
Near-Optimal Placement of MPI 
Processes on Hierarchical NUMA 

Architecture  
 Emmanuel Jeannot, Guillaume Mercier 

LaBRI/INRIA Bordeaux Sud-Ouest/ENSEIRB 
Runtime Team 

Emmanuel.Jeannot@inria.fr 



CCGSC in France? 



Introduction 

•  MPI is the main standard for programming 
parallel applications 

•  It provides portable code across platforms 

•  What about performance portability? 



Performance of MPI 
programs   

Depend on many factors: 
•  Implementation of the standard (e.g. collective 

com.) 
•  Parallel algorithm(s) 
•  Implementation of the algorithm 
•  Underlying libraries (e.g. BLAS) 
•  Hardware (processors, cache, network) 
•  etc. 
•  and … 



Process placement 

The MPI model makes little (no?) assumption on 
the way MPI processes are mapped to resources 

It is often assume that the network topology is flat 
and hence the process mapping has little impact 
on the performance  



The network topology is not 
flat 

Due to multicore processors current and future 
parallel machines are hierarchical 

Communication speed depend on: 
•  receptor and emitter 
•  Cache hierarchy 
•  Memory bus 
•  Interconnection network 
•  etc. 



Example of typical parallel 
machine 

Switch 

Cabinet Cabinet Cabinet 

Node Node Node 

Processor Processor Processor 

Core Core Core Core 

… 

… 

… 

Thanks to cache, 
memory, network, etc. 
It is possible to 
communicate inside 
one level 

Core 



Rationale 

Not all the processes exchange the same amount 
of data 

The speed of the communications, and hence 
performance of the application depend on the 
way processes are mapped to resources. 



Process placement problem 

Given: 
•  The parallel machine topology  
•  The processes communication pattern 

Map processes to resources (cores) to reduce the 
communication cost. 



Obtaining the toplogy 

HWLOC (portable hardware locality) 
•  Runtime and OpenMPI team 
•  portable abstraction (across OS, 

versions, architectures, ...)  
•  Hierarchical topology 
•  Modern architecture (NUMA, 

cores, caches, etc.) 
•  ID of the cores 
•  C library to play with 
•  etc. 



Obtaining the communication 
pattern  

No automatic way so far 

For now done through application monitoring 

Left to future work (static code analysis?) 



State of the art 

Process placement fairly well studied problem: 
•  Graph Partitioning (Scotch/Metis): do not take 

hierarchy into account.  
•  [Träff 2002]: placement through graph embedding 

and graph partitioning 
•  MPIPP [Chen et al. 2006]: placement through 

local exchange of processes until no gain is 
achievable 

•  [Clet-Ortega & Mercier 09] : placement through 
graph renumbering 



Example 

0 100 100 10 1000 100 100 10 

100 0 10 100 100 1000 10 100 

100 10 0 100 100 10 1000 100 

10 100 100 0 10 100 100 1000 

1000 100 100 10 0 100 100 10 

100 1000 10 100 100 0 10 100 

100 10 1000 100 100 10 0 100 

10 100 100 1000 10 100 100 0 

Communication speed between 
processor 2 and processor 3 

T: topology matrix 
0 1000 10 1 100 1 1 1 

1000 0 1000 1 1 100 1 1 

10 1000 0 1000 1 1 100 1 

1 1 1000 0 1 1 1 100 

100 1 1 1 0 1000 10 1 

1 100 1 1 1000 0 1000 1 

1 1 100 1 10 1000 0 1000 

1 1 1 100 1 1 1000 0 

C: communication matrix 

Amount of data exchanged between 
process 1 and process 3 

Formal problem 
Input: T and C two n by n matrices 
Output:  a permutation of size n 
Constraint: minimize  

Example of solutions: 
Round-robin:        0 1 2 3 4 5 6 7    241.3  
Graph embedding:  3 7 4 0 6 2 5 1  210.52  
Optimal (B&B):   0 4 1 5 2 6 3 7  29.08  



Complexity of the problem 

Finding the optimal permutation is NP-Hard 

However, posed this way the problem does not 
take into account the hierarchy of the topology 

Question: does taking the hierarchy into 
consideration help? 



Taking into account the 
hierarchy 

0 100 100 10 1000 100 100 10 

100 0 10 100 100 1000 10 100 

100 10 0 100 100 10 1000 100 

10 100 100 0 10 100 100 1000 

1000 100 100 10 0 100 100 10 

100 1000 10 100 100 0 10 100 

100 10 1000 100 100 10 0 100 

10 100 100 1000 10 100 100 0 

0 4 1 5 2 6 3 7 

HWLOC output 

Topology matrix 



Mapping the communication matrix 
to the topology tree: the TreeMatch 

algorithm 

Idea: for each level of the tree, group nodes to 
minimize remaining communication.  

Group size should be equal to the arity of the 
considered level 



Example 

0 4 1 5 2 6 3 7 

0 1000 10 1 100 1 1 1 

1000 0 1000 1 1 100 1 1 

10 1000 0 1000 1 1 100 1 

1 1 1000 0 1 1 1 100 

100 1 1 1 0 1000 10 1 

1 100 1 1 1000 0 1000 1 

1 1 100 1 10 1000 0 1000 

1 1 1 100 1 1 1000 0 

C: communication matrix 

0 1 2 3 4 5 6 7 

0 1012 202 4 

1012 0 4 202 

202 4 0 1012 

4 202 1012 0 

+ 
Grouped matrix 0 1 2 3 4 5 6 7 



A more complex example 
0 1000 10 1 100 1 1 1 

1000 0 1000 1 1 100 1 1 

10 1000 0 1000 1 1 100 1 

1 1 1000 0 1 1 1 100 

100 1 1 1 0 1000 10 1 

1 100 1 1 1000 0 1000 1 

1 1 100 1 10 1000 0 1000 

1 1 1 100 1 1 1000 0 

0 1 2 3 4 5 6 7 

0 1012 202 4 

1012 0 4 202 

202 4 0 1012 

4 202 1012 0 

+ 
Grouped matrix 



A more complex example 

0 1 2 3 4 5 6 7 

0 1012 202 4 

1012 0 4 202 

202 4 0 1012 

4 202 1012 0 

Grouped matrix 

0 1012 202 4 0 0 

1012 0 4 202 0 0 

202 4 0 1012 0 0 

4 202 1012 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Extended grouped matrix 

0 1  4 2 3 5 

0 412 

412 0 

Grouped matrix 

0 1  4 2 3 5 

0 1 2 3 4 5 6 7 



A more complex example 
0 1000 10 1 100 1 1 1 

1000 0 1000 1 1 100 1 1 

10 1000 0 1000 1 1 100 1 

1 1 1000 0 1 1 1 100 

100 1 1 1 0 1000 10 1 

1 100 1 1 1000 0 1000 1 

1 1 100 1 10 1000 0 1000 

1 1 1 100 1 1 1000 0 

0 1 2 3 4 5 6 7 TreeMatch: 
Packed:  0 1 2 3 4 5 6 7 

Packed solution worst than the TreeMatch one because there is a large communication 
between processes 5 and 6  

0 1000 10 1 100 1 1 1 

1000 0 1000 1 1 100 1 1 

10 1000 0 1000 1 1 100 1 

1 1 1000 0 1 1 1 100 

100 1 1 1 0 1000 10 1 

1 100 1 1 1000 0 1000 1 

1 1 100 1 10 1000 0 1000 

1 1 1 100 1 1 1000 0 



TreeMatch properties 

•  Work if there is more cores than processes (by 
adding virtual processes that do not 
communicate) 

•  Work whatever the arity of a given level (do not 
need to be binary) 

•  Optimal if the communication pattern is 
hierarchic and symmetric and the topology tree is 
balanced 



Complexity 

n: size of the matix, k: arity of the level 
n/k: size of the grouped matrix 
               number of such groups 

Ok if the arity of the tree is not too large. 
We can manage a reasonable complexity in 

decomposing k in primes number: a vertex of 
arity 32 will be consider as a binary tree of 5 
levels 



Experiments 

We use the NAS benchmarks:  

•  All the kernels 

•  Class: A,B,C,D 

•  Size: 16, 32/36, 64 

•  On highly NUMA machine (4 nodes of 4 Xeon quad-core 
Dunnington)  

•  Comparison with : MPIPP [Chen et al. 2006] (two versions), 
Packed (by sub-tree), Round-Robin (process i to core i). 



1of the 4 nodes of the target 
machine 

0 4 8  12 16 20 3 7 11 15 19  23 



Simulation Results 

We simulate the
 execution time using
 our model 



NAS on the real machine 

Best strategy:
 TreeMatch 

Some very bad
 results against
 round-robin 



32-64 processes 

Several nodes are used 

Best: TreeMatch (up to 27%
 improvement). 

Comparable to MPIPIP.5
 (but faster runtime) 



Communication Only
 Application 

We extract the
 communication
 pattern of the NAS 

Up to 37% improvement  



Conclusion 

Mapping processes can help to reduce the communication cost 

TreeMatch: an algorithm to perform such mapping 
–  Bottom-up 

–  Fast 

–  Does not require that the number process equals the number of cores
/processors 

–  Optimal in some cases 

Early results: 

–  TreeMatch: best method on average 

–  Works well when more than one node is used 

–  Difference between model and reality 



Future work 

On going work 

Future work: 
–  Test real applications 

–  Top Down? 

–  Improve model (NUMA effect) 

–  Hybrid case 

–  Dymamic adaptation 

–  Automation 

–  Process topology interface of MPI 2.2 (With J. L.  Träff).  


