
1

Clusters and Computational Grids for Scientific Computing

CCGSC 2008

September 14 - 17, 2008
Highland Lake Inn

Flat Rock, North
Carolina, USA

From Clouds to blue sky research

Unconventional Grid
Programming

Thierry Priol, INRIA

Joint work with Jean-Pierre Banâtre & Yann Radenac

1

Clusters and Computational Grids for Scientific Computing

CCGSC 2008

September 14 - 17, 2008
Highland Lake Inn

Flat Rock, North
Carolina, USA

From Clouds to blue sky research

Unconventional Grid
Programming

Thierry Priol, INRIA

Joint work with Jean-Pierre Banâtre & Yann Radenac

1

Clusters and Computational Grids for Scientific Computing

CCGSC 2008

September 14 - 17, 2008
Highland Lake Inn

Flat Rock, North
Carolina, USA

From Clouds to blue sky research

Unconventional Grid
Programming

Thierry Priol, INRIA

Joint work with Jean-Pierre Banâtre & Yann Radenac

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

2

Plan

• Why Unconventional Grid Programming ?

• Chemical Programming
• Principle and examples
• High Order Chemical Language (HOCL)

• Desktop Grid Programming with HOCL
• Chemical Desktop Grid
• Example of a Grid Chemical program and its execution

• Conclusion & Perspectives

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

April 1st, 2010

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

April 1st, 2010

EU Researchers in High-Energy Physics did not get
the Nobel prize due to
that prevented them to discover the Higgs Bozon
despite billions of € spent to build the Large Hadron
Collider and ~100 M€ for the computing infrastructure

Censored by the EU authorities

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

April 1st, 2010

EU Researchers in High-Energy Physics did not get
the Nobel prize due to
that prevented them to discover the Higgs Bozon
despite billions of € spent to build the Large Hadron
Collider and ~100 M€ for the computing infrastructure

an Unreliable Grid Infrastructure

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

April 1st, 2010

EU Researchers in High-Energy Physics did not get
the Nobel prize due to
that prevented them to discover the Higgs Bozon
despite billions of € spent to build the Large Hadron
Collider and ~100 M€ for the computing infrastructure

an Unreliable Grid Infrastructure

Early warning from well-known computer scientists :

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

April 1st, 2010

EU Researchers in High-Energy Physics did not get
the Nobel prize due to
that prevented them to discover the Higgs Bozon
despite billions of € spent to build the Large Hadron
Collider and ~100 M€ for the computing infrastructure

"You know that you are dealing with a distributed
system when you are prevented from getting your work
done because a node you never heard of has crashed."
 Leslie Lamport

an Unreliable Grid Infrastructure

Early warning from well-known computer scientists :

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Why Unconventional Grid Programming
Paradigms ?

3

April 1st, 2010

EU Researchers in High-Energy Physics did not get
the Nobel prize due to
that prevented them to discover the Higgs Bozon
despite billions of € spent to build the Large Hadron
Collider and ~100 M€ for the computing infrastructure

"You know that you are dealing with a distributed
system when you are prevented from getting your work
done because a node you never heard of has crashed."
 Leslie Lamport

an Unreliable Grid Infrastructure

“Grid environments will require a
rethinking of existing programming

models and, most likely, new thinking
about novel models more suitable for

specific characteristics of grid
applications and environments.”

I. Foster & K. Kesselman

Early warning from well-known computer scientists :

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Was just a nightmare or a foreboding ?

EGEE Grid infrastructure

• A 9-month study of the SEE-VO
(Feb’06-Nov’06) showed
that 52% of the jobs
failed.

• Some people say it is now 5-10%
 some others mention 30% ?

Grid infrastructures = uncertainty & complexity
• Lack of a “real” global state: should we pay the cost of knowing everything ?
• Unprecedented level of complexity
• Hardware and software failures

4

240 sites

45 countries

41,000 CPUs

5 PetaBytes

>10,000 users

>150 VOs

>100,000 jobs/day

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

How to deal with such complexity and
uncertainty ?

Adaptive and autonomic systems are the most promising approaches to
cope with complexity and uncertainty

5

15

J. Dongarra M. Parashar

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Current approaches to design adaptive and
autonomic systems

Frameworks for adaptive / autonomic systems
• Many many specialized frameworks depending on the targeted systems (real-

time, parallel, distributed) or applications (multimedia, HPC, ...)

But what about a programming model ?
• Not only for applications but for Grid middleware as well
• Are there any available that would have autonomic/adaptive behaviors ?

6

Dynaco

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Unconventional Programming Paradigms

• Most of them are nature-inspired paradigms
• Nature has proved to be successful to cope with scalability and faults

• Scale: the average adult is made up of 100 trillion cells

• Faults: 50,000,000 of the cells in my body will have died and been replaced
with others, all while you have been reading this sentence ... and you did not
notice this (hopefully...)

• Some examples

• Amorphous (agent-based with local interaction)
• Swarm (global behaviors emerging from local behaviors of swarm members)
• Bio-inspired (genetic programming, evolutionary, neural, ...)
• Chemical (analogy with chemical reactions)

7

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

8

Chemical Programming

• Initial work from Jean-Pierre Banâtre and Daniel Le Métayer (1986)

• Programming model using chemistry as a metaphor

• Execution model using chemistry as a metaphor

Programming Objects Chemistry
Data Molecule
Multiset Solution
Computation Reaction

Properties Chemistry
Implicit parallelism
Non determinism

Brownian motion

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

instead of

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

public class Primes {
 static int MAXINT = 100;
 public static void main (String []args){
 int isprime = 1;
 for (int i = 1; i < MAXINT; i++){
 for(int j =1; j<i; j++){
 if (((i%j)==0) & (j==1)){
 isprime =0;
 }
 else{
 isprime =1;
 }
 }// inner for loop
 if (isprime==1){
 System.out.println(i);
}

instead of

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model
• Non-determinism

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model
• Non-determinism
• Mutual exclusion & atomic capture

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model
• Non-determinism
• Mutual exclusion & atomic capture
• Proof of properties (termination)

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model
• Non-determinism
• Mutual exclusion & atomic capture
• Proof of properties (termination)
• Parallel execution is implicit

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model
• Non-determinism
• Mutual exclusion & atomic capture
• Proof of properties (termination)
• Parallel execution is implicit

• A well suited programming model when dealing with systems with
unbounded “things”

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
 replace x,y by x if x div y

9

• Properties
• Intuitive model
• Non-determinism
• Mutual exclusion & atomic capture
• Proof of properties (termination)
• Parallel execution is implicit

• A well suited programming model when dealing with systems with
unbounded “things”
• No explicit iteration requiring to know the number of “things”

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

10

Chemical Programming Principle

7

8

4

9

2

53

6

10

• Example: computing prime numbers less than 10

M
ul

tis
et

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

10

Chemical Programming Principle

7

4

9

2

53

6

10

• Example: computing prime numbers less than 10

replace x,y by x if x div y

M
ul

tis
et

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

11

Chemical Programming Principle

7

4

9

2

53

6

10

• Example: computing prime numbers less than 10

replace x,y by x if x div y

M
ul

tis
et

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

11

Chemical Programming Principle

7

2

53

6

• Example: computing prime numbers less than 10

replace x,y by x if x div y

M
ul

tis
et

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

12

Chemical Programming Principle

7

6

• Example: computing prime numbers less than 10

replace x,y by x if x div y

M
ul

tis
et

53

2

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

12

Chemical Programming Principle

7

• Example: computing prime numbers less than 10

replace x,y by x if x div y

M
ul

tis
et

53

2

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

13

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩
↓*

⟨sieve, 2, 3, 5, 7⟩

13

Stabilizing

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩
↓*

⟨sieve, 2, 3, 5, 7⟩

13

Stabilizing

Perturbation ⟨sieve, 2, 3, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20⟩

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩
↓*

⟨sieve, 2, 3, 5, 7⟩

13

Stabilizing

Perturbation

Re-stabilizing

⟨sieve, 2, 3, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20⟩

↓*

⟨sieve, 2, 3, 5, 7, 11, 13, 17, 19⟩

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩
↓*

⟨sieve, 2, 3, 5, 7⟩

13

Stabilizing

Perturbation

Re-stabilizing

⟨sieve, 2, 3, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20⟩

↓*

⟨sieve, 2, 3, 5, 7, 11, 13, 17, 19⟩

Collect

Analyze

Decide

Act Autonomic
System

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩
↓*

⟨sieve, 2, 3, 5, 7⟩

13

Stabilizing

Perturbation

Re-stabilizing

⟨sieve, 2, 3, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20⟩

↓*

⟨sieve, 2, 3, 5, 7, 11, 13, 17, 19⟩

Multiset external I/O

Collect

Analyze

Decide

Act Autonomic
System

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Autonomic property

⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩
↓*

⟨sieve, 2, 3, 5, 7⟩

13

Stabilizing

Perturbation

Re-stabilizing

⟨sieve, 2, 3, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20⟩

↓*

⟨sieve, 2, 3, 5, 7, 11, 13, 17, 19⟩

Multiset external I/O

Applying rulesCollect

Analyze

Decide

Act Autonomic
System

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Higher Order Chemical Language (HOCL)

• Higher-order extension of the Gamma language
• Reaction rules are molecules like data elements
• Reaction rules can replace reactions rules in an inert solution only

• Based on the γ-calculus

• A HOCL program is a chemical solution of molecules ⟨M1 , . . . , Mn⟩

• A molecule can be an atom
• Atoms Ai may be:

– Integers, strings, . . . any external object
– Tuples A1: · · · :Ak
– Sub-solutions
– One-shot rules: one P by M if C
– N-shot rules: replace P by M if C

• Multiplicity: X2, X∞, X-1

14

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

HOCL example : the high-order

The greatest prime number that is less than 10:

let sieve = replace x, y by x if x div y in
let max = replace x, y by x if x ≥ y in
⟨⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, one⟨sieve = x, ω⟩ by ω, max⟩

15

7

8

4

9

2

53

6

10

Sieve

one⟨sieve = x, ω⟩ by ω, max

subsolution solution

7

2

53 Sieve

one⟨sieve = x, ω⟩ by ω, max

subsolution solution

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

HOCL example : the high-order

The greatest prime number that is less than 10:

let sieve = replace x, y by x if x div y in
let max = replace x, y by x if x ≥ y in
⟨⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, one⟨sieve = x, ω⟩ by ω, max⟩

15

7

8

4

9

2

53

6

10

Sieve

one⟨sieve = x, ω⟩ by ω, max

subsolution solution

7

subsolution solution

max

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

HOCL example : multiplicity

20 * 15

9 8

⟨22 , 5, 3−2⟩, ⟨3, 5, 2−3⟩, one ⟨f⟩,⟨g⟩ by ⟨f,g⟩

↓*
⟨52 , 3−1 , 2−1 ⟩

16

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Chemical Desktop Grid

• Grid viewed as a chemical solution
• Resources = solutions/molecules
• Coordination = chemical reactions

• Chemical program as
• A specification of the application

– Applications represented as a set of
rules and data elements

– Done by the application programmer
• A specification of the coordination

– Coordination represented a set of rules
and data elements

– Mapping of rules to solutions
representing resources

– Done by a Grid specialist

17

Desktop PC

Desktop PC
Desktop PC

Desktop PC

Desktop PC

Desktop PC

Desktop
Grid

Chemical
Desktop

Grid

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Chemical Desktop Grid

• Grid viewed as a chemical solution
• Resources = solutions/molecules
• Coordination = chemical reactions

• Chemical program as
• A specification of the application

– Applications represented as a set of
rules and data elements

– Done by the application programmer
• A specification of the coordination

– Coordination represented a set of rules
and data elements

– Mapping of rules to solutions
representing resources

– Done by a Grid specialist

17

Desktop PC

Desktop PC

Desktop PC

Desktop PC
Desktop PC

Desktop PC

Desktop
Grid

R2:< >

R4:< >

R3:< >

R1:< >

R5:< >

R6:< >

Chemical
Desktop

Grid

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Generate a pair of elements
(x:y) that satisfies the
condition x div y

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Replace a pair by its first
element

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Split the computation when a
new resource joins the Grid

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

React with two elements that
belong to two distinct
solutions

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Adding and removing of
resources

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Migrate elements from one
resource to another one

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Initial
solution

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Computing prime numbers for a Chemical
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩,
R2:⟨⟩, . . . , Rn:⟨⟩,
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

18

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: local reactions within R1
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

19

findLocalReactives

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R1:

R2:

2

3

4

6
7

5

9

8

10

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: local reactions within R1
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

19

findLocalReactives

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R1:

R2:

2

7

9

3:6

4:8

5:10

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: Split between R1 & R2

20

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R1:

R2:

2

7

9

findLocalReactives

3:6

4:8

5:10

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: Split between R1 & R2

20

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R1:

R2:

2

7

9

findLocalReactives

3:6

4:8

5:10

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: Split between R1 & R2

21

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

7

findLocalReactives

3:6

findLocalReactives

4:8
9

R1:
5:10

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R2 is inert

22

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

7

findLocalReactives

3:6

findLocalReactives

4:8
9

R1:
5:10

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R2 is inert

23

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

7

findLocalReactives

findLocalReactives

4:8
9

R1:
5:103:6

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R2 is inert

23

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

7

findLocalReactives

findLocalReactives

9

R1:
5:103:6

4

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R3 is added

24

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

7

findLocalReactives

findLocalReactives

4
9

R1:
5:103:6

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R3 is added

24

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

7

findLocalReactives

findLocalReactives

4
9

R1:

:R3

5:103:6

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: Split is activated

25

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

findLocalReactives

findLocalReactives

4
9

R1:

:R3

5:103:6

7

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: Split is activated

25

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

findLocalReactives

findLocalReactives

4
9

R1:

:R3

5:10

3:6

7

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: Split is activated

26

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

findLocalReactives

findLocalReactives

4
9

R1:

:R3

5:10

3:6

7

findLocalReactives

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R1 and R3 are inert

27

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

findLocalReactives

findLocalReactives

4
9

R1:

:R3

5:10

3:6

7

findLocalReactives

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R1 and R3 are inert

27

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

findLocalReactives

findLocalReactives

4
9

R1:

:R3

7

findLocalReactives

5

3

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R1,R2 & R3 inert

28

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2

findLocalReactives

findLocalReactives

4

R1:

:R3

7

findLocalReactives

5

3

9

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R1,R2 & R3 inert

28

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

findLocalReactives

findLocalReactives

R1:

:R3

7

findLocalReactives

5

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R1,R2 & R3 inert

29

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2:4

findLocalReactives

findLocalReactives

R1:

:R3

7

findLocalReactives

5

3:9

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R2 inert, R1 & R3 active

30

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

2:4

findLocalReactives

findLocalReactives

R1:

:R3

7

findLocalReactives

5

3:9

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A possible execution: R2 inert, R1 & R3 active

30

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
 by r1:⟨x1:y1, ω1⟩,
 r2:⟨findLocalReactives, x2:y2, ω2⟩ in

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
 by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩
 if x div y in

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω
 if Grid.newResAvailable() in
let remRes = replace r: ⟨⟩, ω by ω
 if Grid.willBeRemoved(r) in

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩
 if Grid.willBeRemoved(r1) ∧
 not Grid.willBeRemoved(r2) in

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩
runSieve, split, findDistReactives,
newRes, remRes, migrate⟩

runSieve

split

findDistReactives

newRes

remRes

migrate

Solution

R2:

findLocalReactives

findLocalReactives

R1:

:R3

7

findLocalReactives

5
2

3

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel
 by ⟨firstRay (p), renderRay, deleteRay,
 enlighten, sumContrib⟩

renderRay = replace r::Ray
 by Scene.intersectRays (r)
 if r.contribution () > ϵ

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ

enlighten = replace l::LightRay

 by l.computeContrib ()

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2)

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray

let split = replace res1:⟨⟨r::Ray, ωp⟩, ω1 ⟩, res2:⟨ω2 ⟩
 by res1:⟨ω1⟩, res2:⟨⟨r, ωp ⟩, ω2⟩
 if Grid.load (res1) >> Grid.load(res2) ∧
 not Grid.wil lBeRemoved (res2)

Coordination rule

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Conclusion

• Chemical programming paradigm is well suited to design self-* systems
• Implicit parallelism
• Autonomic behavior
• High-level abstraction
• Self-modifying programs thanks to the high-order with a well defined semantics

• Several applications of the chemical programming paradigm
• Workflow enactment (joint work with SZTAKI within CoreGRID)
• Secure Grid systems using HOCL (joint work with STFC within CoreGRID)
• Formal Semantics of GSML (joint work with ICT within EchoGRID)
• Expressing Web Service coordination using HOCL (INRIA)

• Current state of the project
• HOCL implementation is done (compiler/interpreter in Java)
• Distributed implementation of the multiset is on-going

32

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

Perspectives

• This research generates several issues (challenges ???)
• Distributed implementation of the multiset

• P2P architecture + Distributed Shared Memory + Fault tolerance
• Performance ?

• All molecules can potentially react with all others !
• “Simplicity cost performance”

• “On ne peut pas avoir le beurre et l’argent du beurre”
• Add topology inside the multiset

• Expressing distribution thanks to a generic framework (map-reduce)
• Change dynamically the rule syntax (runtime aspects)

33

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

34

Clusters and Computational Grids for Scientific
Computing - CCGSC 2008
September 14 - 17, 2008,
Flat Rock, North Carolina, USA

34

