Should I port my code to a GPU?

Casey Battaglino - Aparna Chandramowlishwaran - Jee Choi -Kent Czechowski - M. Efe Guney (*UC Davis*) - Chris McClanahan -Logan Moon - Dave Noble - Aashay Shringarpure (*Google*) -**Richard (Rich) Vuduc**

Clusters, Clouds, and Grids for Scientific Computing Flat Rock, North Carolina - September 9, 2010

College of Computing

A: It depends. Opportunity cost?

(1) Who are you?(2) What is your app?(3) What are your performance, productivity, and portability goals?

For most of us in this room, I'd say, "yes." For the "average" apps developer, I'd say "not yet."

Q: Pay-off of a GPU port? (Posed to me by Scott Klasky at ORNL)

- Meta-analysis, for semi-irregular sci. comp. + data analytics apps (sparse iterative + direct solvers; tree-based particle methods)
- A: Given roughly same level of tuning & power*, ...

x 2 CPUs

3

R. Vuduc, A. Chandramowlishwaran, J. Choi, M. E. Guney, A. Shringarpure. USENIX HotPar'10, June 2010.

Reason 1: The potential is real, but might be less than you expect.

Intel Nehalem X5550	NVIDIA T10P C1060	NVIDIA GT200 GTX 285	NVIDIA Fermi C2050
2.66	1.44	1.47	1.15
2	1	1	1
4	30	30	15*
170.6 (85.3)	933 (78)	1060 (88 <i>.4</i>)	1030 (515)
51.2	102	159	144
375 (200)	200	204	247
	X5550 2.66 2 4 170.6 (85.3) 51.2 375	X5550 C1060 2.66 1.44 2 1 4 30 170.6 933 (85.3) (78) 51.2 102 375 200	X5550 C1060 GTX 285 2.66 1.44 1.47 2 1 1 4 30 30 170.6 933 1060 (85.3) (78) (88.4) 51.2 102 159 375 200 204

Thursday, September 9, 2010

Thursday, September 9, 2010

Reason 2: Productivity: Though there is potential, there is also no free lunch.

Parallel Sorting (survey)

(Does **not** include Merrill & Grimshaw '10)

Parallel Sorting (survey)

(Does **not** include Merrill & Grimshaw '10)

Parallel Sorting (survey)

(Does **not** include Merrill & Grimshaw '10)

Reason 3: It's a moving target that might end up converging to what we had before.

HPC 101

15

Balance equation for an I/O-optimal matrix multiply:

$$\frac{C}{\beta} = \Theta\left(\sqrt{M}\right)$$

HPC 101

See, for example, Kung (ISCA 1986).

Balance equation for an I/O-optimal matrix multiply:

$$\frac{C}{\beta} = \Theta\left(\sqrt{M}\right)$$

For comparison-based sort:

$$\frac{C}{\beta} = \Theta\left(\log_2 M\right)$$

HPC 101

See, for example, Kung (ISCA 1986).

Having said all that, I am still **optimistic** about the role GPUs will play in current and future systems!

Sparse direct solvers

Kent Czechowski, M. Efe Guney, R. Vuduc

(Work in progress)

M. Efe Guney. *High-performance direct solution of finite-element problems on multi-core processors*. Ph.D. Thesis, School of Civil Engineering, Georgia Tech, May 2010.

Anatomy of a sparse direct solver

Sparse Cholesky factorization, $A = L \cdot L^T$, where A & L are sparse

Mixed compute intensity, average of ~ 4 flops : byte for sample problem

Some concluding questions...

* What is the right way to think about **opportunity cost**?

* What are the **performance principles** for reducing tuning effort?

* What **applications** will lead to better designs?

Backup slides

Parallelism = Elimination tree

Independent subtrees may be processed in parallel.

Finer-grained dependencies

Colored circles on the right are BLAS calls on operands of varying size.