
Performance Results for Nested
Parallelism on MulticoreParallelism on Multicore

Architectures

David W. Walker and Martin Chorley
Cardiff School of Comp ter ScienceCardiff School of Computer Science

Martyn F. Guesty
Advanced Research Computing @ Cardiff

16 September 2008 1

Hybrid ProgrammingHybrid Programming
• Uses both Message Passing (MP) and Shared Memory (SM)

programming models.
– Use Message Passing to communicate between nodes of a

cluster.
– Use Shared Memory programming to communicate within a node.

• Shared memory accesses within a node should be faster than using
message passing.

• Exploit the hierarchical nature of modern HPC systems by using p y y g
hierarchical parallelism.

• Previous work done focusing on SMP systems, found mixed results.
– Performance depends on compiler hardware and algorithmsPerformance depends on compiler, hardware and algorithms

used.

16 September 2008 2

Current ResearchCurrent Research
• Looking at a 3D Molecular Dynamics (MD) code.

O i i ll ll li d i MPI– Originally parallelised using MPI
• Have implemented a hybrid version.
• Added Shared Memory parallelism using OpenMP• Added Shared Memory parallelism using OpenMP.

– Main work loop parallelised with shared memory
threading.

• Performance testing on different multi-core systems.
– Dual core Intel Xeon system (Woodcrest).
– Quad core Intel Xeon system (Harpertown).

16 September 2008 3

The Molecular DynamicsThe Molecular Dynamics
Application

• Shifted Lennard-Jones potential used to study
molecular liquids.

• Assume the potential between 2 particles is zero if

)())/()/((4)(612
crrBArrrv −−−−= σσε

• Assume the potential between 2 particles is zero if
they are more than rc apart. Typically rc = 2.5 .

• A and B are constants that ensure the potential and
the force go to zero at r = rc.

• The velocity Verlet algorithm is used to update
particle positions and velocities

16 September 2008 4

particle positions and velocities.

Cut-Off Distance

If we divide the
domain of the problem
into cells of size r rinto cells of size rc rc
each particle only
interacts with the
particles in its own cell
and the 8 neighbouring
cellscells.

16 September 2008 5

Data DistributionData Distribution

• The particles areThe particles are
distributed to
processes byprocesses by
assigning a
rectangular blockrectangular block
of cells to each
processprocess.

16 September 2008 6

Communication Requirements

• Each particle needs information about the
particles in the neighboring cells in order to
determine the force on it. So we need to
communicate particles lying in cells along the
boundary of each processboundary of each process

• When particles move they may travel from the
set of cells owned by one process to those ofset of cells owned by one process to those of
another process. This is called particle
migration and requires communication.

16 September 2008 7

g at o a d equ es co u ca o

Determining the Forces
for (each particle, p, in this process){

find out the location (i,j) of cell that p is in
force[p] = 0;
f (ll (i j) d th 8 i hb i ll){for (cell (i,j) and the 8 neighbouring cells){

for (each particle q in cell){
add force of q on p to force[p]

}
}

}

16 September 2008 8

Structure of MD CodeStructure of MD Code

for each time stepfor each time step
update positions and velocities
communicate using MPI (point-to-point)communicate using MPI (point-to-point)
update forces
update velocities

Most of the
computational update velocities

sum energies (reduction)
accumulate statistics

work is here

accumulate statistics
equilibrate if necessary

16 September 2008 9

Pure MPI and Hybrid Codes

• Pure MPI: one MPI process runs on each core.
Communication may be via
– SocketsSockets
– Shared memory

• Hybrid1: each node has the SPMD code running on
one core and uses MPI to communicate particle dataone core, and uses MPI to communicate particle data
between nodes.

• Hybrid2: same as Hybrid1 except that each node has
MPI i tMPI running on two cores.

• In the force routine OpenMP is used to spread the
force calculations over all cores in a node.

16 September 2008 10

MPI CodeMPI Code

0 61 52 3 4 70

MPI

61 52 3 4 7

MPI

Force
calculatio

n

MPI

16 September 2008 11

Hybrid 1 Code
0 61 52 3 4 70 61 52 3 4 7

MPIMPI
Fork

Force
calculatio

n

MPI

Join

16 September 2008 12

Hybrid 2 Code
0 61 52 3 740 61 52 3 7

MPI

4

MPI
Fork

Force
calculatio

n

MPI

Join

16 September 2008 13

Hybrid ImplementationHybrid Implementation
2D Space

Divide Divide
between
nodes

Distribute Distribute
to nodes

Message
Passing g
between
nodes

Shared
Memory
threading
within
node

16 September 2008 14

node

Structure of Threaded ForceStructure of Threaded Force
Routine

#pragma omp parallel default(none) shared(v,p,fx,fy,fz,rx,ry,rz,…)
{

#pragma omp for private(i)
for (each particle, i){

set forces on i to 0set forces on i to 0
}
#pragma omp for private(icell,…) reduction(+:v,p)
for (each cell, icell, on this node){

for (each particle, i, in this cell){
for (each particle, j, in this and neighboring cells){

Find force on particle i due to particle j, and add to force on
particle i. Sum contributions to v and p.

}
}}

}
}

16 September 2008 15

Advanced Research Computing @Advanced Research Computing @
Cardiff

• Merlin, the main ARCCA machine,
consists of 256 nodes each with 2
processors. Each processor has 4 cores
= 2048 cores.

• Linpack performance is 20.12 Tflop/s.
• One of the top 3 fastest machines in• One of the top 3 fastest machines in

academia in the UK.

16 September 2008 16

Merlin at ARCCAMerlin at ARCCA

• 256 Compute Nodes, each containing:
– 2 x Xeon E5472 Quad-Core 3.0GHz

P (8 d)Processors (8 cores per node)
– 16GB Ram

160GB HDD– 160GB HDD
• Infiniband 4X DDR network (20 Gbps)

– 140 to 420 nanosecond latency140 to 420 nanosecond latency
– 288 port Voltaire switch.

• Gigabit Ethernet networks
16 September 2008 17

Gigabit Ethernet networks
– 1 & 10 Gbps

Merlin - Xeon E5472 Processor

• Quad-core, Harpertown/Seaburg.
• 32kb Instruction Cache and 32kb Data32kb Instruction Cache and 32kb Data

Cache at L1 (per core).
• 6MB L2 cache per pair of cores• 6MB L2 cache per pair of cores.
• 1600 Mhz Front Side Bus.

16 September 2008 18

Merlin - Software

• Red Hat Enterprise Linux 5.
• PBS Pro Job SchedulerPBS Pro Job Scheduler.
• Intel 10.1.015 Compilers.

B ll MPI 2• Bull MPI 2.

16 September 2008 19

CSEEM64T at Daresbury Lab

• 32 Compute Nodes, each containing:
– 2 x Xeon Dual-Core 5160 3.0Ghz2 x Xeon Dual Core 5160 3.0Ghz

Processors (4 cores per node).
– 8GB Ram.

• Gigabit Ethernet Network.
• Infinipath Network• Infinipath Network.

16 September 2008 20

CSEEM64T – Xeon 5160CSEEM64T Xeon 5160
Processor

• Dual-Core, Woodcrest
• 32kb Instruction Cache and 32kb Data32kb Instruction Cache and 32kb Data

Cache at L1 (per core).
• 4MB L2 cache shared between both• 4MB L2 cache shared between both

cores.
1333Mh F t Sid B• 1333Mhz Front Side Bus

16 September 2008 21

CSEEM64T - Software

• Suse Linux 10.1
• Intel 10 1 015 CompilersIntel 10.1.015 Compilers
• Intel MPI 3.0

S G id E i J b S h d l• Sun Grid Engine Job Scheduler

16 September 2008 22

Further info:

• Merlin:
– http://www.cardiff.ac.uk/arcca/services/equihttp://www.cardiff.ac.uk/arcca/services/equi

pment/intro-merlin.html
• CSEEM64T:CSEEM64T:

– http://www.cse.scitech.ac.uk/disco/cseem6
4t/cseem64t.shtml4t/cseem64t.shtml

16 September 2008 23

Merlin (GigE) - Time breakdown - 44,957,696 particles - 128
corescores

450

500

350

400

450

) Startup

250

300

e
(s

ec
on

ds
) p

Hloop
Sum
MoveB
MoveA

100

150

200

Ti
m

e

Movout
Forces

0

50

MPI Hybrid1

16 September 2008 24

MPI Hybrid1

Merlin (GigE) - Time breakdown - 44,957,696 particles - 512
corescores

600

400

500

s)

Startup

300

m
e

(s
ec

on
ds Hloop

Sum
MoveB
MoveA

100

200Ti
m Movout

Forces

0

100

MPI Hybrid1

16 September 2008 25

MPI Hybrid1

Merlin (Infiniband) ‐ Time Breakdown ‐ 44,957,696 Particles ‐ 128 Cores

250

200

ds

Startup
Hloop

150

e
in

 s
ec

on
d

Sum
MoveB
MoveA
Movout

50

100

Ti
m Force

0

50

16 September 2008 26

0

MPI Hybrid

CSEEM64T - Time breakdown - 44,957,696 particles - 96 cores

400

450

300

350

nd
s) Startup

Hloop

200

250

im
e

(s
ec

on

Hloop
Sum
MoveB
MoveA
Movout

50

100

150Ti Force

0

50

MPI Hybrid 1

16 September 2008 27

CSEEM64T Time breakdown 44 957 696 particles 32 coresCSEEM64T - Time breakdown - 44,957,696 particles - 32 cores

900

1000

700

800

900

s) Startup

400

500

600

m
e

(s
ec

on
ds Hloop

Sum
MoveB
MoveA
M t

200

300

400

Ti
m Movout

Force

0

100

MPI Hybrid 1

16 September 2008 28

y

CSEEM64T (GigE) movout Times - 8,388,608 Particles

90

100

60

70

80

nd
s)

40

50

60

im
e

(s
ec

on Irecv-Send-Wait

Sendrecv

10

20

30T

0
4 16 32 48 64 80 96

Number of Cores

16 September 2008 29

CSEEM64T (GigE) movout Times - 44,957,696 Particles

300

350

200

250

300

nd
s)

150

200

im
e

(s
ec

on Irecv-Send-Wait

Sendrecv

50

100T

0

4 16 32 48 64 80 96
N b f C

16 September 2008 30

Number of Cores

Merlin (InfiniBand) - movout timings - 16,384,000 particles

12

10

12

8

on
ds

)

4

6

Ti
m

e
(s

ec
o

Irecv-Send-Wait
Sendrecv

2

4T

0
32 64 128 192 256 320 384 448 512

16 September 2008 31

Number of cores

Merlin (InfiniBand) - movout timings - 44,957,696 particles

30

25

30

20

on
ds

)

10

15

Ti
m

e
(s

ec
o

Irecv-Send-Wait
Sendrecv

5

10T

0
32 64 128 192 256 320 384 448 512

16 September 2008 32

Number of cores

Timings for 16 384 000 ParticlesTimings for 16,384,000 Particles

10000

1000

co
nd

s) Merlin Infiniband MPI
Merlin Infiniband Hybrid
Merlin Infiniband Hybrid 2

100Ti
m

e
(s

ec

Merlin Infiniband Hybrid 2
Merlin GigE MPI
Merlin GigE Hybrid
Merlin GigE Hybrid 2

10
32 64 128 192 256 320 384 448 512

Number of Cores

16 September 2008 33

Timings for 44,957,696 Particles

10000

1000

ds
) Merlin Infiniband MPI

M li I fi ib d H b id

100Ti
m

e
(s

ec
on Merlin Infiniband Hybrid

Merlin Infiniband Hybrid 2
Merlin GigE MPI
Merlin GigE Hybrid
Merlin GigE Hybrid 2

10
32 64 128 192 256 320 384 448 512

Number of Cores

16 September 2008 34

CSEEM64T (GigE) - MPI sock vs ssm vs Hybrid - 44,957,696
particles

100000

s)

1000

10000

m
e

(s
ec

on
ds

MPI sock
MPI ssm
Hybrid

100

1000Ti
m

100
4 8 12 16 24 32 48 64 80 96

Number of cores

16 September 2008 35

CSEEM64T (GigE) - sock vs ssm - 44,957,696 particles

100000

10000

ec
on

ds
)

MPI sock

MPI ssm

Hybrid 2 sock

1000Ti
m

e
(s

e Hybrid 2 sock

Hybrid 2 ssm

Hybrid ssm/sock

100
4 8 12 16 24 32 48 64 80 96

Number of cores

16 September 2008 36

CSEEM64T (GigE) ‐ Speedup ‐ 8,388,608 particles

120

80

100

60

80

Sp
ee

du
p MPI

Hybrid (1
MPI)
Hybrid (2

20

40
Hybrid (2
MPI)

0

1 16 32 48 64 80 96

N b f

16 September 2008 37

Number of cores

CSEEM64T (GigE) ‐ Speedup ‐ 28 311 552 ParticlesCSEEM64T (GigE) Speedup 28,311,552 Particles

180

200

120

140

160

p

80

100

120

Sp
ee
du

p

MPI

Hybrid (1
MPI)
Hybrid (2
MPI)

20

40

60

0

1 4 8 12 16 24 32 48 64 80 96

Number of Cores

16 September 2008 38

Number of Cores

CSEEM64T (GigE) ‐ Speedup ‐ 44 957 696 ParticlesCSEEM64T (GigE) ‐ Speedup ‐ 44,957,696 Particles

250

300

200

250

p

100

150

Sp
ee
du

p

MPI

Hybrid (1 MPI)

Hybrid (2 MPI)

Linear

50

100

0

1 4 8 12 16 24 32 48 64 80 96

Number of Cores

16 September 2008 39

Number of Cores

Merlin Infiniband - Speedup- 16,384,000 particles

600

500

600

400

p MPI

200

300

S
pe

ed
u MPI

Hybrid 1
Hybrid 2
Linear

100

200

0
32 64 128 192 256 320 384 448 512

16 September 2008 40

Number of Cores

Merlin Infiniband - Speedup- 28,311,552 particles

600

500

600

400

p MPI

200

300

S
pe

ed
u MPI

Hybrid 1
Hybrid 2
Linear

100

200

0
32 64 128 192 256 320 384 448 512

16 September 2008 41

Number of Cores

Merlin Infiniband - Speedup- 44,957,696 particles

600

500

600

400

p MPI

200

300

S
pe

ed
u MPI

Hybrid 1
Hybrid 2
Linear

100

200

0
32 64 128 192 256 320 384 448 512

16 September 2008 42

Number of Cores

MPI Collectives - Allreduce
IMB -3 0 : Allreduce and de-populating the NodesIMB 3.0 : Allreduce and de populating the Nodes

1.0E+06 ClusterVision Opteron 270/2.0GHz DC + GBitE
SGI Ice X5365 Clovertown 3.0GHz QC + IB (PPN=4)

1 0E 04

1.0E+05

c.
)

()
SGI Ice X5365 Clovertown 3.0GHz QC + IB
Bull Xeon E5472 3.0GHz QC 1600 FSB + ConnectX (PPN=8)
Bull Xeon E5472 3.0GHz QC 1600 FSB + ConnectX (PPN=4)
Bull Xeon E5472 3.0GHz QC 1600 FSB + ConnectX (PPN=1)

1.0E+03

1.0E+04

im
e

(u
se

c Q ()

1.0E+02

ea
su

re
d

Ti

1.0E+00

1.0E+01

Message Length (Bytes)

M
e

16 September 2008 43

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Hybrid Codes - Materials Simulation.
Pl W M th d CASTEP CPMDPlane Wave Methods: CASTEP, CPMD

Direct minimisation of the total energy

∑
<+

+−=
cutEGk

rGkik
Gj

k
j eCr

2)(
).(

,)(
rr

r

rrrr

r

r rψ
G
r

• Pseudopotentials used to keep the no. of plane waves manageable

• Large number of basis functions N~106 (especially for heavy atoms).

The plane wave expansion means that the bulk of the computation
comprises large 3D Fast Fourier Transforms (FFTs) between real andcomprises large 3D Fast Fourier Transforms (FFTs) between real and
momentum space.

• These are distributed across the processors in various ways.

16 September 2008 44

• FFT routines are optimized for the cache size of the CPU.

Hybrid Programming - CPMDHybrid Programming CPMD
• Developed at IBM Zurich from the original Car-Parrinello Code in

1993(www cpmd org); Hutter & Curioni1993(www.cpmd.org); Hutter & Curioni
– Different strategies are followed in parallel implementations of

plane-wave / pseudo-potential codes. Parallelization of CPMD was
done on different levels The central parallelization is based on adone on different levels. The central parallelization is based on a
distributed-memory coarse-grain algorithm that is a compromise
between load balancing, memory distribution and parallel
efficiency.efficiency.

– In addition to the basic scheme, a fine-grain shared-memory
parallelization was implemented. Parallelization on the loop level
is achieved by using OpenMP compiler directives and multi-is achieved by using OpenMP compiler directives and multi
threaded libraries (BLAS and FFT) if available.

– The two parallelization methods are independent and can be
mixed. This yields good performance on distributed computers

16 September 2008 45

mixed. This yields good performance on distributed computers
with shared memory nodes and several thousands of CPUs..

Future WorkFuture Work
• Complete set of timings runs for CSEEM64T g

with InfiniPath
• Extend timing results to more nodes.g
• More analysis of hybrid MD code – would like

to develop a better understanding of p g
performance.

• Apply similar techniques to Molpro – aApply similar techniques to Molpro a
Quantum Chemistry code with sections that
may benefit from hybrid parallelism.

16 September 2008 46

y y p

ConclusionConclusion
• Research is focused on improving

performance of real world scientific codes.
– Hybrid shared memory and message passing

programming.
• Previous work has been done on this, but not

with modern multi-core clustered hardware.
• Initial results show there may be a benefit to

using hybrid programming in certain cases.
• Need to extend initial results to other

16 September 2008 47
computational chemistry codes.

Acknowledgments

• It is a pleasure to acknowledgment the
following:g
– Prof Peter Knowles
– Funding from the EPSRC: EP/C007832/1Funding from the EPSRC: EP/C007832/1

16 September 2008 48

Any Questions?Any Questions?

16 September 2008 49

