

● MATLAB look-and-feel

● Ideal for

– Prototyping

– Debugging

September 14-17, 2008
CCGSC 2008

21/24

Overview
● Multithreading

● parfor keyword

● spmd keyword

● Parallel jobs

● Distributed arrays

September 14-17, 2008
CCGSC 2008

22/24

Distributed Arrays: Quick Look
● Sequential code

● N = 1000

● A = rand(N)

● b = rand(N, 1)

● t = tic

● x = b \ A

● t = toc(t)

●

● fprintf(1, 'Gflop/s=%g',
 2/3 * N^3 / t)

● Parallel code

● N = 100000

● A = rand(N, codistributor)

● b = rand(N, 1, codistributor)

● t = tic

● x = b \ A

● t = toc(t)

● if (labindex == 1)

● fprintf(1, 'Gflop/s=%g',
 2/3 * N^3 / t)

● end

September 14-17, 2008
CCGSC 2008

23/24

Distributed Arrays: Functionality
● Many overloaded methods

– 150+ functions

– Operators

– Linear algerbra

– Indexing

– Data analysis

● Distribution schemes

– Variant 1D
● codistributor('1d',dim, partition)

– 2D block cyclic
● codistributor('2d',

 [labRows labCols],
 blkSize)

September 14-17, 2008
CCGSC 2008

24/24

Parting Words Picture

CCS

LSF

PBS

mpiexec
Local workers

Ethernet

InfiniBand

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

