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Fear and Loathing in 21st Century HPC 
•  Disagreement about need for revolution 

–  Either – it won’t work without new paradigm, i.e. change everything 
–  Or – you guys said that about Pflops; how’s that working out for you? 

•  Vendors: 
–  Don’t worry your silly little head about this, its under control, or 
–  Users tell us what you want, as long as its commodity 

•  Application programmers: 
–  We hate what we have, but 
–  Don’t change anything, cuz we got legacy 

•  Mission critical Agencies: 
–  (1) We know we need long term research, but 
–  (2) Since we didn’t do that before, we can only fund short term work to catch up 
–  (3) Repeat step 1 
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Quantifying Challenges 
•  Time to Completion 

–  Strong scaling 
–  Seconds  

•  Parallelism 
–  Addresses Starvation 
–  Machine & software 
–  Granularity, average, variance, … 

•  Latency 
–  Average distances for access and services (cycles, nanoseconds) 

•  Overhead 
–  Extra critical-path work for managing concurrency (cycles, nanoseconds) 

•  (Waiting for) Contention 
–  Waiting time in a queue for service request 

•  Energy 
–  Joules 
–  Ops, data movement, memory access 

•  MTTI 
–  Seconds, mean/variance 

•  Programmability 
–  I feel your pain 
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The only thing we have to change is 
change itself 
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•  Architecture 
–  Microprocessor cores 
–  Memory hierarchy 

•  Programming models 
–  Languages 
–  Legacy codes 

•  Operating systems 
–  Manage massive resources 
–  Lightweight runtime systems 



Changing Change 
•  Phase I: Sequential instruction execution 
•  Phase II: Sequential instruction issue 

•  pipeline execution,  
•  reservation stations, 
•  ILP 

•  Phase III: Vector 
•  pipelined arithmetic, registers, memory access 
•  Cray 

•  Phase IV: SIMD 
•  MasPar, CM-2 

•  Phase V: Communicating Sequential Processes 
•  MPP, clusters 
•  MPI 
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Co-Design 
•  Objective 

–  Optimal system design and operation 
–  Modulated by workload characteristics 

•  Challenge 
–  Division of roles and responsibilities across system layers 
–  Efficiency 

•  Minimize overhead, starvation, and latency effects 
•  User productivity 
•  Energy, reliability 

•  Methodology 
–  Each system layer tuned with respect to needs of the others 
–  Execution model as operational and design paradigm  

•  for governing principles of operation 
•  Interoperability among layers 
•  Reduction of design complexity 
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The Execution Model Imperative 

•  HPC in 6th Phase Change 
–  Driven by technology opportunities and challenges 
–  Historically, catalyzed by paradigm shift 

•  Guiding principles for governing system design and
 operation 

–  Semantics, Mechanisms, Policies, Parameters, Metrics 
•  Enables holistic reasoning about concepts and tradeoffs 

–  Serves for Exascale the role of von Neumann architecture for
 sequential 

•  Essential for co-design of all system layers 
–  Architecture, runtime and operating system, programming

 models 
–  Reduces design complexity from O(N2) to O(N) 

•  Empowers discrimination, commonality, portability 
–  Establishes a phylum of UHPC class systems 

•  Decision chain 
–  For reasoning towards optimization of design and operation 



Decision Chain 
•  Axiom: an operation is performed at a certain place at a

 certain time to achieve a specified effect 
•  How did this happen? 
•  Every layer of the system contributed to the time/space

/function event – the decision chain 
•  A program execution comprises the ensemble of such events

 across the system space and throughout the execution epoch 
•  There are many such paths that lead to a final result 
•  But not all minimize time and energy 
•  Understanding of the decision chain required for optimization 
•  Execution model required for understanding the decision chain 
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Conclusions – A Convergence? 
•  Global Address Space 

–  PGAS 
–  AGAS 

•  User multithreaded 
–  Lightweight 
–  Dynamic scheduling 
–  Complexes 
–  Codelets  

•  Message-driven 
–  Active messages  
–  Parcels   

•  Diversity of lightweight synchronization 
–  Local control objects 

•  Runtime Software as key stack component 
–  Support dynamic resource & task management 
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Panel Background 
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Is there a fear of Exascale?  There is concern about 
faults, scaling, performance (latency), complex 
processing model (e.g., heterogeneous elements), cost 
(power, memory, $), impact on algorithms, narrowness 
of application domain, data handling for Exabyte data 
sets.  In addition, does Exascale imply a discontinuity 
in programming, algorithms, debugging, etc.?  



Panel Questions 
•  How can we overcome the fear?  

–  Which fears are mistaken (after all, many were convinced that petascale
 systems would be impossible without new programming models)?  

–  Conversely, which problems apply at a smaller scale, and hence can be
 addressed now and provide near-term benefits?  

–  Which problems are (nearly) unique to Exascale?  How do we    build/test
/improve algorithms, software, and applications?  For    example, do we need
 to build a much more sophisticated simulation environment?  

•  How can we build real excitement?  
–  How do we provide evidence that Exascale systems will work well with

 applications?  
–  How do we demonstrate that Exascale systems can enable new application areas

 (after all, Exascale systems may be greatly different in architecture - will that be a
 virture)?  

•  In all of the above, how do we move past qualitative statements to
 quantitative predictions?  
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