Explicit vs. Implicit Parallel Programming
Language, Directive, Library

 Expose, Express, Exploit parallelism, synchronization, locality

O instruction-level parallelism (warm-up)

= superscalar control unit
= exposed in instruction reorder unit
= expressed using register renaming
= exploited in multiple instruction issue/execute/retire
= VLIW control unit
= exposed by compiler (unrolling, scheduling)
= expressed in VLIW instructions
= exploited by parallel operation issue
= locality in register file
= synchronization managed by reorder unit or by stalling

for(1 =0; 1 < n; ++1i) a[i] = b[i+l] + c[i+2];

_——— B o The Portland Group®

Explicit vs. Implicit Parallel Programming
Language, Directive, Library

 Expose, Express, Exploit parallelism; synchronization, locality

O vector parallelism (warm-up 2)

= vector language extensions
= exposed by application programmer
= expressed in language extensions; remember Q8 functions?
= exploited by parallel/pipelined functional units
a(l;n) = b(2;n) + c(3;n)
= vectorizing compilers
= exposed by application programmer (and compiler?)
= expressed in vectorizable loops
= exploited by parallel/pipelined functional units
= |ocality in vector register file, if available

= synchronization managed by hardware or compiler
do i =1,n ; a(i) = b(i+l) + c(i+2) ; enddo

—— S o The Portland Group®

Scalable Parallelism — Node Level

d MPI
= exposed in SPMD model = static parallelism
= expressed in single program can decompose based on MPI rank
(redundant execution) = send/receive exposes locality
= exploited one MPI rank per core = sync implicit with data transfer
0 CAF (PGAS)
= exposed in SPMD model = static parallelism
= expressed using single program can decompose, less general
(redundant execution) = get/put exposes locality
= one image per core = sync, separate from data transfer
0 HPF
= exposed in SPDD model = static parallelism (data parallel only)
= expressed using single program = |oad/store, locality hidden
(implicitly executed redundantly) = synchronization mostly implicit
= one HPF processor per core managed by compiler

_—— e The Portland Group®

Shared Memory Parallelism -
Socket/Core Level

J Posix Threads

d Cilk

exposed in application threads
expressed using pthread_create()
exploited one thread per core

exposed in asynchronous procedures
expressed using cilk_spawn
pool of threads, work stealing

d OpenMP

expose in parallel loops, tasks
express with directives
one OpenMP thread per core

dynamic parallelism, SPMD or not
can compose

shared memory, coherent caches
sync using spin wait, more calls

dynamic parallelism
can compose

shared memory, coherent caches
spin wait sync, or barriers

static parallelism (mostly)
does support dynamic tasking
can compose, nested parallelism

shared memory, coherent caches
barriers, task wait, ordered regions

The Portland Group®

Accelerator Parallelism - GPUs, etc.

O no library equivalent
0 CUDA or OpenCL

exposed in kernel procedures
expressed in CUDA kernels
kernel domain, launch

grid parallelism
thread block parallelism
accelerator asynchronous with host

O PGI Accelerator Model

exposed in nested parallel loops

expressed in nested parallel loops,
accelerator directives

exploited as above

static parallelism, does not compose
sync explicit within thread block
sync implicit between kernels

exposed memory hierarchy
host, device, sw cache, register

static parallelism, data parallel only
does not compose

limited synchronization
locality managed by compiler

The Portland Group®

Abstraction Levels

d Library J Node Level
* independent of compiler = scalable, static parallelism
= opaque to compiler = emphasis on locality
O Language O Socket/Core Level
= allows optimization = statictdynamic parallelism
" requires compiler = Jocality unaddressed
O Directives = cache coherence
= allows optimization J Accelerators
= requires compiler = regular parallelism
"= may preserve portability = Jlocality exposed

= may allow specialization

_——— B o The Portland Group®

