
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 20

Active Queue Management (AQM)

ECN

XCP

Note: Vegas/Fast/Westwood need high precision timer.
In ns, you want tcpTick_ to be 0.01 (ns default)

IPP Lecture 20 - 2

Active queue management

Internet architecture assumes independence of end nodes from routers
– Packets/flows can go through different routers
– Transport layer and network layer are independent

Routers do not guarantee service (best effort)
– Transport protocols should recover from losses and adjust to varying RTT

Router software should be simple
– There are many end-nodes and few routers
– Routers have large amounts of packets to process

Routers are part of the problem, maybe make them part of the solution

Current thinking is that maybe routers need to take a more active role
in providing high throughput and fair service, and perhaps provide more
explicit feedback to the transport protocol

– Recall, old TCP had proposed ICMP source quench feedback from routers
– DECnet and IBM SNA have explicit congestion feedback from routers

IPP Lecture 20 - 3

Queuing Disciplines

Each router must implement some queuing discipline

Queuing allocates bandwidth and buffer space:
– Bandwidth: which packet to serve next (scheduling)
– Buffer space: which packet to drop next (buff management)

Queuing also affects latency

There are more queuing disciplines than TCP flavors

Class C

Class B
Class A

Traffic
Classes

Traffic
Sources

Drop
Scheduling Buffer Management

FIFO

RED

FRED

WFQ

CSFQ

DRR

…

IPP Lecture 20 - 4

Typical Internet Queuing

FIFO + drop-tail
– Simplest choice
– Used widely in the Internet

FIFO (first-in-first-out)
– Implies single class of traffic

Drop-tail
– Arriving packets get dropped when queue is full regardless of flow or

importance

Important distinction:
– FIFO: scheduling discipline
– Drop-tail: drop (buffer management) policy

IPP Lecture 20 - 5

FIFO + Drop-tail Problems

FIFO Issues: In a FIFO discipline, the service seen by a flow is convoluted
with the arrivals of packets from all other flows!

– No isolation between flows: full burden on e2e control
– No policing: send more packets get more service

Drop-tail issues:
– Routers are forced to have have large queues to maintain high utilizations
– Larger buffers => larger steady state queues/delays
– Bias against flows with long RTT
– Synchronization: end hosts react to same events because packets tend to be lost

in bursts (phase effects)
– Lock-out: a side effect of burstiness and synchronization is that a few flows can

monopolize queue space

IPP Lecture 20 - 6

Phase effects (floyd ‘92)

Simulation of two flows (Newreno)

Router with droptail queue

Vary RTT of flow 2

Throughput sensitive to RTT

IPP Lecture 20 - 7

Droptail starvation (lock out)
If there are adequate router buffers, two flows sharing a bottleneck link
will each get a fair share

If router queue is not big enough, packets are dropped, and with
droptail queue, often one flow’s packets tend to get into the queue first,
and the other flow experiences most (all?) of the packet drops

Chap 11, two flows sharing same bottleneck link
– Green flow experiences ALL of the packet drops!

IPP Lecture 20 - 8

Queue Management Ideas
Synchronization, lock-out:
– Random drop: drop a randomly chosen packet
– Drop front: drop packet from head of queue

High steady-state queuing vs burstiness:
– Early drop: Drop packets before queue full
– Do not drop packets “too early” because queue may reflect only

burstiness and not true overload
Misbehaving vs Fragile flows:
– Drop packets proportional to queue occupancy of flow
– Try to protect fragile flows from packet loss (eg: color them or classify

them on the fly)
Drop packets vs mark packets:
– Dropping packets interacts w/ reliability mechanisms
– Mark packets: need to trust end-systems to respond!

ECN
XCP

IPP Lecture 20 - 9

Random drop

Instead of droptail, randomly select a packet from queue to drop when
queue becomes full

Requires no state info in router
– Simple (need random number generator)
– No explicit flow id’ing

Statistically, seems likely you will select packet from a flow with higher
packet rate (more of its packets in the queue)

– If arrivals were Poisson, any flow would be equally likely
– But internet flows are correlated (packet trains), likely to pick higher rate

flow

’90 experiments showed random drop
– Helped equal senders (reduced lock out / phase effects)
– But did not help throughput or reduce packet drops

IPP Lecture 20 - 10

Active Queue Management

Proactively Manage Queues
– Drop packet before queue overflows
– Small queues

Probabilistic Dropping
– Introduces randomization in network

Early Congestion Indication
Protect TCP Flows
– CBR flows, selfish flows (non-responsive flows)

e.g. RED (and variants), REM

IPP Lecture 20 - 11

Random Early Detection (RED)

AQM scheme recommended by IETF

Proposed by Floyd/Jacobson ’93

Router keeps track of average queue length
– Exponential weighted (w) moving average (EWMA)
– Accepts packets if queue lth < Min
– Min < lth < Max randomly drop packet with linear probability distribution
– Queue lth > Max drop packet

Detect congestion early (but not too early …?)

Four parameters: min, max, w, drop probability

IPP Lecture 20 - 12

Random Early Drop

Minth
Maxth

avg: average queue length (EWMA)
if avg < Minth then queue packet

if avg > Maxth then drop packet

else, probabilistically drop/accept packet.

Head

AcceptDrop/Mark Probabilistically Accept

IPP Lecture 20 - 13

RED parameters

Drop probability
– Too small: won’t prevent phase effects
– Too big: decrease throughput
– Dynamic value, function of number of connections, bandwidth, RTT

Min/max
– Typically max = 3 * min min =5 max = 15
– Maybe different values for non-responsive traffic (UDP)

Weight parameter, w
– avgqlth(t) = (1-w)avgqlth(t-1) + wq(t) (q(t) current queue length)
– w too small, average doesn’t catch up with long range congestion
– w too big, tracks instantaneous too closely
– Many studies … 0.002?

IPP Lecture 20 - 14

RED and ns
In your ns link commands replace DropTail with RED

– $ns duplex-link $s3 $r1 10Mb 1ms RED

You can tune various RED parameters
Queue/RED set q_weight_ 0.002
Queue/RED set thresh_ 5
Queue/RED set maxthresh_ 15

these need to come before you define the links in your tcl
ns defaults for these parameters are calculated dynamically

IPP Lecture 20 - 15

RED and ns

Chap 11 shared link example with RED
– No lockout
– Both flows experience drops

IPP Lecture 20 - 16

RED and ns

Chap 11 long vs short RTT (Fack)
– RED improves RTT fairness

IPP Lecture 20 - 17

Monitoring queues in ns
Setting queue size on path between r1 r2 $ns queue-limit $r1 $r2 $qsize

Tracing queue variables at specified interval
set qmon [$ns monitor-queue $n2 $n3 [open qm.out w] 0.1];
[$ns link $n2 $n3] queue-sample-timeout;
File: 1.3 2 3 1040.0 1.0 5 2 2 4120 1080 2000

time src dst avrgB avrgpkts arrivals depart drops barriv bdepart bdrops

Monitoring a queue
– Snapshot of queue activity with your record or finish procedure
– Variables pdrops_ pdepartures_ parrivals_ bdrops_ bdepartures_ barrivals_
set qmon [$ns monitor-queue $n0 $n1 1 2]
set curr_qsize [$qmon set size_]
puts “drops [$qmon set pdrops_] "

Monitoring a flow
– If you need to know which flows are experiencing drops
– Need to set flow ids $tcp set fid_ 1
set fm [$ns makeflowmon Fid]
$ns attach-fmon [$ns link $r1 $r2] $fm 0
foreach f [$fm flows] {

puts " flow [$f set flowid_] drops: [$f set pdrops_]"
}

IPP Lecture 20 - 18

RED variants

Variants of RED based on
– Selection of 4 parameters
– Calculation of the control variable or drop function

Try to improve fairness, throughput, and/or reduce delay and variance (jitter)

Many variants: SRED, DSRED, BLUE, REM, …

IPP Lecture 20 - 19

REM (Random Exponential Marking)

RED variant, marking function exponential not linear
– Uses aggregate input rate from multiple input links
– Marking probability a function of link capacity and current buffer fill level

Five parameters to ensure desired performance
– ns Queue/REM

Better throughput than RED, decrease in jitter

See table 12.3 in text

No silver bullet

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

L in k c o n g e s t io n m e a s u re

Li
nk

 m
ar

ki
ng

 p
ro

ba
bi

lit
y

REM RED

1

IPP Lecture 20 - 20

Comparison of AQM Performance

DropTail
queue = 94%

RED
min_th = 10 pkts
max_th = 40 pkts
max_p = 0.1

REM

queue = 1.5 pkts
utilization = 92%
γ = 0.05, α = 0.4, φ = 1.15

IPP Lecture 20 - 21

Size-based Schemes
– drop decision based on the size of FIFO queue
– e.g. RED

History-based Schemes
– keep a history of packet arrivals/drops to guide drop decision
– e.g. SRED, RED with penalty box

Content-based Schemes
– drop decision based on the current content of the FIFO queue
– Fair queuing, e.g. CHOKe or CSFQ

Packet dropping schemes

IPP Lecture 20 - 22

Randomized TCP to reduce phase effects (side bar)

Phase effects can be reduced by adding random delay at the TCP
sender!

Benefits
– Breaks synchronization
– Spreads losses over time

Independent losses
– Removes Phase Effects
– Removes Bias against large RTT flows
– Reduces burst losses

You can experiment with ns
– Agent/TCP set overhead_ 0.01
– Chap 11 lockout example

No lockout with random sends
Both flows experience drops

Routing updates can become synchronized leading to packet loss,
adding a random offset to their periodic updates helps.

IPP Lecture 20 - 23

Randomized TCP

8 Mbps
5 ms

8 Mbps
5 ms

0.8 Mbps
100 ms

Randomized TCP removes phase effects

IPP Lecture 20 - 24

Phase effects

Mixing in other traffic (telnet, reverse path) reduces phase effects

Same two-flow example as before, but now with Telnet and reverse
path traffic

IPP Lecture 20 - 25

Phase effects

800kbs 100 ms

1000kbs X ms8000kbs 5 ms

• Series of tests varying RTT of right link (ratio to left link)

• RED and randomization reduce phase effects of DropTail

Change bottom
RTT to 103.5

window 13, qsize 15, Newreno

FTP from 1 to 4 and 2 to 4

1 2

4

3

IPP Lecture 20 - 26

Active Queue Management (marking)
Using AQM, e.g., RED, instead of dropping packets in early phase,
router “marks” a packet

– Set a bit in the randomly selected IP packet in the queue indicating
congestion is about to occur

– Receiver copies the bit into the ACK packet so the “mark” gets back to the
sender

– When sender gets notice of “congestion”, reduces sending rate
Linux treats such a notice (ECN) as if it were a packet loss
But potential is there now to distinguish between congestive loss and
random loss – e.g. maybe use Westwood if non-congestive loss …
alas, you still could get congestive loss

Early notification may avoid loss, keep queue sizes small

Mark is in IP header, so other transports (UDP) “could” respond too

Trouble with marking
– Packet or ACK could be lost, sender never notified
– Sender ignores marking and doesn’t adjust
– Requires changes to routers and end-node transport (but incremental)

IPP Lecture 20 - 27

Active Queue Management (marking)

Queue

Sink
Outbound LinkRouterInbound Link

Sink

TCP

TCP

ACK…

ACK…

Queue

Sink
Outbound LinkRouterInbound Link

Sink

TCP

TCP

ACK…

ACK…

Queue

Sink
Outbound LinkRouterInbound Link

Sink

TCP

TCP

ACK…

Drop!!!

Queue

Sink
Outbound LinkRouterInbound Link

Sink

TCP

TCP

Queue

Sink
Outbound LinkRouterInbound Link

Sink

TCP

TCP AQM

Congestion

Congestion Notification…

ACK…

Queue

Sink
Outbound LinkRouterInbound Link

Sink

TCP

TCP AQM

Advantages
• Reduce packet losses

(due to queue overflow)
• Reduce queuing delay

IPP Lecture 20 - 28

ECN (Explicit Congestion Notification)

Use explicit notification of congestion (in old days, ICMP Source
Quench) rather than implicit (packet loss)

RFC 3168, uses low-order 2 bits of IP TOS byte in IP header
– 00 no ECN support
– 01 or 10 ECN capable
– 11 ECN notification from router

TCP uses bits 8 and 9 of the reserved (flags) field to negotiate (ECE)
ECN capability and to set ECN mark (CWR)

– ECE capability negotiated between end-nodes during SYN/SYN-ACK
– Receiver sees IP ECN and sets CWR in TCP header of ACK
– Sender reduces flow rate when CWR bit is set in ACK packet

NOTE: Vegas/Fast try to infer what ECN is explicitly providing

IPP Lecture 20 - 29

ECN and ns

In ns with RED queues
Agent/TCP set old_ecn_ 1
Agent/TCP set ecn_ 1

Tables 11.5 and 11.6 in text
– Pair-wise flows (1 KB MSS)
– RED improves aggregate throughput, fairness, and reduces drops compared to

DropTail
– RED + ECN reduces drops even more, further improves fairness
– Notice no drops for Vegas, so RED/ECN doesn’t really help Vegas since Vegas

is already trying to eliminate drops

DropTail RED RED+ECN
Flavor Goodput Kbs Goodput drops Goodput drops
Reno/Reno 642/570 640/571 48/38 653/648 42/32
Tahoe/Reno 1051/379 809/608 49/38 803/632 42/32
Vegas/Reno 380/1059 453/987 0/68 452/988 0/63
Newreno/Reno 931/394 798/524 50/38 684/640 42/32
Sack1/Reno 1122/329 902/548 50/38 858/592 42/32
Fack/Reno 1273/191 956/507 50/39 851/612 42/32

IPP Lecture 20 - 30

AQM and ECN
Some router support for AQM/RED/ECN, but often not enabled

– Would be nice if all routers in path were RED/ECN capable
– But still can “work” with just some routers and some end-nodes

Some TCP support for ECN (linux), disabled
– sysctl net.ipv4.tcp_ecn = 0
– Treats ECN notification as packet loss

ORNL external internet traffic
– 0. 02 % IP packets with ECN enabled (161 per million capable, 2 per

million marked)

Future internet routers and hosts may do more AQM
– But proper settings, e.g, for RED, still a mystery
– Potential for distinguishing congestive vs non-congestive loss and using

different recovery functions (e.g. TCP Westwood)

Problems with non-responsive transports (UDP)

More complex considerations include
– QoS, quality of service (charging ($$) for better service?)
– Differentiated services

IPP Lecture 20 - 31

AQM for non-responsive flows
Routers need to distinguish flow types (classifier) and then schedule
based on some priority (IP precedence/qos field,UDP vs TCP, …?)

– Trick is to do this efficiently and fairly
– BRED, CBT-RED, FRED, DRR, CSFQ, WFQ

Cisco uses WFQ for line speeds < 2 mbs, otherwise FIFO/DropTail

IPP Lecture 20 - 32

CSFQ/FRED/RED/DRR/DropTail
One TCP flow vs N aggressive UDP flows (each sending at twice its
“fair share”)

IPP Lecture 20 - 33

CSFQ

Two TCP (SACK) flows competing with 1 mbs UDP flow on 1.5 mbs link

IPP Lecture 20 - 34

XCP

Provide more than a bit of congestion information
– Addition of a congestion header to IP

Changes routers and end-nodes
– Simple arithmetic on routers, no per-flow accounting

Decouple congestion control from fairness
– Modification to transport protocol to you use rate feedback (+ or -)

cwnd cwnd + H_feedback

Simulation results very promising

Slides from Dina Katabi MIT

IPP Lecture 20 - 35

Active queue management summary
Routers cause some of the problems with TCP

– FIFO/DropTail cause phase effects, lockout, unfair

Routers should be part of solution – active queue management
– Simple strategies: RED can help
– For non-responsive flows, classifying flows or per-flow accounting is required

Added complexity
May not scale

– Performance metrics:
Throughput
Delay
Fairness

End-to-end modifications offer better performance
– Changes to network layer (routers) and transport layer (TCP)
– marking
– ECN
– XCP

IPP Lecture 20 - 36

Next time …

Parallel streams

Rate-based UDP

