
Explicit vs. Implicit Parallel Programming
Language, Directive, Library

  Expose, Express, Exploit parallelism, synchronization, locality

  instruction-level parallelism (warm-up)
  superscalar control unit

  exposed in instruction reorder unit
  expressed using register renaming
  exploited in multiple instruction issue/execute/retire

  VLIW control unit
  exposed by compiler (unrolling, scheduling)
  expressed in VLIW instructions
  exploited by parallel operation issue

  locality in register file
  synchronization managed by reorder unit or by stalling

for(i = 0; i < n; ++i) a[i] = b[i+1] + c[i+2];

Explicit vs. Implicit Parallel Programming
Language, Directive, Library

  Expose, Express, Exploit parallelism; synchronization, locality

  vector parallelism (warm-up 2)
  vector language extensions

  exposed by application programmer
  expressed in language extensions; remember Q8 functions?
  exploited by parallel/pipelined functional units

  vectorizing compilers
  exposed by application programmer (and compiler?)
  expressed in vectorizable loops
  exploited by parallel/pipelined functional units

  locality in vector register file, if available
  synchronization managed by hardware or compiler

a(1;n) = b(2;n) + c(3;n)

do i = 1,n ; a(i) = b(i+1) + c(i+2) ; enddo

Scalable Parallelism – Node Level

  MPI
  exposed in SPMD model
  expressed in single program

(redundant execution)
  exploited one MPI rank per core

  CAF (PGAS)
  exposed in SPMD model
  expressed using single program

(redundant execution)
  one image per core

  HPF
  exposed in SPDD model
  expressed using single program

(implicitly executed redundantly)
  one HPF processor per core

  static parallelism
can decompose based on MPI rank

  send/receive exposes locality
  sync implicit with data transfer

  static parallelism
can decompose, less general

  get/put exposes locality
  sync, separate from data transfer

  static parallelism (data parallel only)
  load/store, locality hidden
  synchronization mostly implicit

managed by compiler

Shared Memory Parallelism –
Socket/Core Level

  Posix Threads
  exposed in application threads
  expressed using pthread_create()
  exploited one thread per core

  Cilk
  exposed in asynchronous procedures
  expressed using cilk_spawn
  pool of threads, work stealing

  OpenMP
  expose in parallel loops, tasks
  express with directives
  one OpenMP thread per core

  dynamic parallelism, SPMD or not
can compose

  shared memory, coherent caches
  sync using spin wait, more calls

  dynamic parallelism
can compose

  shared memory, coherent caches
  spin wait sync, or barriers

  static parallelism (mostly)
does support dynamic tasking
can compose, nested parallelism

  shared memory, coherent caches
  barriers, task wait, ordered regions

Accelerator Parallelism – GPUs, etc.

  no library equivalent

  CUDA or OpenCL
  exposed in kernel procedures
  expressed in CUDA kernels

kernel domain, launch
  grid parallelism

thread block parallelism
accelerator asynchronous with host

  PGI Accelerator Model
  exposed in nested parallel loops
  expressed in nested parallel loops,

accelerator directives
  exploited as above

  static parallelism, does not compose
  sync explicit within thread block
  sync implicit between kernels
  exposed memory hierarchy

host, device, sw cache, register

  static parallelism, data parallel only
does not compose

  limited synchronization
  locality managed by compiler

Abstraction Levels

  Library
  independent of compiler
  opaque to compiler

  Language
  allows optimization
  requires compiler

  Directives
  allows optimization
  requires compiler
  may preserve portability
  may allow specialization

  Node Level
  scalable, static parallelism
  emphasis on locality

  Socket/Core Level
  static+dynamic parallelism
  locality unaddressed
  cache coherence

  Accelerators
  regular parallelism
  locality exposed

