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Hybrid ProgrammingHybrid Programming
• Uses both Message Passing (MP) and Shared Memory (SM) 

programming models.
– Use Message Passing to communicate between nodes of a 

cluster.
– Use Shared Memory programming to communicate within a node.

• Shared memory accesses within a node should be faster than using 
message passing.

• Exploit the hierarchical nature of modern HPC systems by using p y y g
hierarchical parallelism.

• Previous work done focusing on SMP systems, found mixed results.
– Performance depends on compiler hardware and algorithmsPerformance depends on compiler, hardware and algorithms 

used.
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Current ResearchCurrent Research
• Looking at a 3D Molecular Dynamics (MD) code.

O i i ll ll li d i MPI– Originally parallelised using MPI
• Have implemented a hybrid version.
• Added Shared Memory parallelism using OpenMP• Added Shared Memory parallelism using OpenMP.

– Main work loop parallelised with shared memory 
threading.

• Performance testing on different multi-core systems.
– Dual core Intel Xeon system (Woodcrest).
– Quad core Intel Xeon system (Harpertown).
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The Molecular DynamicsThe Molecular Dynamics 
Application

• Shifted Lennard-Jones potential used to study 
molecular liquids.

• Assume the potential between 2 particles is zero if

)())/()/((4)( 612
crrBArrrv −−−−= σσε

• Assume the potential between 2 particles is zero if 
they are more than rc apart. Typically rc = 2.5 . 

• A and B are constants that ensure the potential and 
the force go to zero at r = rc.

• The velocity Verlet algorithm is used to update 
particle positions and velocities
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Cut-Off Distance

If we divide the 
domain of the problem 
into cells of size r rinto cells of size rc rc
each particle only 
interacts with the 
particles in its own cell 
and the 8 neighbouring 
cellscells.
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Data DistributionData Distribution

• The particles areThe particles are   
distributed to 
processes byprocesses by 
assigning a 
rectangular blockrectangular block 
of cells to each 
processprocess.
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Communication Requirements

• Each particle needs information about the 
particles in the neighboring cells in order to 
determine the  force on it. So we need to 
communicate particles lying in cells along the 
boundary of each processboundary of each process

• When particles move they may travel from the 
set of cells owned by one process to those ofset of cells owned by one process to those of 
another process. This is called particle 
migration and requires communication.
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Determining the Forces
for (each particle, p, in this process){

find out the location (i,j) of cell that p is in
force[p] = 0;
f ( ll (i j) d th 8 i hb i ll ){for (cell (i,j) and the 8 neighbouring cells){

for (each particle q in cell){
add force of q on p to force[p]

}
}

}
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Structure of MD CodeStructure of MD Code

for each time stepfor each time step
update positions and velocities
communicate using MPI (point-to-point)communicate using MPI (point-to-point)
update forces
update velocities

Most of the 
computational update velocities

sum energies (reduction)
accumulate statistics

work is here

accumulate statistics
equilibrate if necessary
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Pure MPI and Hybrid Codes

• Pure MPI: one MPI process runs on each core. 
Communication may be via
– SocketsSockets
– Shared memory

• Hybrid1: each node has the SPMD code running on 
one core and uses MPI to communicate particle dataone core, and uses MPI to communicate particle data 
between nodes.

• Hybrid2: same as Hybrid1 except that each node has 
MPI i tMPI running on two cores.

• In the force routine OpenMP is used to spread the 
force calculations over all cores in a node.
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MPI CodeMPI Code
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Hybrid 1 Code
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Hybrid 2 Code
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Hybrid ImplementationHybrid Implementation
2D Space

Divide Divide 
between 
nodes

Distribute Distribute 
to nodes

Message 
Passing g
between 
nodes

Shared 
Memory 
threading 
within 
node
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Structure of Threaded ForceStructure of Threaded Force 
Routine

#pragma omp parallel default(none) shared(v,p,fx,fy,fz,rx,ry,rz,…)
{

#pragma omp for private(i)
for (each particle, i){

set forces on i to 0set forces on i to 0
}
#pragma omp for private(icell,…) reduction(+:v,p)
for (each cell, icell, on this node){              

for (each particle, i, in this cell){
for (each particle, j, in this and neighboring cells){

Find force on particle i due to particle j, and add to force on
particle i. Sum contributions to v and p.

}
}}

}
}
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Advanced Research Computing @Advanced Research Computing @ 
Cardiff

• Merlin, the main ARCCA machine, 
consists of 256 nodes each with 2 
processors. Each processor has 4 cores 
= 2048 cores.

• Linpack performance is 20.12 Tflop/s.
• One of the top 3 fastest machines in• One of the top 3 fastest machines in 

academia in the UK.
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Merlin at ARCCAMerlin at ARCCA

• 256 Compute Nodes, each containing:
– 2 x Xeon E5472 Quad-Core 3.0GHz 

P (8 d )Processors (8 cores per node)
– 16GB Ram

160GB HDD– 160GB HDD
• Infiniband 4X DDR network (20 Gbps)

– 140 to 420 nanosecond latency140 to 420 nanosecond latency
– 288 port Voltaire switch.

• Gigabit Ethernet networks
16 September 2008 17
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Merlin - Xeon E5472 Processor 

• Quad-core, Harpertown/Seaburg.
• 32kb Instruction Cache and 32kb Data32kb Instruction Cache and 32kb Data 

Cache at L1 (per core).
• 6MB L2 cache per pair of cores• 6MB L2 cache per pair of cores.
• 1600 Mhz Front Side Bus.
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Merlin - Software

• Red Hat Enterprise Linux 5.
• PBS Pro Job SchedulerPBS Pro Job Scheduler.
• Intel 10.1.015 Compilers.

B ll MPI 2• Bull MPI 2.
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CSEEM64T at Daresbury Lab

• 32 Compute Nodes, each containing:
– 2 x Xeon Dual-Core 5160 3.0Ghz2 x Xeon Dual Core 5160 3.0Ghz 

Processors (4 cores per node).
– 8GB Ram.

• Gigabit Ethernet Network.
• Infinipath Network• Infinipath Network.
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CSEEM64T – Xeon 5160CSEEM64T Xeon 5160 
Processor

• Dual-Core, Woodcrest
• 32kb Instruction Cache and 32kb Data32kb Instruction Cache and 32kb Data 

Cache at L1 (per core).
• 4MB L2 cache shared between both• 4MB L2 cache shared between both 

cores.
1333Mh F t Sid B• 1333Mhz Front Side Bus
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CSEEM64T - Software

• Suse Linux 10.1
• Intel 10 1 015 CompilersIntel 10.1.015 Compilers
• Intel MPI 3.0

S G id E i J b S h d l• Sun Grid Engine Job Scheduler

16 September 2008 22



Further info:

• Merlin:
– http://www.cardiff.ac.uk/arcca/services/equihttp://www.cardiff.ac.uk/arcca/services/equi

pment/intro-merlin.html
• CSEEM64T:CSEEM64T:

– http://www.cse.scitech.ac.uk/disco/cseem6
4t/cseem64t.shtml4t/cseem64t.shtml
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Merlin (GigE) - Time breakdown - 44,957,696 particles - 128 
corescores
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Merlin (GigE) - Time breakdown - 44,957,696 particles - 512 
corescores
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Merlin (Infiniband) ‐ Time Breakdown ‐ 44,957,696 Particles ‐ 128 Cores
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CSEEM64T - Time  breakdown - 44,957,696 particles - 96 cores
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CSEEM64T Time breakdown 44 957 696 particles 32 coresCSEEM64T - Time  breakdown - 44,957,696 particles - 32 cores
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CSEEM64T (GigE) movout Times - 8,388,608 Particles
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CSEEM64T (GigE) movout Times - 44,957,696 Particles
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Merlin (InfiniBand) - movout timings - 16,384,000 particles
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Merlin (InfiniBand) - movout timings - 44,957,696 particles
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Timings for 16 384 000 ParticlesTimings for 16,384,000 Particles
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Timings for 44,957,696 Particles
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CSEEM64T (GigE) - MPI sock vs ssm vs Hybrid - 44,957,696 
particles
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CSEEM64T (GigE) - sock vs ssm - 44,957,696 particles
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CSEEM64T (GigE) ‐ Speedup ‐ 8,388,608 particles
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CSEEM64T (GigE) ‐ Speedup ‐ 28 311 552 ParticlesCSEEM64T (GigE)   Speedup   28,311,552 Particles 
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CSEEM64T (GigE) ‐ Speedup ‐ 44 957 696 ParticlesCSEEM64T (GigE) ‐ Speedup ‐ 44,957,696 Particles 
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Merlin Infiniband - Speedup- 16,384,000 particles

600

500

600

400

p MPI

200

300

S
pe

ed
u MPI

Hybrid 1
Hybrid 2
Linear

100

200

0
32 64 128 192 256 320 384 448 512

16 September 2008 40

Number of Cores



Merlin Infiniband - Speedup- 28,311,552 particles
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Merlin Infiniband - Speedup- 44,957,696 particles
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MPI Collectives - Allreduce
IMB -3 0 : Allreduce and de-populating the NodesIMB 3.0 : Allreduce and de populating the Nodes
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Hybrid Codes - Materials Simulation. 
Pl W M th d CASTEP CPMDPlane Wave Methods: CASTEP, CPMD

Direct minimisation of the total energy 
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• Pseudopotentials used to keep the no. of plane waves manageable

• Large number of basis functions N~106 (especially for heavy atoms).

The plane wave expansion means that the bulk of the computation 
comprises large 3D Fast Fourier Transforms (FFTs) between real andcomprises large 3D Fast Fourier Transforms (FFTs) between real and 
momentum space. 

• These are distributed across the processors in various ways.

16 September 2008 44

• FFT routines are optimized for the cache size of the CPU.



Hybrid Programming - CPMDHybrid Programming CPMD
• Developed at IBM Zurich  from the original Car-Parrinello Code in 

1993(www cpmd org); Hutter & Curioni1993(www.cpmd.org); Hutter & Curioni
– Different strategies are followed in parallel implementations of 

plane-wave / pseudo-potential codes. Parallelization of CPMD was 
done on different levels The central parallelization is based on adone on different levels. The central parallelization is based on a 
distributed-memory coarse-grain algorithm that is a compromise 
between load balancing, memory distribution and parallel 
efficiency.efficiency. 

– In addition to the basic scheme, a fine-grain shared-memory 
parallelization was implemented. Parallelization on the loop level 
is achieved by using OpenMP compiler directives and multi-is achieved by using OpenMP compiler directives and multi
threaded libraries (BLAS and FFT) if available. 

– The two parallelization methods are independent and can be 
mixed. This yields good performance on distributed computers
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mixed. This yields good performance on distributed computers 
with shared memory nodes and several thousands of CPUs..



Future WorkFuture Work
• Complete set of timings runs for CSEEM64T g

with InfiniPath
• Extend timing results to more nodes.g
• More analysis of hybrid MD code – would like 

to develop a better understanding  of p g
performance.

• Apply similar techniques to Molpro – aApply similar techniques to Molpro a 
Quantum Chemistry code with sections that 
may benefit from hybrid parallelism.
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ConclusionConclusion
• Research is focused on improving 

performance of real world scientific codes.
– Hybrid shared memory and message passing 

programming.
• Previous work has been done on this, but not 

with modern multi-core clustered hardware.
• Initial results show there may be a benefit to 

using hybrid programming in certain cases.
• Need to extend initial results to other 
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Any Questions?Any Questions?
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