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A few nice little scheduling problems

I made it to the 10 CCGSC workshops!

I talked about a nice little scheduling problem in 1992
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At last

a fundamental problem
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Dealing with failures

Fault tolerant computing becomes unavoidable
Caveat: same story told for a very long time! /

Coming for real on future machines, e.g. Blue Waters
INRIA-Illinois Joint Laboratory for Petascale Computing

Techniques:

failure avoidance (as opposed to failure tolerance)
checkpointing, migration
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Relying on failure prediction

Applications will face resource faults during execution

Failure prediction available
(e.g. alarm when a disk or CPU becomes unusually hot)

Application must dynamically prepare for, and recover from,
expected failures

Compare two well-known strategies:

Checkpointing: purely local, but can be very costly
Migration: requires availability of a spare resource

Remember, we assume accurate failure prediction
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Preventive checkpointing

available

µ µ
. . .

C CRR

fault fault

DD

available

D: length of downtime intervals

µ: (average) length of execution intervals, a.k.a. MTTF

R: recovery time (beginning of interval)
C : checkpoint time (end of interval, just before failure)
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Preventive migration

M

µ µ
. . .

fault fault

DD

available available

M

D: length of downtime intervals

µ: (average) length of execution intervals

M: migration time (end of interval, just before failure)
Need spare node /
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Notations

C : checkpoint save time (in minutes)

R: checkpoint recovery time (in minutes)

D: down/reboot time (in minutes)

M: migration time (in minutes)

µ: mean time to failure
(e.g., 1/λ if failures are exponentially distributed)

N: total number of cluster nodes

n: number of spares (migration)
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Caveat

Checkpointing/migration comparison makes sense only if

M < C + D + R

otherwise better use faulty machine as own spare

Live migration without any disk access,
thereby dramatically reducing migration time
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Checkpointing

available

µ µ
. . .

C CRR

fault fault

DD

available

Probability of node being active

uc = max

(
0,
µ− R − C

µ+ D

)

Global throughput

ρc = uc × N = max

(
0,
µ− R − C

µ+ D

)
× N
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Migration (1/2)

M

µ µ
. . .

fault fault

DD

available available

M

Probability of node being active

um = max

(
0,
µ−M

µ+ D

)

Global throughput

ρm = um × (N − n) = max

(
0,
µ−M

µ+ D

)
× (N − n)
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Migration (2/2)

M

µ µ
. . .

fault fault

DD

available available

M

No shortage of spare nodes?

success(n) =
n∑

k=0

(
N

k

)
uN−k
m (1− um)k

Find n = α(ε,N) that “guarantees” a successful execution
with probability at least 1− ε
Solve numerically
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Distribution (1/3)

Number of processors required by typical jobs: two-stage
log-uniform distribution biased to powers of two

Let N = 2Z for simplicity

Probability that a job is sequential: α0 = p1 ≈ 0.25

Otherwise, the job is parallel, and uses 2j processors with
identical probability

αj = α = (1− p1)× 1

Z

for 1 ≤ j ≤ Z = log2N
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Distribution (2/3)

Steady-state utilization of whole platform:
- all processors always active
- constant proportion of jobs using any processor number

Expectation of the number of jobs:
- K total number of jobs running
- βj jobs that use 2j processors exactly
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Distribution (3/3)

Equations:

K =
∑Z

j=0 βj
βj = αjK for 0 ≤ j ≤ Z∑Z

j=0 2jβj = N

N

K
=

Z∑
j=0

2jαj = p1 +
1− p1
Z

Z∑
j=1

2j = p1 +
1− p1
Z

(2N − 2)

hence the value of K and the βj
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Failures

If a job uses two processors, what is the expected interval
time between failures?

µj mean of the minimum of 2j i.i.d. variables

If the variables are exponentially distributed, with scale
parameter λ, then

µj = 1/(λ2j) = µ/2j

If the variables are Weibull, with scale parameter λ and shape
parameter a, then

µj = λΓ(1 + 1/(a2j))
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Checkpointing

Platform throughput

ρcp =
Z∑
j=0

βj × 2j ×max

(
0,
µj − R − C

µj + D

)

For the exponential distribution: µj = µ/2j
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Migration

Platform throughput

ρmp =

 Z∑
j=0

βj × 2j ×max

(
0,
µj −M

µj + D

)× N − n

N

Probability of success: same as for independent jobs
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Scenarios

Understand the impact of checkpointing vs. migration

All results are in percentage improvement of migration over
checkpointing (negative or positive values)

All results use the following values:

µ = 1 day, 1 week, 1 month, 1 year
N = 214, 217, 220

ε = 10−4, 10−6

Number of required spares in parentheses
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Scenario ”today” – C = R = 10, D = 1, M = 0.33

Sequential Jobs Parallel Jobs

µ N ε = 104 ε = 106 ε = 104 ε = 106

214 1.19 (32) 1.16 (37) 3141.07 (32) 3140.08 (37)
1 day 217 1.26 (164) 1.25 (177) 3086.92 (164) 3086.61 (177)

220 1.28 (1086) 1.28 (1119) 3033.16 (1086) 3033.07 (1119)

214 0.14 (9) 0.12 (12) 3521.14 (9) 3520.47 (12)
1 week 217 0.17 (35) 0.16 (40) 3511.74 (35) 3511.61 (40)

220 0.18 (184) 0.18 (198) 3501.72 (184) 3501.67 (198)

214 0.02 (5) 0.00 (7) 1541.89 (5) 1541.69 (7)
1 month 217 0.04 (13) 0.03 (17) 3354.95 (13) 3354.84 (17)

220 0.04 (55) 0.04 (63) 3352.86 (55) 3352.83 (63)

214 -0.01 (2) -0.01 (3) 69.22 (2) 69.21 (3)
1 year 217 0.00 (4) -0.00 (6) 1037.00 (4) 1036.99 (6)

220 0.00 (11) 0.00 (13) 3381.52 (11) 3381.52 (13)
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Scenario ”2011” – C = R = 5, D = 1, M = 0.33

Sequential Jobs Parallel Jobs

µ N ε = 104 ε = 106 ε = 104 ε = 106

214 0.48 (32) 0.45 (37) 1587.29 (32) 1586.78 (37)
1 day 217 0.55 (164) 0.54 (177) 1573.40 (164) 1573.24 (177)

220 0.57 (1086) 0.57 (1119) 1558.96 (1086) 1558.91 (1119)

214 0.04 (9) 0.02 (12) 1743.11 (9) 1742.77 (12)
1 week 217 0.07 (35) 0.07 (40) 1741.00 (35) 1740.93 (40)

220 0.08 (184) 0.08 (198) 1738.54 (184) 1738.52 (198)

214 -0.01 (5) -0.02 (7) 734.36 (5) 734.26 (7)
1 month 217 0.01 (13) 0.01 (17) 1656.28 (13) 1656.23 (17)

220 0.02 (55) 0.02 (63) 1655.80 (55) 1655.78 (63)

214 -0.01 (2) -0.02 (3) 25.16 (2) 25.15 (3)
1 year 217 -0.00 (4) -0.00 (6) 477.62 (4) 477.61 (6)

220 0.00 (11) 0.00 (13) 1668.73 (11) 1668.73 (13)
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Scenario ”2015” – C = 10R = 0.21, D = 0.25, M = 0.33

Sequential Jobs Parallel Jobs

µ N ε = 104 ε = 106 ε = 104 ε = 106

214 -0.12 (18) -0.14 (22) -27.96 (18) -27.98 (22)
1 day 217 -0.07 (82) -0.08 (91) -27.92 (82) -27.92 (91)

220 -0.05 (501) -0.06 (523) -27.90 (501) -27.90 (523)

214 -0.04 (6) -0.05 (8) -13.14 (6) -13.15 (8)
1 week 217 -0.02 (20) -0.02 (24) -29.07 (20) -29.08 (24)

220 -0.01 (91) -0.01 (101) -29.07 (91) -29.07 (101)

214 -0.02 (3) -0.03 (5) -2.63 (3) -2.64 (5)
1 month 217 -0.01 (8) -0.01 (11) -30.74 (8) -30.74 (11)

220 -0.00 (30) -0.00 (35) -30.74 (30) -30.74 (35)

214 -0.01 (2) -0.01 (2) -0.22 (2) -0.22 (2)
1 year 217 -0.00 (3) -0.00 (4) -1.69 (3) -1.69 (4)

220 -0.00 (7) -0.00 (9) -17.00 (7) -17.00 (9)
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Summary

Sequential jobs: comparable performance (within 2%)

Parallel jobs, short term: prefer migration

Parallel jobs, 2015: picture not so clear

Good news for migration:
- small number of spares
- insensitive to target value of success probability
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Checkpointing versus ... checkpointing

No failure prediction available

No more migration /
Checkpoint periodically

How to determine optimal period T?

Impact on platform throughput?

Yves.Robert@ens-lyon.fr Checkpointing. Or not. 30/ 39



Framework Sequential jobs Parallel jobs Results No prediction

Optimal period T (1/3)

W = expected percentage of time lost, or “wasted”:

W =
C

T
+

T

2µ
(1)

First term in (1) by definition:
C time-steps devoted to checkpointing every T time-steps

Every µ time-steps, a failure occurs
⇒ loss of T/2 time-steps in average

W minimized for Topt =
√

2Cµ (Young’s approximation)

Wmin =

√
2C

µ
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Optimal period T (2/3)

W =
C

T
+

T
2 + R + D

µ

Wmin =
R + D

µ
+

√
2C

µ

Different from Daly:
target = steady-state operation of platform
target 6= minimizing expected duration of a given job

Yves.Robert@ens-lyon.fr Checkpointing. Or not. 32/ 39



Framework Sequential jobs Parallel jobs Results No prediction

Optimal period T (3/3)

Wmin =
R + D

µ
+

√
2C

µ
(2)

Wmin larger than 1 for very small µ
(likely to happen with jobs requiring many processors)

Wmin ≤ 1 iff µ ≥ 1/ν2b , where

νb =
−
√

2C +
√

2C + 4(R + D)

2(R + D)

W ∗
min = min(Wmin, 1)
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Platform throughput

Sequential jobs
ρ = (1−W ∗

min)N

Parallel jobs

ρ =
Z∑
j=0

(1−W ∗
min(j))2jβj

use µj instead of µ in (2) to derive W ∗
min(j)
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Numerical results: yield ρ/N for scenario “2015”

µ = 1 month

N per. chkpt. prev. chkpt. prev. mig.

28 96.04% 99.81% 98.99%
211 88.23% 98.50% 98.04%
214 62.28% 88.75% 86.41%
217 10.66% 40.04% 27.73%
220 1.33% 5.01% 3.47%

µ = 1 year

N per. chkpt. prev. chkpt. prev. mig.

28 98.89% 99.98% 99.59%
211 96.80% 99.88% 99.75%
214 90.59% 99.01% 98.79%
217 70.46% 92.41% 90.84%
220 15.96% 54.77% 45.46%

Yves.Robert@ens-lyon.fr Checkpointing. Or not. 35/ 39
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Limiting job size

MTTF µ = 1 year

Exponentially distributed failures

Scenario “2015”

Tightly coupled parallel job with 220 nodes (whole platform)

Experiences a failure every 0.5 minutes!

Throughput close to 0 for both fault tolerance and fault
avoidance /
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Yield ρ/N for scenario “2015” and capped job sizes

N = 220, µ = 1 month

max job size per. chkpt. prev. chkpt. prev. mig.

220 1.33% 5.01% 3.47%
219 2.67% 10.01% 6.93%
218 5.33% 20.02% 13.87%
217 10.66% 40.04% 27.73%
216 21.32% 63.07% 55.46%
215 42.64% 79.04% 74.72%

µ = 1 year

max job size per. chkpt. prev. chkpt. prev. mig.

220 15.96% 54.77% 45.65%
219 31.92% 73.57% 68.13%
218 55.59% 85.54% 82.56%
217 70.46% 92.41% 90.84%
216 80.05% 96.11% 95.30%
215 86.36% 98.03% 97.62%

Yves.Robert@ens-lyon.fr Checkpointing. Or not. 37/ 39



Framework Sequential jobs Parallel jobs Results No prediction

Conclusion

Short term: prefer preventive migration to preventive
checkpointing

Longer term: not so clear, but may prefer preventive
checkpointing

Long-term scenarios and very large scale platforms:

Poor scaling of non-prediction-based traditional fault tolerance
Even with perfect prediction, fault avoidance not much better
Necessary to cap job size to achieve reasonable throughput

Simulator: http://navet.ics.hawaii.edu/~casanova/

software/resilience.tgz

Yves.Robert@ens-lyon.fr Checkpointing. Or not. 38/ 39
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Perspectives

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

”Self-fault-tolerant” algorithms (e.g. asynchronous iterative)

Ahum, don’t you see it coming? ...
... a nice little scheduling problem! ,

multi-criteria throughput/energy/reliability
add replication

Need combine all three approaches!
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