
Random Drop Congestion Control

Allison Mankin

The MITRE Corporation
7525 Colshhe Drive
McLean, VA 22102

mankin@gateway.mitre.org

AJWI’RACT

Gateways in very high speed internets will need to have
low processing requirements and rapid responses to
congestion. This has prompted a study of the performance
of the Random Drop algorithm for congestion recovery.
It was measured in experiments involving locul and long
distance traffic using multiple gateways. For the most
part, Random Drop did rwt improve the congestion
recovery behavior of the gateways A surprising result was
that its performance was worse in a topology with a single
gateway bottleneck than in those with multiple
bottlenecks. The experiments also showed that local
trafic is affected by events at distant gateways.

1. INTRODUCTION

Gateways iu very high speed internets wiII need to
have low processing requirements and rapid responses to
congestion. This paper reports on a set of experiments on
the potential of Random Drop, a statistical congestion
control algorithm that is stateless and operates with
minimal processing. This algorithm was originally pro-
posed by Jacobson [1 J. The performance of Random
Drop was measured on a multiple-network testbed over
three different gateway topologies. The measurement
approach, PDU tracing, used extensive, but efficient,
internal tracing of packets for direct examination of the
gateway queue dynamics. This approach offered insights
into the interaction of a series of gateways dropping pack-
ets.

For the most part, Random Drop did not improve
the congestion recovery behavior of the gateways.
Surprisingly, the performance was worse in a topology
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1990 ACM 089791~405-8/90/0009/0001 . ..$1.50

with a single gateway bottleneck than iu those with multi-
ple bottlenecks. Increasing numbers of congested gate-
ways had measurable effect on throughput in an expected
manner, and on local traffic delays in a less expected
manner. The experiments suggested that 1ocaI delays
were affected by traffic at distant gateways.

1.1. Stateless Gateways

In the present Internet, gateways between networks
maintain no state about the tra& flowing through them.
Without reference to their source or destination, IP pack-
ets to be forwarded are processed as soon as the processor
is available for them, and they are placed on the appropri-
ate outgoing transmission link as soon as it is free. While
they wait for the processor or the link, they are held in a
queue, typically one that has a size limit and has a simple
first-come-first-serve discipline. When the size limit is
reached, each new arrival to the queue is discarded.
These features reflect the following original Internet
goals:

1. The independence of senders from the gateways
they use, so that packets from one transport connec-
tion in theory can go over different gateway paths,
or transparently be moved to a new gateway path if
the old one fails.

2. The freedom of the gateways from guaranteeing
service, and the expectation that the transport proto-
cols at the sender should recover from losses and
highty variable delay.

3. The need for gateway software to be simple, since
there are many fewer gateways than hosts, and con-
sequently gateways usually have comparatively
large amounts of traffic to process.

This research wits sponaortd by Ihc Dcfellsc Communications

Agency under Contract F 19628-89-C-000 I.

1

There has been some re-evaluation of the first two of these
goals, as plans are made for the next generation Internet
based on very high speed transmission technology [2].
End-point transparent paths and end-point reliability do
not fit well with new models of the very high speed inter-
net. However, the third, the need for the fastest possible
processing of packets, is even mom pressing as the
volume of traffic and the number of different traffic flows
processed by each gateway increase in high-speed inter-
networking.

1.2. Random Drop Concepts

The concepts of Random Drop were originally pro-
posed in meetings of the Internet Engineering Task Force
[l]. The statistical concept of Random Drop is that a
packet randomly selected from all trafftc passing through
the gateway belongs to a particular connection with a pro-
bability matching that connection’s proportion of the
traffic. The control concept is that dropping random pack-
ets from connections sending too much traffic can reduce
the total steady state traffic of the gateway.

The appeal of the statistical concept is that the
gateway’s connections are distinguished without the over-
head of keeping track of individual connections. Altema-
tives require identifying the connection for every packet.
A potentially large table of connection state information
has to be maintained, since the number of connections
whose traffic needs to be tracked grows exponentially
with the number of endpoints served simultaneously by
the gateway. Random sampling would be an attractive
alternative to maintaining this state.

Random Drop samples the population using the
gateway as follows: the sample size is some number of
arrivals, regardless of how long a time they span. Each
round of Random Drop requires one generation of a ran-
dom number, followed by simple packet counting. The
jth packet tj is the random number) is selected from a
prespecified number N of arrivals. Once N packets have
arrived, a new j is drawn. The result is a uniformly
applied l/N chance of being selected. If a connection has
p packets in the sample of N, it has an p/N probability of
having its packet selected; if it has only one packet in the
same sample, it has only a l/N chance of being selected.

The control concept says that dropping appropriate
packets is sufficient for gateway congestion control.
When the source detects its packet is dropped, this is used
as a signal to carry out an endpoint congestion control
algorithm, such as Slow-start in TCP [3]. Our previous
measurement study [4] shows how the response to
dropped packets by Slow-start cannot clear the gateway
under persistent overload. Jacobson proposed Random
Drop as a way of sending an earlier slow-down signal for
Slow-start TCP, in hopes of improving this behavior, in
other words, for congestion avoidance. The randomly
selected packets would be dropped when the gateway was
starting to experience overload.

Several parameters would be needed to carry out a
Random Drop Congestion Avoidance algorithm, princi-

pally, the rate of drop (a dynamically determined N), and
the function for varying it in time. These must be related
to many performance factors in the gateway: whether the
gateway is moving toward congestion, and how quickly;
the number of connections that send at too great a rate; the
time it takes the drop signal to reach senders; and the
responsiveness of senders to the drop signal. The premise
of Random Drop Congestion Avoidance is that these fac-
tors can be combined to compute au N, and possibly a
number of random draws to make within the N (not
always 1). Then the drop mechanism, operated at the
computed rate, would bring about control.

Internet researchers have pointed out problems with
Random Drop for congestion avoidance. Random Drop’s
control concept of dropping packets may be subject to too
much “inertia” to work effectively [5]. The computation
of the drop rate and the passage of the dropped packet sig-
nal to users both entail delay. As stated in Reference 5:

Even long after the switch enters the dropping
region, packets keep coming at the same
speed as if there were no dropping, resulting
in most connections, including the well-
behaved ones, getting packets lost.

When used in advance of the necessity of dropping, the
added probability of drop at each gateway may causes
excessive loss for connections traversing many gateways.

2. RANDOM DROP CONGESTION RECOVERY

As a result of the negative arguments summarized,
we chose to experiment with Random Drop only for
congestion recovery, and not for congestion avoidance.

Random Drop Congestion Recovery (RDCR) is au
enhancement for packet dropping when the gateway is
congested enough for a queue to overflow. Congestion
avoidance (CA) algorithms, such as the binary feedback
scheme [6], would prevent the occurrence of such
overflows most of the time, but the Internet does not
currently have any CA scheme. Even if effective CA was
in place, however, congestion calling for recovery
mechanisms would still occur when there was a sudden
increase in the network load or decrease in the available
capacity.

In RDCR, instead of dropping the last packet to
arrive at the overflowing queue, a randomly chosen packet
from the queue is dropped. The mechanism uses uniform
random number generation and packet counting as
described earlier, but N (the sample size controlling the
probability of drop) is fixed at the maximum size of the
queue.

RDCR is potentially valuable if arrival whten the
queue is full appears to be more likely for connections
with less traffic than for connections with more. Then,
because selecting the random packet identifies a heavier
user, the drop for overflow is from a connection that is
contributing substantially to the overflow. If there was no
correlation between packets arriving at the gateway (in
other words, the gateway was like an M/M/l queue, with

2

Poisson arrivals and exponential service times), packets’
arrival at any queue position would be equally probable
for all connections. But there is correlation, such as the
“packet trains” [7] and host-pair localizations [8] found
in measuring operational internets. TCP arrivals at the
gateway are far from independent of each other. The win-
dow means past delays and (for Slow-start) past conges-
tion determine the gateway arrival times of current pack-
ets.

Simulations of Random Drop Congestion Recovery
by other researchers have indicated that RDCR does not
control short and long round trip time connections propor-
tionately [5,9]. On the other hand, random selection of
packets to receive Source Quench has been shown to
improve the fairness of an IP rate reduction algorithm
[lo]. In particular, it produced nearly perfect throughput
fairness among equal senders. The use of random selec-
tion with Source Q.uench is one of the major recommen-
dations made by Reference 10. That the throughput is
close to equal for equal connections is visible in the
throughput graphs in Reference 5 as well. Our measure-
ments of RDCR confirm and extend these results.

3. IMPLEMENTATION

RDCR was implemented in the BSD 4.3 UNIX*
kernel on MicroVax II** systems. In this irnplementa-
tion, a set of uniformly distributed random numbers
between zero and the maximum queue occupancy is
precomputed at regular intervals. Whenever a packet
must be dropped, the packet in the queue position
corresponding to the number is deleted and the arriving
packet is enqueued. The chance for the arriving packet to
be dropped is retained. A number selection of zero means
drop the head packet on the queue. The queue maximum
number means drop the currently arriving, not yet
enqueued packet.

one addition. The standard UNIX linear congruential ran-
dom number generator needs at least one multiply and one
addition. One modulo operation is also needed, to convert
the number between 0 and 22g generated by the imple-
mented generator to a number between 0 and the queue
maximum packet number, but this is also the case for the
UNIX generator.

4. STUDY DESIGN

The experiments with Random Drop Congestion
Recovery look at the interaction of congested gateways
using the RDCR policy. All traffic through these gate-
ways is Slow-start TCP. The size and other characteris-
tics of the traffic load are such that there is persistent
congestion; that is, until most connections have completed
their sending, there is no chance for the gateways to clear
their queued packets completely. The load selected is
enough to maintain this state, but to avoid an infinite
queueing overflow. This is done with the following
parameters: the maximum burst arrivals at the gateway,
when all the Slow-start connections have their windows
fully open, is fifty-six packets (seven connections times
eight packets); each gateway output queue is configured to
a maximum of thirty packets; each connection traverses at
least two of the gateways, so that its window of packets is
at times spread over two or more queues.

The traffic is divided into two classes, Short
Round-Trip, or SR, and Long Round-Trip, or LR. The SR
class provides a background of load on the gateways. In
each SR group, six nearly equal Slow-start TCP connec-
tions run between hosts that are two gateway hops apart.
In the LR class, a single Slow-start TCP connection nms
across more than two gateway hops. The SR connections
and the LR connection are cross-traffic to each other rela-
tive to the gateway resources. Figure I illustrates the two
classes.

Care was taken to minimize the operations for com-
puting the number of the packet to be dropped, since this
low overhead was the major attraction of Random Drop
Congestion Recovery. But since the algorithm operates
only when packets await link resources, and therefore the
processor is not the bottleneck during execution, we did
not change the BSD queue data structure to optimize
locating the selected packet on the queue. Ina production
implementation, deleting the selected packet could be
made as efficient as the -&dom number generation.

The random number generator had to be devised for
use in the kernel. In the kernel, particularly in the net-
working code, which executes at a processor level block-
ing other networking events, it is necessary to reduce the
operations used for generating each number. The Sub-
tractive Random Number Generator described by Refer-
ences 11 and 12 is low in computational requirements.
Each number generation requires only one subtraction and

* Trademark of AT&T Bell Laboratories.
** Trademark of Digital Equipment Corporation.

GWj GW2 GW3 GW4 LRXl
c

SR = SHORT ROUND TRIP TRAFFIC CLASS

LR = LONG ROUND TRIP TRAFFIC CLASS

Figure 1: Traffic Classes Example

For the purposes of the experiment, Source Quench
was turned off in the gateways. As a result, all connec-
tions waited until retransmission timeout before closing
their congestion window following a drop; this probably
increased the “inertia.” The window size of connections
in both classes, SR and LR, had a fixed maximum of four
kilobytes (eight maximum segment size packets). With a
modification of the destination discard servers, the LR
connections could have grown their window beyond this,
but the convention of a conservative window in TCP was

3

followed.

4.1. Testing Environment

The experiments were carried out using the Defense
Communications Agency Internet Engineering Net, a
testbed recently established by h4lTRE for the Defense
Communications Engineering Center. The gateways were
MicroVax II systems linked by RS-232 connections run at
19.2 kilobits per second speeds, and passing data using the
Serial Line IP (SLIP) protocol. The hosts were a mixture
of MicroVax E’s and Sun 3/6O’s. To minimize the coor-
dination of traffic by host processing, each host was the
source or destination of no more than two connections,
and each host-pair was unique.

The RDCR algorithm was tested with three multi-
gateway topologies. These had four or six gateways, one
LR-class connection traversing all the gateways, and one,
two or three SR-class groups of six connections. All three
topologies are illustrated in Figure 2, An ‘X’ symbol
marks the links (bottlenecks) at which outbound queue
congestion developed during the experiments.

EXF’ElRIMENTI

EXPK=?YT II

JJXPERIMENTILI

nxn nxnxn r-7.

X = BOTILENJZCK

Figure 2: Multiple Gateway Topologies

In the first topology (Single Bottleneck), there was
one SR-class group using Gateways 1 and 2. The LR-
class connection traversed four gateways. The bottleneck
in this configuration was the SLIP link between Gateways
1 and2.

In the second (Two Bottleneck), two groups of SR-
class connections were used, one traversing Gateways 1
and 2, the other Gateways 3 and 4. The LR-class connec-
tion again traversed four gateways. The two bottlenecks
in this configuration were at the SLIP links between Gate-
ways 1 and 2, and Gateways 3 and 4.

Finally, the Three Bottleneck topology added two
more gateways and a third SR group. The LR-class con-
nection traversed six gateways. The third SR group

traversed Gateways 4 and 5 (not 5 and 6, since it was
desired to make a case less balanced in the load at the
bottlenecks than the other two cases). The bottlenecks
were in Gateways 1,3 and 4 in this configuration.

Slow-strut TCP connections for both classes were
produced using MITRE’s tra#gen tool [4]. In all the
experiments, the LR connection was allowed to become
established briefly before the SR connections were started.
The startup of the SR groups was synchronized, but
within each group, connections began with a slight ran-
domness (of three to five seconds). This randomness
ensured that all connections in the experiment became
established and started sending data within a few seconds
of each other. Too closely synchronizing the start causes
one or more connections to lag. Each connection
transmitted three hundred kilobytes of data from memory
to discard servers across the experimental gateways. With
these data amounts and execution methods, the execution
of each experiment took over six hundred seconds.

4.2. Measurement Methods

The performance of the connections was measured
by tapping the LAN and by internal monitoring in the
gateway, using our NETMONliptrace tools. Reference 13
fully documents NETMON and methods for using it.
According to both measurements and estimates, NETMON
adds 5% or less overhead per packet, largely in copying
part of the packet header packet header into the trace
buffers [13]. NETMON produces timestamped traces of
all queue arrivals, departures, and overflows. In addition,
when RDCR was on, NET.MON mce calls recorded
which packets arrived in overflow position and .which
packets were dropped in their stead.

5. RESULTS AND ANALYSIS

PDU traces were collected during the experiments
at each gateway using our NETMONliptrace software.
Our tcptrace [4] tool collected timestamped TCP headers
on each Ethernet that had data sources, Since the data sets
from each collection point (individual gateway or Ether-
net) have independent frames of reference, that is, the
tracing timestamps of the individual gateways and origin
Ethernets are not synchronized, care was taken to analyze
these sets independently.

The measures of performance derived from the data
(and discussed in the results) are the probability of drop,
the rate of arrival in overflow position, the queueing
delay, throughput, and throughput fairness. The gateway
measures, drop rate and delay, are derived indivlidually for
the LR connection and collectively for the SR graups,
though individual SR results could also have been
obtained from the data. Only data from the steady-state
time periods of each experiment were included in comput-
ing the summary statistics. The interval analyzed was 360
seconds.

The direct measurement of gateway queueing
delays is a noteworthy feature of this study. The gateway
measurements (of the queues, and the times and locations

4

of congestion recovery actions) verified that the
bottlenecks occurred as planned. Data was analyzed for
all the output and input queues. Delays at the non-
bottleneck queues were minimal, averaging a few hun-
dredths of a second. One noteworthy confirming meas-
urement was that the traffic load of acknowledgements,
flowing in the reverse direction to the data, also did not
cause significant queueing or delays exceeding a few hun-
dredths of a second. In the experiment results, only meas-
ures at the bottlenecks, Gateways 1,3 and 4, are shown.

Tables l-5 show the summary statistics for the three
experiments in the study, covering probabilities of drop
and overflow position, queueing delays, throughput, and
throughput fairness.

5.1. Probability of Drop

The probabilities of drop for LR when Random
Drop Congestion Recovery is off show that the traffic of
the least frequent sender is indeed disproportionately
likely to be in the overflow position compared with other
senders (Table I). The fact that LR is the least frequent
sender during steady state can be confirmed by looking
ahead to the throughputs shown in Table 4. RDCR
improves LR’s chances it-r the multibottleneck experi-
ments, but the SR connections still have lower drop rates,
even though they occupy more of each queue. In the Sin-
gle Bottleneck experiment, RDCR worsens LR’s probabil-
ity of drop. The contrast between the single bottleneck
and multiple bottleneck results is discussed at the end of
this section.

Table 1: Probability of Drop (Percent)

Experiment GWl GW3 GW4
I LROn 5.56 0.00 0.00
I LROR 3.87 0.00 0.00
I SROn 3,72 -- --
I SROff 3.51 -- --
II LROn 8.33 8.51 0.00
II LR Off 22.73 17.65 0.00
II SROn 3.46 3.49 --
11 SROff 2.97 2.72 --
III LR On 9.52 0.00 5.00
III LR Off 20.00 16.67 0.00
III SR On 2.81 3.08 3.17
IIISROff 2.79 2.34 3.17

-

5.2. Overflow Position Arrivals

In the experiments with RDCR on, a related meas-
ure was the overflow position arrival rate of LR. These
rates are shown in Table 2. The rate of LR overblow posi-
tion arrivals increases with the number of bottlenecks.

Table 2: Overflow Position Arrivals (Percent)
for LR in RDCR

GWl GW3 GW4

5.3. Queueing Delays

Table 3 presents the measured queuemg delays at
each of the bottleneck links during the analyzed 360
second interval of steady-state. The delay at a bottleneck
is consistently lower for LR with RDCR than without.
With RDCR, packets are on the queue for a time before
they are dropped, while without it dropped packets spend
no time waiting. In averaging the delays, the time on the
queue of packets randomly dropped was not included.
Even without averaging in their short waiting times, the
dropping of these packets is the reason for the delay
decrease brought about RDCR, because their presence for
their shortened queue occupancy times mean shortened
waiting times for the undropped packets behind them.

The delays of the SR connections increase with the
number of bottlenecks. This is an odd result, because the
SR connections each traverse only one bottleneck.

Table 3: Queueing Delay/Standard Deviation (Sets)

I
Experiment GWl GW3 GW4
I LROn 6.8510.929 -- __
I LROff 7.03/l .204 -- --
I SROn 7.0510.965 -- _-
I SROff 7.25/1.156 -- _-
II LROn 6.5911.103 7.0311.479 --
Il LROff 6.86/1.14 7.40/1.059 --
Il SROn 6.9211.206 7.14/1.208 --
11 SROff 7.36/1.118 7.3311.084 --
IIILROn 7.4010.749

7.5 1 j0.896
7.1311.093
7.7810442

8.5510.777
IIILROff 9.4810.407
IIISROn 7.2910.862 7.2310.888 8.5711.320
IIISROff 7.6010.837 7.6OlO.911 8.80/1.156

5.4. Tbroughputs

With respect to LR, throughput in this study offers a
dismal view of Slow-start TCP traversing multiple cong-
ested gateways. The throughput of LR is slightly
improved by RDCR in the multibottleneck experiments,
but it is dauntingly low either way.

The maximum throughput for a TCP connection is on the
order of:

wINDow/RTr

Just looking at the gateway queueing delays, the LR con-
nection should have throughputs proportional to those of
SR:

I: LR=lXSR
II: LR=2XSR
III: LR = 3 X SR

A ceiling on the throughput of LR in the multibottleneck
experiments would be l/2-1/3 of each SR connection’s
We see from Table 4 that LR’s throughputs are consider-
ably lower. This is an effect of packet drops, necessitat-
ing retransmissions. With the long round-trip time of LR,
the retransmissions are slow to come.

Table 4: Avg Connection Throughput (Bytes&c)

5.5. Throughput Fairness

As the simulation studies [5,9, lo] predict, the
measurements from our experiments show a benefit to
equal senders from randomized drops at congestion. This
effect is consistent whether or not RDCR also benefits the
LR connection.

The fairness imposed by RDCR on the SR
throughputs is especially clear when quantified by the fol-
lowing fairness metric [14]:

r 1

F=
n(

v
n ;2)

IE

where xi = ith connection’s throughput

n = number of connections

Table 5 presents the computed throughput fairness of the
SR connections.

Table 5: SR Throughput Fairness
(Maximum Fairness = 1.0)

5.6. More on the Single Bottleneck Results

The figure of merit for RDCR is the probability of
drop. In the simplest test configuration, with a isingle
bottleneck, RDCR increases the probability of drop of the
long round-trip time connection. We have to ask if, in the
single bottleneck case, the number of LR packets in the
queue at any given time is comparable to the numbers
from the SR connections. The LR throughput is indeed
close to that of SR. With the single bottleneck, the
overtlow position arrival rate of LR is low. Passing
through multiple bottlenecks increases how often LR
packets arrive to find a full queue, and therefore increases
their benefits from RDCR.

6. CONCLUSIONS

Random Drop Congestion Recovery improves the
fairness of homogeneous connections that have the same
bottleneck, but beyond that, it has limited value. It
reduces only somewhat the disproportionate probability
that long round-trip time traflic is dropped during conges-
tion recovery, The harm that any drops cause the LR
traffic is seen in its low throughputs in the multibottleneck
experiments. Moreover, from the results of the Single
Bottleneck experiment, RDCR may worsen the perfor-
mance of long round-trip time traffic.

There are interactions among intemet gateways,
despite their lack of explicit intercommunication. Multi-
ple bottlenecks exert cumulative influence, and ,they need
not be balanced to do so, as the three bottleneck experi-
ment, with extra high loads at the tInal bottleneck, shows.
As might be expected, local traffic affects the gateway’s
through traflic performance, but the reverse is aIso true.
Our measurements show how the queueing delays of the
local traffic increase when there is a significant down-
stream bottleneck for the through traffic. This measurable
impact of through traffic on local traffic means that con-
nections can be affected by events at gateways distant
from them. The role of the through traffic in creating per-
formance interactions across gateways and localities
should be further studied. Gateway congestion control
and performance management algorithms should be
evaluated in topologies that have both local and through
traftic. Finally, a single bottleneck contiguration, though
easiest to measure, should not be used to predict algorithm
performance.

Based on the throughput fairness results, RDCR
appears to be an ideal supplement to congestion avoidance
schemes that group trafIic together more or less by round
trip time, such as the binary selective feedback scheme [6]

6

and Fair Queueing f 151. These are not stateless so the
attractions of the statelessness of Random Drop are no
longer primary. Rather, the primary benefit is that Ran-
dom Drop provides a completely uniform environment.

Researchers are just beginning to consider whether
randomizing algorithms beyond RDCR, for inst‘auce, Sto-
chastic Fairness Queueing [16], will pay off in Internet
gateway performance. Whatever these algorithms, meas-
urements will be needed and some of the revealed effects
of the algorithms will be unexpected.

111

121

131

141

PI

Fl

[71

WI

[91

UOI

REFERENCES

Jacobson, V. (April, 1989), reported in “Minutes of
the Performance Working Group”, Proceedings of
the Cocoa Beach Internet Engineering Task Force,
Reston, VA: Corporation for National Research Ini-
tiatives.

Parulkar, G. (January, 1990), “The Next Genera-
tion of Internetworking”, ACM Computer Com-
munications Review, Vol. 20, Number 1.

Jacobson, V. (1988), “Congestion Control and
Avoidance”, SIGCOMh4 ‘88, ACM Computer
Communications Review, Vol. 18, Number 4.

Mankin, A. and K. Thompson (February, 1989),
“Limiting Factors in the Performance of Slow-start
TCP”, Conference Proceedings of the Winter 1989
USENIX in San Diego,

Zhang, L. (1989), A New Architecture for Packet
Switching Network Protocols, Ph.D Thesis, Mas-
sachusetts Institute of Technology, Department of
Computer Science.

Ramakrishnan, K.K., D.M. Chiu and R. Jain (1987),
A Selective Binary Feedback Scheme for Conges-
tion Avoidance in Computer Networks with a Con-
nectionless Network Layer, DEC TR-510, Littleton,
MA: Digital Equipment Corporation.

Jain, R. and S. Routhier (September, 1986),
“Packet Trains-Measurements and a New Model
for Computer Network Traffic”, IEEE Journal on
Selected Areas in Communications, Vol. SAC-4,
No. 6.

Feldmeier, D. (1988), Estimated Performance of a
Gateway Routing-Table Cache, MIT Lab. for
Comp. Sci. Technical Memorandum
MIT/LCS/TM-352.
Hashem, E. (1990), Random Drop Congestion Con-
trol, MS. Thesis, Massachusetts Institute of Tech-
nology, Department of Computer Science.

Finn, G. (October, 1989), “A Connectionless
Congestion Control Algorithm”, ACM Computer
Communications Review, Vol. 19, Number 5.

[I21

U31

[I41

[W

WI

Abrahams, P. (August, 1989), “Technical
Correspondence-Random Number Generators and
the Minimal Standard”, Communications of the
ACM, Vol. 32, No. 8, pp. 1022-1022.

Mankin, A. (1989), Design and Implementation of
An Instrumented Gateway. MTR-88WOO238,
McLean, VA: The MlTRE Corporation.

Jain, R., D.M. Chiu and W. Hawe (1984), A Quanti-
tative Measure of Fairness and Discrimination for
Resource Allocation in Shared Systems. DEC TR-
301, Littleton, MA: Digital Equipment Corpora-
tion.

Demers, A., S. Keshav and S. Shenker (1989),
“Simulation and Analysis of a Fair Queue@ Algo-
rithm”, SIGCOMM ‘89, ACM Computer Communi-
cations Review, Vol. 19, Number 4.

McKenney, P. (1990), “Stochastic Fairness Queue-
ing”, To appear in Proceedings of INFOCOM ‘PO.

ACKNOWLEDGEMENTS

The author thanks the Internet Engineering Task Force
Performance and Congestion Control Working Group, and
especially Scott Shenker, for discussions of Random
Drop. K.K. Ramakrishnan, Lixia Zhang, and the
anonymous reviewers all raised helpful points about the
analysis of the measurement data.

Ill J Knuth, D. (1983), The Art of Computer Progrum-
ming Vol. 24ieminumerical Algorithms, Reading,
MA: Addison-Wesley, pp. 17 1-172.

I

