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•  Why Unconventional Grid Programming ?

•  Chemical Programming
• Principle and examples
• High Order Chemical Language (HOCL)

•  Desktop Grid Programming with HOCL
• Chemical Desktop Grid
• Example of a Grid Chemical program and its execution

•  Conclusion & Perspectives
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system when you are prevented from getting your work 
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                                                               Leslie Lamport

an Unreliable Grid Infrastructure

“Grid environments will require a 
rethinking of existing programming 

models and, most likely, new thinking 
about novel models more suitable for 

specific characteristics of grid 
applications and environments.” 

I. Foster & K. Kesselman

Early warning from well-known computer scientists :
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Was just a nightmare or a foreboding ?

EGEE Grid infrastructure

• A 9-month study of the SEE-VO 
(Feb’06-Nov’06) showed 
that 52% of the jobs 
failed.

• Some people say it is now 5-10%
 some others mention 30% ?

Grid infrastructures = uncertainty & complexity
• Lack of a “real” global state: should we pay the cost of knowing everything ?
• Unprecedented level of complexity
• Hardware and software failures

4

240 sites 

45 countries 

41,000 CPUs 

5 PetaBytes 

>10,000 users 

>150 VOs 

>100,000 jobs/day 
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How to deal with such complexity and 
uncertainty ?

Adaptive and autonomic systems are the most promising approaches to 
cope with complexity and uncertainty

5

15

J. Dongarra M. Parashar
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Current approaches to design adaptive and 
autonomic systems

Frameworks for adaptive / autonomic systems
• Many many specialized frameworks depending on the targeted systems (real-

time, parallel, distributed) or applications (multimedia, HPC, ...)

But what about a programming model ?
• Not only for applications but for Grid middleware as well
• Are there any available that would have autonomic/adaptive behaviors ?

6
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Unconventional Programming Paradigms

• Most of them are nature-inspired paradigms
• Nature has proved to be successful to cope with scalability and faults

• Scale: the average adult is made up of 100 trillion cells

• Faults: 50,000,000 of the cells in my body will have died and been replaced 
with others, all while you have been reading this sentence ... and you did not 
notice this (hopefully...)

• Some examples

• Amorphous (agent-based with local interaction)
• Swarm (global behaviors emerging from local behaviors of swarm members)
• Bio-inspired (genetic programming, evolutionary, neural, ...)
• Chemical (analogy with chemical reactions)

7
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Chemical Programming

• Initial work from Jean-Pierre Banâtre and Daniel Le Métayer (1986)

• Programming model using chemistry as a metaphor 

• Execution model using chemistry as a metaphor

Programming Objects Chemistry
Data Molecule
Multiset Solution
Computation Reaction

Properties Chemistry
Implicit parallelism
Non determinism

Brownian motion
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public class Primes {
    static int MAXINT = 100;
    public static void main (String []args){
        int isprime = 1;
        for (int i = 1; i < MAXINT; i++){
            for(int j =1; j<i; j++){
                if (((i%j)==0) & (j==1)){
                    isprime =0;
                }
                else{
                    isprime =1;
                }
            }// inner for loop
            if (isprime==1){
                System.out.println(i);
}

instead of
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Gamma: a chemical programming model

• Programming by a set of rewriting rules operating on a multiset
     replace x,y by x if x div y

9

•  Properties
• Intuitive model
• Non-determinism
• Mutual exclusion & atomic capture
• Proof of properties (termination)
• Parallel execution is implicit

•  A well suited programming model when dealing with systems with 
unbounded “things”
• No explicit iteration requiring to know the number of “things”
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Chemical Programming Principle
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Higher Order Chemical Language (HOCL)

• Higher-order extension of the Gamma language
• Reaction rules are molecules like data elements
• Reaction rules can replace reactions rules in an inert solution only

• Based on the γ-calculus

• A HOCL program is a chemical solution of molecules ⟨M1 , . . . , Mn⟩

• A molecule can be an atom
• Atoms Ai may be: 

– Integers, strings, . . . any external object 
– Tuples A1: · · · :Ak 
– Sub-solutions
– One-shot rules: one P by M if C
– N-shot rules: replace P by M if C

• Multiplicity: X2, X∞, X-1

14
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HOCL example : the high-order

The greatest prime number that is less than 10:

let sieve = replace x, y by x if x div y in 
let max = replace x, y by x if x ≥ y in 
⟨⟨sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, one⟨sieve = x, ω⟩ by ω, max⟩

15

7

8

4

9

2

53

6

10

Sieve

one⟨sieve = x, ω⟩ by ω, max

subsolution solution

7

2

53 Sieve

one⟨sieve = x, ω⟩ by ω, max

subsolution solution
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HOCL example : multiplicity

20  *   15 

9         8

⟨22 , 5, 3−2⟩, ⟨3, 5, 2−3⟩, one ⟨f⟩,⟨g⟩ by ⟨f,g⟩

↓*
⟨52 , 3−1 , 2−1 ⟩

16
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Chemical Desktop Grid

• Grid viewed as a chemical solution
• Resources = solutions/molecules 
• Coordination = chemical reactions

• Chemical program as
• A specification of the application

– Applications represented as a set of 
rules and data elements

– Done by the application programmer
• A specification of the coordination

– Coordination represented a set of rules 
and data elements

– Mapping of rules to solutions 
representing resources

– Done by a Grid specialist

17
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 

18
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Generate a pair of elements 
(x:y) that satisfies the 
condition x div y
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                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Replace a pair by its first 
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Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 

18

Split the computation when a 
new resource joins the Grid 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Computing prime numbers for a Chemical 
Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Desktop Grid
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, . . . , 1000⟩, 
R2:⟨⟩, . . . , Rn:⟨⟩, 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: local reactions within R1
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: local reactions within R1
let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: Split between R1 & R2
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: Split between R1 & R2

20

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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21

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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Solution
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: R2 is inert
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: R3 is added
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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A possible execution: Split is activated

25

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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27

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 

⟨R1:⟨findLocalReactives, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, R2:⟨⟩ 
runSieve, split, findDistReactives, 
newRes, remRes, migrate⟩ 
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let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
                  r2:⟨findLocalReactives, x2:y2, ω2⟩ in 

let findDistReactives = replace r1:⟨x, ω1⟩, r2:⟨y, ω2⟩
                          by r1:⟨x:y, ω1 ⟩, r2:⟨ω2⟩ 
                          if x div y in 

let newRes = replace ω by Grid.getNewRes(): ⟨⟩, ω 
                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
                 if Grid.willBeRemoved(r1) ∧ 
                    not Grid.willBeRemoved(r2) in 
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A possible execution: R2 inert, R1 & R3 active
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A possible execution: R2 inert, R1 & R3 active

30

let findLocalReactives = replace x,y by x:y if x div y in

let runSieve = replace r:⟨x:y, ω⟩ by r:⟨x, ω⟩ in 

let split = replace r1:⟨x1:y1, x2:y2, ω1 , ω2⟩, r2:⟨⟩
               by r1:⟨x1:y1, ω1⟩,
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                if Grid.newResAvailable() in 
let remRes = replace r: ⟨⟩, ω by ω
                if Grid.willBeRemoved(r) in 

let migrate = replace r1 : ⟨ω⟩, r2 :⟨⟩ by r1 : ⟨⟩, r2 :⟨ω⟩ 
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                    not Grid.willBeRemoved(r2) in 
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A more complex example...

import Pixel, Ray, LightRay, Contrib, Scene.

31

⟨p1 , . . . , pn , renderPixel⟩

renderPixel = replace p::Pixel 
                           by ⟨firstRay (p), renderRay, deleteRay,   
                                 enlighten, sumContrib⟩

renderRay = replace r::Ray 
                          by Scene.intersectRays (r) 
                            if r.contribution () > ϵ 

deleteRay = replace r::Ray, ω by ω if r.contribution () ≤ ϵ 

enlighten = replace l::LightRay 

                         by l.computeContrib () 

sumContrib = replace c1::Contrib, c2::Contrib by c1.add (c2 )

observer screen

pixel

Transparent+specular
object

Opaque+
specular

object

FirstRay

LightRay

Ray
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let split = replace res1:⟨⟨r::Ray, ωp⟩, ω1 ⟩, res2:⟨ω2 ⟩
                    by res1:⟨ω1⟩, res2:⟨⟨r, ωp ⟩, ω2⟩ 
                if Grid.load (res1) >> Grid.load(res2) ∧
                    not Grid.wil lBeRemoved (res2)

Coordination rule
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Conclusion

• Chemical programming paradigm is well suited to design self-* systems
• Implicit parallelism
• Autonomic behavior
• High-level abstraction
• Self-modifying programs thanks to the high-order with a well defined semantics

• Several applications of the chemical programming paradigm
• Workflow enactment (joint work with SZTAKI within CoreGRID)
• Secure Grid systems using HOCL (joint work with STFC within CoreGRID)
• Formal Semantics of GSML (joint work with ICT within EchoGRID)
• Expressing Web Service coordination using HOCL (INRIA)

• Current state of the project
• HOCL implementation is done (compiler/interpreter in Java)
• Distributed implementation of the multiset is on-going
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Perspectives

• This research generates several issues (challenges ???)
• Distributed implementation of the multiset

• P2P architecture + Distributed Shared Memory + Fault tolerance
• Performance ?

• All molecules can potentially react with all others !
• “Simplicity cost performance”

• “On ne peut pas avoir le beurre et l’argent du beurre”
• Add topology inside the multiset

• Expressing distribution thanks to a generic framework (map-reduce)
• Change dynamically the rule syntax (runtime aspects)
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