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                             A Short Note on 
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    The size and complexity of the code 
        for a given application problem 
     *is* relevant for dependability 
  (independent of language support for dependability) 

   For example…                         



            Fortran+MPI Communication 
   for 3D 27-point Stencil (NAS MG rprj3) 



 Chapel 3D NAS MG Stencil rprj3 
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Dependability*  

*A. Avizienis, J.-C.Laprie, B.Randell: Fundamental Concepts of Dependability. UCLA CSD Report 010028, 2000 
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Threats: the Fault-Error-Failure Chain  
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Fault Tolerance  
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                Issues in Dependability for  
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    Issues in Multi-Core Fault Tolerance 
                                            Challenges 



const L:[n,n]locale = reshape(Locales) 
on L(2..p1,2..q1)        do task1 
on L(p1+1..n-1,2..q2)    do task2 
on L(2..p1,q1+1..n-1)    do task3 
on L(p1+1..n-1,q2+1..n-1)do task4 

on L(2..n-1,1) do Introspection 
on L(1,2..n-1) do Checkpointing 
allocate spares to L(1..n,n) 
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    Issues in Multi-Core Fault Tolerance 
                                            Opportunities 
 Cores are becoming an      
   inexpensive resource 

 Use of cores for: 
             - checkpointing 
             - introspection support 
             - spares 

Specification: Allocation of cores to tasks (RT Chapel) 

checkpointing 
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       Adaptive Introspection-Based Fault Tolerance  

Adaptive Fault Tolerance: the capability to provide dependability based on a 
fault model, application requirements, and system properties 

Introspection  provides functionality for error detection, analysis and recovery 

application 
executable 

adaptation code 

system 

Introspection  
  Framework 

inference 
  engine 

knowledge/ 
 rule base 

sensor links 

actuator links 

sensor links 

actuator links 

inference 
engine 

monitoring 
analysis 
recovery 
prediction 



Introspection Framework Architecture  



    Introspection-Based Fault Tolerance Architecture: 
                              Example: PS3 Cluster 
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Fault Classes  under  
Consideration 

•  transient faults 

•  hard faults 

•  software design faults 

Sensors provide input  
to the introspection system  
(e.g., state information,  
assertion values, hardware  
alarms) 

Actuators provide  
feedback from the  
introspection system to  
the application (e.g., error  
analysis information, 
suggestions for recovery 
algorithms, modification 
of instrumentation) 



 Introspection Complements V&V   
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Compiler- and Tool-Supported Fault Tolerance   
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Concluding Remarks 
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