Wrekavoc: An Emulator of Heterogeneity

Emmanuel Jeannot INRIA - LORIA Island-Lake, Flat Rock CCGSC 2008

The discipline of computing: an experimental science

Studied objects (hardware, programs, data, protocols, algorithms, network): more and more complex.

Modern infrastructures:

- Processors have very nice features
 - Cache
 - Hyperthreading
 - Multi-core
- Operating system impacts the performance (process scheduling, socket implementation, etc.)
- The runtime environment plays a role (MPICH≠OPENMPI)
- Middleware have an impact (Globus ≠ GridSolve)
- Various parallel architectures that can be:
 - Heterogeneous
 - Hierarchical
 - Distributed
 - Dynamic

NRIA

Purely analytical (math) models:

- Demonstration of properties (theorem)
- Models need to be tractable: oversimplification?
- Good to understand the basic of the problem
- Most of the time ones still perform a experiments (at least for comparison)

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

For a practical impact: analytic study not always possible or not sufficient

Emmanuel Jeannot 3/26

Experimental culture not comparable with other science

Different studies:

• In the 90's: between 40% and 50% of CS ACM papers requiring experimental validation had none (15% in optical engineering) [Lukovicz et al.]

- Nobody redo experiments (no funding).
- Lack of tool and methodologies.

Percentage of papers

Two types of experiments

- Test and compare:
 - 1. Model validation (comparing models with reality)
 - 2. Quantitative validation (measuring performance)

- Can occur at the same time. Ex. validation of the implementation of an algorithm:
 - grounding modeling is precise

Wrekavoc: An Emulator of Heterogeneity

• design is correct

NRIA

A good alternative to analytical validation:

- Provides a comparison between algorithms or programs
- Provides a validation of the model or helps to define the validity domain of the model

Several methodologies:

- Simulation (SimGrid, GridSIM, NS, ...)
- Emulation (MicroGrid, Wrekavoc, ...)
- **Real-scale** (Grid'5000, PlanetLab, DAS-3...)

Emulation

Emulation: executing a real application on a model of the environment

Two approaches:

- Sandbox/virtual machine: confined execution on (a) real machine(s). syscall catch. Ex: MicroGrid
- Degradation of the environment (to make it heterogeneous): direct execution. Ex: Wrekavoc

[Chien et al. 02]:

- Real application run on virtualized resources.
- Emulation of CPU using (sandbox/virtual machines)
- Process wrapping: the same real node can execute several (VM)
- Syscall are intercepted and interpreted.
- Network: packet-level simulator (MaSSF)
- Synchronization of real and virtual time

 \odot No recent dev (dec 2004).

Wrekavoc a tool for emulating heterogeneity

- A grid is an heterogeneous distributed environment
- Goal: experiment distributed algorithm on a cluster (homogeneous and centralized)
- How: transform this cluster into heterogeneous environment and control the heterogeneity

Make a cluster an heterogeneous environment

- CPU speed. •
- Mémory. •
- Network bandwidth. •
- Network latency. •

A real node

An emulated node.

Two solutions :

- Increase the performance (update the hardware) 1.
- 2. Degrade the performance (by software means)

Solution 2 : Costless and allows for **performance control**.

Tools for configurating the nodes

We want to degrade :

- CPU speed
- Allocatable Memory
- Network bandwidth
- Network lantency

CPU speed degradation

3 approaches :

- **CPU-freq** (Linux kernel module that change the CPU frequency)
 - Advantage: very precise.
 - Drawback: Requires ACPI enabled CPU+few usable frequencies (coarse management).
- **CPU-burning** (A process take some CPU cycle)
 - Advantage: works on any architecture + fine management
 - Drawback: calibrating is hard, degrades net. perf. to the same proportion
- **CPU-scheduling** (a user-level scheduler suspends or activates process execution according to the desired degradation).
 - Advantage: very precise (default method)
 - Drawback: uses /proc (not portable)

mlock an munlock: pins memory pages to physical memory to limit the available memory

Wrekavoc: An Emulator of Heterogeneity

We use (Traffic Control) of iproute2 :

- Limit ingoing and outgoing bandwidth
- Limit latency (ver. 2.6.8.1 or better).
- Traffic control depends on IP addresses

Logical architecture

- The cluster is decomposed into islets.
- 1 islet = union of IP addresses intervals:
- [152.81.2.12-152.81.2.25][152.81.2.151-152.81.2.176]
- Each node of a given islet shares the same characteristics
- Network characteristics are define between and inside an islet
- Iter-islet routing

Comparing different experimental methodologies

	Simulation	Sandbox/VM	Wrekavoc	Real-scale
Real application	No	Yes	Yes	Yes
Abstraction	Very High	High	Low	No
Execution time	Speed-up	Slow-down	Preserved	Preserved
CPU folding	Mandatory (?)	Possible	No	No
Heterogeneity	Controllable	Yes/No	Controllable	No

Several experiments on Grid'5000:

- Configuration time
- Micro-benchmark
- Impact of CPU degradation against available bandwidth \bullet
- Realism of Wrekavoc •

Configuration time

Micro-benchmark

Set latency	1	5	10	50	100	500	1000
RTT	2.12	10.05	20.12	100.06	200.2	1000.05	1999.75

Wrekavoc: An Emulator of Heterogeneity

CPU Degradation vs. Bandwidth Degradation

Wrekavoc: An Emulator of Heterogeneity

The Realism of Wrekavoc

ID	Proc	RAM	System	Freq	HDD	HDD	Network card	MIPS
		(MiB)		(MHz)	type	(GiB)	(Mbit/s)	
1	P. IV	256	Debian 2.6.18-4-686	1695	IDE	20	100	3393
2	P. IV	512	Debian 2.6.18-4-686	2794	IDE	40	1000	5590
3	P. IV	512	Debian 2.6.18-4-686	2794	IDE	40	1000	5590
4	P. III	512	Debian 2.6.18-4-686	864	IDE	12	100	1729
5	P. III	128	Debian 2.6.18-4-686	996	IDE	20	100	1995
6	P. III	1024	Debian 2.6.18-4-686	498	SCSI	8	1000	997
7	P. II	128	Debian 2.6.18-4-686	299	SCSI	4	1000	599
8	P. II	128	Debian 2.6.18-4-686	299	SCSI	4	100	599
9	P. II	128	Debian 2.6.18-4-686	298	SCSI	4	100	596
10	P. II	64	Debian 2.6.18-4-686	398	IDE	20	100	798
11	P. IV	512	Debian 2.6.18-4-686	2593	IDE	40	1000	5191
12	Dual	2048	Debian 2.6.18-4-amd64	1604	IDE	22	1000	3211
	Opteron 240							and 3207

Description of the heterogeneous environment

Fine grain computation without load balancing

- Gerbessiotis' and Valiant's sample sort algorithm
- Assume heterogeneous env.: Same load on each node

Emmanuel Jeannot 22/26

Static load balancing

Matrix-multiplcation on heterogenous env. [Lastovetsky et al. 2004]

Wrekavoc: An Emulator of Heterogeneity

Emmanuel Jeannot 23/26

Dynamic load balancing

Advection diffusion program (kinetic chemistry) Iterative computation (load exchange at each iteration)

Wrekavoc: An Emulator of Heterogeneity

Master-worker

Run the same parallel rendering using *Povray* on a heterogeneous cluster (bottom) and on an emulated one with Wrekavoc (top), (Joint work with O. Dubuisson)

- Computer science is also an experimental science
- Need for tools to test, compare and validate proposed solutions
- Wrekavoc an Heterogeneity Emulator
- Asses its performance and realism

http://wrekavoc.gforge.inria.fr/

