
Hans P. Zima
Jet Propulsion Laboratory, California Institute of Technology

and

Institute for Scientific Computing, University of Vienna, Austria
.

 Clusters, Clouds, and Grids for Scientific Computing
 CCGSC 2010
 Flat Rock, North Carolina, September 10th, 2010

Enhancing the Dependability of
Extreme-Scale Applications*

*This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration and funded through the internal Research and Technology Development Program

 Contents

 Extreme Scale Systems
 Aggressive Strawman Design (Bill Dally, Peter Kogge)

 Key Challenges for Extreme-Scale Systems

 A Short Note on
High-Level Abstractions and Dependability

 The size and complexity of the code
 for a given application problem
 is relevant for dependability
 (independent of language support for dependability)

 For example…

 Fortran+MPI Communication
 for 3D 27-point Stencil (NAS MG rprj3)

 Chapel 3D NAS MG Stencil rprj3

 Contents

Dependability*

*A. Avizienis, J.-C.Laprie, B.Randell: Fundamental Concepts of Dependability. UCLA CSD Report 010028, 2000

Means

Dependability Attributes

Threats

Faults

Errors

Failures

Availability

Reliability

 Safety

Integrity

Maintainability

Fault Prevention

Fault Removal

Fault Tolerance

The ability of a computing system to deliver service that can be justifiably trusted

(Fault Protection)

Threats: the Fault-Error-Failure Chain

 Fault

 defect in a system

 Error Error

invalid system state

 Failure
violation of system
 specification

activation
propagation

 propagation
 to service
 boundary

 external fault
(caused by external failure)

 System Boundary
 (Service Interface)

 Fault Protection

 Fault Protection ctd.

Fault Tolerance

 Fault Error Failure activation
 propagation to
 service boundary

fault tolerance

 well-defined
system state

X
elimination of detected errors

prevention of fault activations

 Issues in Dependability for
 Extreme-Scale Systems

 Issues in Multi-Core Fault Tolerance
 Challenges

const L:[n,n]locale = reshape(Locales)
on L(2..p1,2..q1) do task1
on L(p1+1..n-1,2..q2) do task2
on L(2..p1,q1+1..n-1) do task3
on L(p1+1..n-1,q2+1..n-1)do task4

on L(2..n-1,1) do Introspection
on L(1,2..n-1) do Checkpointing
allocate spares to L(1..n,n)

Locale Grid L
I
n
 t
r
o
s
p
e
c

task1

task3

task2

task4

s p a r e s

 Issues in Multi-Core Fault Tolerance
 Opportunities
 Cores are becoming an
 inexpensive resource

 Use of cores for:
 - checkpointing
 - introspection support
 - spares

Specification: Allocation of cores to tasks (RT Chapel)

checkpointing

 Contents

 Focus of Work

 A Framework for Introspection

 Adaptive Introspection-Based Fault Tolerance

Adaptive Fault Tolerance: the capability to provide dependability based on a
fault model, application requirements, and system properties

Introspection provides functionality for error detection, analysis and recovery

application
executable

adaptation code

system

Introspection
 Framework

inference
 engine

knowledge/
 rule base

sensor links

actuator links

sensor links

actuator links

inference
engine

monitoring
analysis
recovery
prediction

Introspection Framework Architecture

 Introspection-Based Fault Tolerance Architecture:
 Example: PS3 Cluster

Host

PPE Level

SPE Level

 Introspection Module
 „atomic“ component of introspection

Introspection System sensors

actuators

.

.

.

.

.

.

Inference Engine
(SHINE)

Monitoring

Analysis

Recovery

Prognostics

Knowledge
Base

System
Knowledge

Application
 Knowledge

 Domain
Knowledge
…

Application

 System

Environment

Facts/Rules

Fault Classes under
Consideration

•  transient faults

•  hard faults

•  software design faults

Sensors provide input
to the introspection system
(e.g., state information,
assertion values, hardware
alarms)

Actuators provide
feedback from the
introspection system to
the application (e.g., error
analysis information,
suggestions for recovery
algorithms, modification
of instrumentation)

 Introspection Complements V&V

 Contents

Compiler- and Tool-Supported Fault Tolerance

User

 Domain
Knowledge
 Base

 FT
Knowledge
 Base

 assertion generation

 instrumentation

redundant code generation

 program analysis
 profiling

Program
 KB

Fault Model

TMR
 NMR
 …

exploiting
results of
automatic
program
analysis

leveraging
standard
fault
tolerance
methods

exploiting
domain and
application
knowledge extended

source program

original
 source
program

Introspection
Framework

 Static and Dynamic Analysis

Concluding Remarks

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology

