Should I port my code to a GPU?

Casey Battaglino - Aparna Chandramowlishwaran - Jee Choi Kent Czechowski - M. Efe Guney (UC Davis) - Chris McClanahan Logan Moon - Dave Noble - Aashay Shringarpure (Google) Richard (Rich) Vuduc

Clusters, Clouds, and Grids for Scientific Computing Flat Rock, North Carolina - September 9, 2010

Georgia college of

Tech Connputing

A: It depends. Opportunity cost?

(1) Who are you?
(2) What is your app?
(3) What are your performance, productivity, and portability goals?

For most of us in this room, l'd say, "yes."
For the "average" apps developer, l'd say "not yet."

Georgia college of
Tech Connputing
Computational Science and Engineering

Q: Pay-off of a GPU port?

(Posed to me by Scott Klasky at ORNL)

- Meta-analysis, for semi-irregular sci. comp. + data analytics apps (sparse iterative + direct solvers; tree-based particle methods)
- A: Given roughly same level of tuning \& power*, ...
GPU

x 2 CPUs

Reason 1: The potential is real, but might be less than you expect.

Architecture	Intel Nehalem X5550	NVIDIA T10P C1060	NVIDIA GT200 GTX 285	NVIDIA Fermi C2050
GHz	2.66	1.44	1.47	1.15
Sockets	2	1	1	1
Cores per socket	4	30	30	15^{*}
Peak Gflop/s single (double)	170.6 (85.3)	933 (78)	1060 (88.4)	1030 (515)
Peak GB/s	51.2	102	159	144
Sys. Watts (sockets only)	375 $(\mathbf{2 0 0)}$	$\mathbf{2 0 0}$	$\mathbf{2 0 4}$	$\mathbf{2 4 7}$

Reason 2: Productivity: Though there is potential, there is also no free lunch.

Parallel Sorting (survey)
(Does not include Merrill \& Grimshaw '10)

Parallel Sorting (survey)

(Does not include Merrill \& Grimshaw '10)

Parallel Sorting (survey)
(Does not include Merrill \& Grimshaw '10)

Reason 3: It's a moving target that might end up converging to what we had before.

Balance equation for an I/O-optimal matrix multiply:

$$
\frac{C}{\beta}=\Theta(\sqrt{M})
$$

Balance equation for an I/O-optimal matrix multiply:

$$
\frac{C}{\beta}=\Theta(\sqrt{M})
$$

For comparison-based sort:

$$
\frac{C}{\beta}=\Theta\left(\log _{2} M\right)
$$

Having said all that, I am still optimistic about the role GPUs will play in current and future systems!

Sparse direct solvers

Kent Czechowski, M. Efe Guney, R. Vuduc
(Work in progress)
M. Efe Guney. High-performance direct solution of finite-element problems on multi-core processors. Ph.D. Thesis, School of Civil Engineering, Georgia Tech, May 2010.

Anatomy of a sparse direct solver

- Sparse Cholesky factorization, $A=L \cdot L^{\top}$, where $A \& L$ are sparse
- Mixed compute intensity, average of ~ 4 flops : byte for sample problem

Time

Time

$<$ Thread capacity \rightarrow

Time

$<$ Thread capacity \Rightarrow

Time

$<$ Thread capacity \rightarrow

Time

-Thread capacity \Rightarrow

Some concluding questions...

* What is the right way to think about opportunity cost?
* What are the performance principles for reducing tuning effort?
* What applications will lead to better designs?

Platform

- Fermi
\approx C1060
- - - Nehal
- Nehal
hpcgarage
- Backup slides

Parallelism = Elimination tree

Independent subtrees may be processed in parallel.

Finer-grained dependencies

Colored circles on the right are BLAS calls on operands of varying size.

