sults for Nested
on Multicore
ctures

hd Martin Chorley
Computer Science

Guest
omputing @ Cardiff

Hybrid Programming

Uses both Message Passing (MP) and Shared Memory (SM)
programming models.

— Use Message Passing to communicate between nodes of a
cluster.

— Use Shared Memory programming to communicate within a node.
Shared memory accesses within a node should be faster than using
message passing.

Exploit the hierarchical nature of modern HPC systems by using
hierarchical parallelism.

Previous work done focusing on SMP systems, found mixed results.

— Performance depends on compiler, hardware and algorithms
used.

16 September 2008 2

Current Research

Looking at a 3D Molecular Dynamics (MD) code.

— Originally parallelised using MPI

Have implemented a hybrid version.

Added Shared Memory parallelism using OpenMP.

— Main work loop parallelised with shared memory
threading.

Performance testing on different multi-core systems.
— Dual core Intel Xeon system (Woodcrest).
— Quad core Intel Xeon system (Harpertown).

16 September 2008

The Molecular Dynamics
Application

« Shifted Lennard-Jones potential used to study
molecular liquids.

v(r)=4s((c/r)? —(c/r)°)-A-B(r-r)

« Assume the potential between 2 particles is zero if
they are more than r_ apart. Typically r, = 2.5¢.

« A and B are constants that ensure the potential and
the force goto zeroatr =r..

 The velocity Verlet algorithm is used to update
particle positions and velocities.

16 September 2008

Cut-Off Distance

o o%el0 el " te o Ifwedivide the

eo|.%le *|**|e *[**|es|s*| domain ofthe problem
"leleleele |* o ofe | intocellsofsizer.er,

Sl e . |en e o] each particle only

® oo [*e%oute Slle fle o [e.®| Interacts with the

S leticf . iff *1® 1 Dparticlesin its own cell

ol e e e . 4%, | andthe 8 neighbouring

..:. g:.... ..J ¢) CeIIS.

o n.:L S |4 o.. o .. .'.o .o:

16 September 2008 5

Data Distribution

=15 » The particles are

distributed to

processes by

assigning a

rectangular block

of cells to each

Process.

16 September 2008 6

Communication Requirements

e Each particle needs information about the
particles in the neighboring cells in order to
determine the force on it. So we need to
communicate particles lying in cells along the
boundary of each process

 \When particles move they may travel from the
set of cells owned by one process to those of
another process. This is called particle
migration and requires communication.

16 September 2008 7

':t‘he Forces

7|

for (each particle, p, 1In this process){
find out the location (i1,jJ) of cell that p i1s In
force[p] = O;
for (cell (1,)) and the 8 neirghbouring cells){
for (each particle q 1n cell){
add force of g on p to force[p]

‘l

V.
f“,I\/ID Code

d velocities

| MPI (point-to-point)

Most of the
computational
work is here

Pure MPI| and Hybrid Codes

Pure MPI: one MPI process runs on each core.
Communication may be via

— Sockets

— Shared memory

Hybridl: each node has the SPMD code running on
one core, and uses MPI to communicate particle data
between nodes.

Hybrid2: same as Hybrid1l except that each node has
MPI running on two cores.

In the force routine OpenMP is used to spread the
force calculations over all cores in a node.

16 September 2008 10

11

N

il

2D Space
Divide
between
nodes

Distribute
to nodes

Message
Passing
between
nodes

Shared
Memory
threading
within
node

14

neighboring cells){
le i due to particle j, and add to force on
ributions to v and p.

15

Advanced Research Computing @
Cardiff

 Merlin, the main ARCCA machine,
consists of 256 nodes each with 2
processors. Each processor has 4 cores
= 2048 cores.

e Linpack performance is 20.12 Tflop/s.

 One of the top 3 fastest machines in
academia in the UK.

16 September 2008 16

Merlin at ARCCA

« 256 Compute Nodes, each containing:

— 2 X Xeon E5472 Quad-Core 3.0GHz
Processors (8 cores per node)

— 16GB Ram
— 160GB HDD

 Infiniband 4X DDR network (20 Gbps)

— 140 to 420 nanosecond latency
— 288 port Voltaire switch.

 Gigabit Ethernet networks
16 Seaer%e(r%og'sO Gbps

17

Merlin - Xeon E5472 Processor

 Quad-core, Harpertown/Seaburg.

e 32kb Instruction Cache and 32kb Data
Cache at L1 (per core).

e 6MB L2 cache per pair of cores.
e 1600 Mhz Front Side Bus.

16 September 2008 18

&
{8
=
=

19

CSEEMG64T at Daresbury Lab

e 32 Compute Nodes, each containing:

— 2 X Xeon Dual-Core 5160 3.0Ghz
Processors (4 cores per node).

— 8GB Ram.
e Gigabit Ethernet Network.
e Infinipath Network.

16 September 2008

20

CSEEM64T — Xeon 5160
Processor

e Dual-Core, Woodcrest

e 32kb Instruction Cache and 32kb Data
Cache at L1 (per core).

e AMB L2 cache shared between both
cores.

e 1333Mhz Front Side Bus

16 September 2008 21

'Software

_|

Scheduler

22

1fo:

uk/arcca/services/equl

ac.uk/disco/cseem6

23

‘iIme breakdown - 44,957,696 particles - 128
cores

m Startup
@ Hloop

B Sum
O MoweB
O MowveA

m Mowout
o Forces

Hybrid1

24

) - Time breakdown - 44,957,696 particles - 512
: cores

| Startup
@ Hloop

B Sum
O MoweB
O MowveA

m Mowout

o Forces

Hybridl

25

250

Merlin (Infiniband) - Time Breakdown - 44,957,696 Particles - 128 Cores

200

=
ol
o

Time in seconds
. _
(@]
o

50

[

| Startup
@ Hloop
B Sum

O MoveB
O MoveA
B Movout
B Force

MPI Hybrid
16 September 2008 26

Hybrid 1

| Startup
@ Hloop
B Sum

O MoveB
O MoveA
E Movout
@ Force

particles - 32 cores

Hybrid 1

B Startup
@ Hloop
B Sum

O MoveB
O MoveA
B Movout
@ Force

608 Particles

7,696 Particles

84,000 particles

O Irecv-Send-Wait
B Sendrecv

57,696 particles

—o— Merlin Infiniband MPI

—=— Merlin Infiniband Hybrid
Merlin Infiniband Hybrid 2

—»*— Merlin Gig MPI

—x— Merlin GigE Hybrid

—e— Merlin GigE Hybrid 2

—e— Merlin Infiniband MPI
—a— Merlin Infiniband Hybrid

Merlin Infiniband Hybrid 2
—— Merlin GigE MPI

—*— Merlin GigE Hybrid
—e— Merlin GigE Hybrid 2

ybrid - 44,957,696

=@ MPI sock
B MPIlssm
O Hybrid

particles

O MPI sock

@ MPI ssm

0O Hybrid 2 sock

0O Hybrid 2 ssm

m Hybrid ssm/sock

CSEEM®64T (GigE) - Speedup - 8,388,608 particles

120
100
80
S —&— MPI
u .
8 60 —+H=— Hybrid (1
by MPI)
—#— Hybrid (2
40 S
20
0 -

1 16 32 48 64 80 96

Number of cores

37

Speedup

200

180

160

140

=
N
o

60

40

20

CSEEM®6A4T (GigE) - Speedup - 28,311,552 Particles

—<S— MPI

—+H=— Hybrid (1
MPI)
—~— Hybrid (2

Number of Cores

38

CSEEM®64T (GigE) - Speedup - 44,957,696 Particles

300

—S— MPI

—+=— Hybrid (1 MPI)
—+— Hybrid (2 MPI)
- = - - Linear

1 4 8 12 16 24 32 48 64 80 96

Number of Cores

39

) particles

—o— MPI
—@—Hybrid 1

Hybrid 2
- - - Linear

) particles

—o— MPI
—@—Hybrid 1

Hybrid 2
- - - Linear

) particles

—o— MPI
—@—Hybrid 1

Hybrid 2
- - - Linear

Measured Time (usec.)

é_s - Allreduce

—0— SGl Ice X5365 Clovertown 3.0GHz QC + IB (PPN=4)
—0— SGl Ice X5365 Clovertown 3.0GHz QC + IB
—e— Bull Xeon E5472 3.0GHz QC 1600 FSB + ConnectX (PPN=8)

A
—e—Bull Xeon E5472 3.0GHz QC 1600 FSB + ConnectX (PPN=4) | 4 o

—e— Bull Xeon E5472 3.0GHz QC 1600 FSB + ConnectX (PPN=1)
. 0O

Message Length (Bytes)

- -& - ClusterVision Opteron 270/2.0GHz DC+GBite |~

1.0E+04 1.0E+05 1.0E+06

1.0E+07

43

Hybrid Codes - Materials Simulation.

Plane Wave Methods: CASTEP, CPMD
Direct minimisation of the total energy

(IZ+ cut

. 5)°<E S
l//jk (F) _ Z C;ée_l(kJrG)'r
G

® Pseudopotentials used to keep the no. of plane waves manageable
® | arge number of basis functions N~10° (especially for heavy atoms).

The plane wave expansion means that the bulk of the computation
comprises large 3D Fast Fourier Transforms (FFTs) between real and
momentum space.

® These are distributed across the processors in various ways.

® FFT routines are optimized for the cache size of the CPU.
16 September 2008 44

Hybrid Programming - CPMD

 Developed at IBM Zurich from the original Car-Parrinello Code in
1993(www.cpmd.org); Hutter & Curioni

— Different strategies are followed in parallel implementations of
plane-wave / pseudo-potential codes. Parallelization of CPMD was
done on different levels. The central parallelization is based on a
distributed-memory coarse-grain algorithm that is a compromise
between load balancing, memory distribution and parallel
efficiency.

— In addition to the basic scheme, a fine-grain shared-memory
parallelization was implemented. Parallelization on the loop level
IS achieved by using OpenMP compiler directives and multi-
threaded libraries (BLAS and FFT) if available.

— The two parallelization methods are independent and can be
mixed. This yields good performance on distributed computers

with shared memory nodes and several thousands of CPUs..
16 September 2008 45

Future Work

« Complete set of timings runs for CSEEM64T
with InfiniPath

e Extend timing results to more nodes.

 More analysis of hybrid MD code — would like
to develop a better understanding of
performance.

e Apply similar techniques to Molpro — a
Quantum Chemistry code with sections that
may benefit from hybrid parallelism.

16 September 2008 46

Conclusion

e Research Is focused on improving
performance of real world scientific codes.

— Hybrid shared memory and message passing
programming.
* Previous work has been done on this, but not
with modern multi-core clustered hardware.

e |nitial results show there may be a benefit to
using hybrid programming in certain cases.

* Need to extend initial results to other
computational chemistry codes.

16 September 2008 47

49

