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Gateways in very high speed internets will need to have 
low processing requirements and rapid responses to 
congestion. This has prompted a study of the performance 
of the Random Drop algorithm for congestion recovery. 
It was measured in experiments involving locul and long 
distance traffic using multiple gateways. For the most 
part, Random Drop did rwt improve the congestion 
recovery behavior of the gateways A surprising result was 
that its performance was worse in a topology with a single 
gateway bottleneck than in those with multiple 
bottlenecks. The experiments also showed that local 
trafic is affected by events at distant gateways. 

1. INTRODUCTION 

Gateways iu very high speed internets wiII need to 
have low processing requirements and rapid responses to 
congestion. This paper reports on a set of experiments on 
the potential of Random Drop, a statistical congestion 
control algorithm that is stateless and operates with 
minimal processing. This algorithm was originally pro- 
posed by Jacobson [ 1 J. The performance of Random 
Drop was measured on a multiple-network testbed over 
three different gateway topologies. The measurement 
approach, PDU tracing, used extensive, but efficient, 
internal tracing of packets for direct examination of the 
gateway queue dynamics. This approach offered insights 
into the interaction of a series of gateways dropping pack- 
ets. 

For the most part, Random Drop did not improve 
the congestion recovery behavior of the gateways. 
Surprisingly, the performance was worse in a topology 
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with a single gateway bottleneck than iu those with multi- 
ple bottlenecks. Increasing numbers of congested gate- 
ways had measurable effect on throughput in an expected 
manner, and on local traffic delays in a less expected 
manner. The experiments suggested that 1ocaI delays 
were affected by traffic at distant gateways. 

1.1. Stateless Gateways 

In the present Internet, gateways between networks 
maintain no state about the tra& flowing through them. 
Without reference to their source or destination, IP pack- 
ets to be forwarded are processed as soon as the processor 
is available for them, and they are placed on the appropri- 
ate outgoing transmission link as soon as it is free. While 
they wait for the processor or the link, they are held in a 
queue, typically one that has a size limit and has a simple 
first-come-first-serve discipline. When the size limit is 
reached, each new arrival to the queue is discarded. 
These features reflect the following original Internet 
goals: 

1. The independence of senders from the gateways 
they use, so that packets from one transport connec- 
tion in theory can go over different gateway paths, 
or transparently be moved to a new gateway path if 
the old one fails. 

2. The freedom of the gateways from guaranteeing 
service, and the expectation that the transport proto- 
cols at the sender should recover from losses and 
highty variable delay. 

3. The need for gateway software to be simple, since 
there are many fewer gateways than hosts, and con- 
sequently gateways usually have comparatively 
large amounts of traffic to process. 
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There has been some re-evaluation of the first two of these 
goals, as plans are made for the next generation Internet 
based on very high speed transmission technology [2]. 
End-point transparent paths and end-point reliability do 
not fit well with new models of the very high speed inter- 
net. However, the third, the need for the fastest possible 
processing of packets, is even mom pressing as the 
volume of traffic and the number of different traffic flows 
processed by each gateway increase in high-speed inter- 
networking. 

1.2. Random Drop Concepts 

The concepts of Random Drop were originally pro- 
posed in meetings of the Internet Engineering Task Force 
[l]. The statistical concept of Random Drop is that a 
packet randomly selected from all trafftc passing through 
the gateway belongs to a particular connection with a pro- 
bability matching that connection’s proportion of the 
traffic. The control concept is that dropping random pack- 
ets from connections sending too much traffic can reduce 
the total steady state traffic of the gateway. 

The appeal of the statistical concept is that the 
gateway’s connections are distinguished without the over- 
head of keeping track of individual connections. Altema- 
tives require identifying the connection for every packet. 
A potentially large table of connection state information 
has to be maintained, since the number of connections 
whose traffic needs to be tracked grows exponentially 
with the number of endpoints served simultaneously by 
the gateway. Random sampling would be an attractive 
alternative to maintaining this state. 

Random Drop samples the population using the 
gateway as follows: the sample size is some number of 
arrivals, regardless of how long a time they span. Each 
round of Random Drop requires one generation of a ran- 
dom number, followed by simple packet counting. The 
jth packet tj is the random number) is selected from a 
prespecified number N of arrivals. Once N packets have 
arrived, a new j is drawn. The result is a uniformly 
applied l/N chance of being selected. If a connection has 
p packets in the sample of N, it has an p/N probability of 
having its packet selected; if it has only one packet in the 
same sample, it has only a l/N chance of being selected. 

The control concept says that dropping appropriate 
packets is sufficient for gateway congestion control. 
When the source detects its packet is dropped, this is used 
as a signal to carry out an endpoint congestion control 
algorithm, such as Slow-start in TCP [3]. Our previous 
measurement study [4] shows how the response to 
dropped packets by Slow-start cannot clear the gateway 
under persistent overload. Jacobson proposed Random 
Drop as a way of sending an earlier slow-down signal for 
Slow-start TCP, in hopes of improving this behavior, in 
other words, for congestion avoidance. The randomly 
selected packets would be dropped when the gateway was 
starting to experience overload. 

Several parameters would be needed to carry out a 
Random Drop Congestion Avoidance algorithm, princi- 

pally, the rate of drop (a dynamically determined N), and 
the function for varying it in time. These must be related 
to many performance factors in the gateway: whether the 
gateway is moving toward congestion, and how quickly; 
the number of connections that send at too great a rate; the 
time it takes the drop signal to reach senders; and the 
responsiveness of senders to the drop signal. The premise 
of Random Drop Congestion Avoidance is that these fac- 
tors can be combined to compute au N, and possibly a 
number of random draws to make within the N (not 
always 1). Then the drop mechanism, operated at the 
computed rate, would bring about control. 

Internet researchers have pointed out problems with 
Random Drop for congestion avoidance. Random Drop’s 
control concept of dropping packets may be subject to too 
much “inertia” to work effectively [5]. The computation 
of the drop rate and the passage of the dropped packet sig- 
nal to users both entail delay. As stated in Reference 5: 

Even long after the switch enters the dropping 
region, packets keep coming at the same 
speed as if there were no dropping, resulting 
in most connections, including the well- 
behaved ones, getting packets lost. 

When used in advance of the necessity of dropping, the 
added probability of drop at each gateway may causes 
excessive loss for connections traversing many gateways. 

2. RANDOM DROP CONGESTION RECOVERY 

As a result of the negative arguments summarized, 
we chose to experiment with Random Drop only for 
congestion recovery, and not for congestion avoidance. 

Random Drop Congestion Recovery (RDCR) is au 
enhancement for packet dropping when the gateway is 
congested enough for a queue to overflow. Congestion 
avoidance (CA) algorithms, such as the binary feedback 
scheme [6], would prevent the occurrence of such 
overflows most of the time, but the Internet does not 
currently have any CA scheme. Even if effective CA was 
in place, however, congestion calling for recovery 
mechanisms would still occur when there was a sudden 
increase in the network load or decrease in the available 
capacity. 

In RDCR, instead of dropping the last packet to 
arrive at the overflowing queue, a randomly chosen packet 
from the queue is dropped. The mechanism uses uniform 
random number generation and packet counting as 
described earlier, but N (the sample size controlling the 
probability of drop) is fixed at the maximum size of the 
queue. 

RDCR is potentially valuable if arrival whten the 
queue is full appears to be more likely for connections 
with less traffic than for connections with more. Then, 
because selecting the random packet identifies a heavier 
user, the drop for overflow is from a connection that is 
contributing substantially to the overflow. If there was no 
correlation between packets arriving at the gateway (in 
other words, the gateway was like an M/M/l queue, with 
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Poisson arrivals and exponential service times), packets’ 
arrival at any queue position would be equally probable 
for all connections. But there is correlation, such as the 
“packet trains” [7] and host-pair localizations [8] found 
in measuring operational internets. TCP arrivals at the 
gateway are far from independent of each other. The win- 
dow means past delays and (for Slow-start) past conges- 
tion determine the gateway arrival times of current pack- 
ets. 

Simulations of Random Drop Congestion Recovery 
by other researchers have indicated that RDCR does not 
control short and long round trip time connections propor- 
tionately [5,9]. On the other hand, random selection of 
packets to receive Source Quench has been shown to 
improve the fairness of an IP rate reduction algorithm 
[lo]. In particular, it produced nearly perfect throughput 
fairness among equal senders. The use of random selec- 
tion with Source Q.uench is one of the major recommen- 
dations made by Reference 10. That the throughput is 
close to equal for equal connections is visible in the 
throughput graphs in Reference 5 as well. Our measure- 
ments of RDCR confirm and extend these results. 

3. IMPLEMENTATION 

RDCR was implemented in the BSD 4.3 UNIX* 
kernel on MicroVax II** systems. In this irnplementa- 
tion, a set of uniformly distributed random numbers 
between zero and the maximum queue occupancy is 
precomputed at regular intervals. Whenever a packet 
must be dropped, the packet in the queue position 
corresponding to the number is deleted and the arriving 
packet is enqueued. The chance for the arriving packet to 
be dropped is retained. A number selection of zero means 
drop the head packet on the queue. The queue maximum 
number means drop the currently arriving, not yet 
enqueued packet. 

one addition. The standard UNIX linear congruential ran- 
dom number generator needs at least one multiply and one 
addition. One modulo operation is also needed, to convert 
the number between 0 and 22g generated by the imple- 
mented generator to a number between 0 and the queue 
maximum packet number, but this is also the case for the 
UNIX generator. 

4. STUDY DESIGN 

The experiments with Random Drop Congestion 
Recovery look at the interaction of congested gateways 
using the RDCR policy. All traffic through these gate- 
ways is Slow-start TCP. The size and other characteris- 
tics of the traffic load are such that there is persistent 
congestion; that is, until most connections have completed 
their sending, there is no chance for the gateways to clear 
their queued packets completely. The load selected is 
enough to maintain this state, but to avoid an infinite 
queueing overflow. This is done with the following 
parameters: the maximum burst arrivals at the gateway, 
when all the Slow-start connections have their windows 
fully open, is fifty-six packets (seven connections times 
eight packets); each gateway output queue is configured to 
a maximum of thirty packets; each connection traverses at 
least two of the gateways, so that its window of packets is 
at times spread over two or more queues. 

The traffic is divided into two classes, Short 
Round-Trip, or SR, and Long Round-Trip, or LR. The SR 
class provides a background of load on the gateways. In 
each SR group, six nearly equal Slow-start TCP connec- 
tions run between hosts that are two gateway hops apart. 
In the LR class, a single Slow-start TCP connection nms 
across more than two gateway hops. The SR connections 
and the LR connection are cross-traffic to each other rela- 
tive to the gateway resources. Figure I illustrates the two 
classes. 

Care was taken to minimize the operations for com- 
puting the number of the packet to be dropped, since this 
low overhead was the major attraction of Random Drop 
Congestion Recovery. But since the algorithm operates 
only when packets await link resources, and therefore the 
processor is not the bottleneck during execution, we did 
not change the BSD queue data structure to optimize 
locating the selected packet on the queue. Ina production 
implementation, deleting the selected packet could be 
made as efficient as the -&dom number generation. 

The random number generator had to be devised for 
use in the kernel. In the kernel, particularly in the net- 
working code, which executes at a processor level block- 
ing other networking events, it is necessary to reduce the 
operations used for generating each number. The Sub- 
tractive Random Number Generator described by Refer- 
ences 11 and 12 is low in computational requirements. 
Each number generation requires only one subtraction and 

* Trademark of AT&T Bell Laboratories. 
** Trademark of Digital Equipment Corporation. 

GWj GW2 GW3 GW4 LRXl 
c 

SR = SHORT ROUND TRIP TRAFFIC CLASS 

LR = LONG ROUND TRIP TRAFFIC CLASS 

Figure 1: Traffic Classes Example 

For the purposes of the experiment, Source Quench 
was turned off in the gateways. As a result, all connec- 
tions waited until retransmission timeout before closing 
their congestion window following a drop; this probably 
increased the “inertia.” The window size of connections 
in both classes, SR and LR, had a fixed maximum of four 
kilobytes (eight maximum segment size packets). With a 
modification of the destination discard servers, the LR 
connections could have grown their window beyond this, 
but the convention of a conservative window in TCP was 
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followed. 

4.1. Testing Environment 

The experiments were carried out using the Defense 
Communications Agency Internet Engineering Net, a 
testbed recently established by h4lTRE for the Defense 
Communications Engineering Center. The gateways were 
MicroVax II systems linked by RS-232 connections run at 
19.2 kilobits per second speeds, and passing data using the 
Serial Line IP (SLIP) protocol. The hosts were a mixture 
of MicroVax E’s and Sun 3/6O’s. To minimize the coor- 
dination of traffic by host processing, each host was the 
source or destination of no more than two connections, 
and each host-pair was unique. 

The RDCR algorithm was tested with three multi- 
gateway topologies. These had four or six gateways, one 
LR-class connection traversing all the gateways, and one, 
two or three SR-class groups of six connections. All three 
topologies are illustrated in Figure 2, An ‘X’ symbol 
marks the links (bottlenecks) at which outbound queue 
congestion developed during the experiments. 

EXF’ElRIMENTI 

EXPK=?YT II 

JJXPERIMENTILI 

nxn nxnxn r-7. 

X = BOTILENJZCK 

Figure 2: Multiple Gateway Topologies 

In the first topology (Single Bottleneck), there was 
one SR-class group using Gateways 1 and 2. The LR- 
class connection traversed four gateways. The bottleneck 
in this configuration was the SLIP link between Gateways 
1 and2. 

In the second (Two Bottleneck), two groups of SR- 
class connections were used, one traversing Gateways 1 
and 2, the other Gateways 3 and 4. The LR-class connec- 
tion again traversed four gateways. The two bottlenecks 
in this configuration were at the SLIP links between Gate- 
ways 1 and 2, and Gateways 3 and 4. 

Finally, the Three Bottleneck topology added two 
more gateways and a third SR group. The LR-class con- 
nection traversed six gateways. The third SR group 

traversed Gateways 4 and 5 (not 5 and 6, since it was 
desired to make a case less balanced in the load at the 
bottlenecks than the other two cases). The bottlenecks 
were in Gateways 1,3 and 4 in this configuration. 

Slow-strut TCP connections for both classes were 
produced using MITRE’s tra#gen tool [4]. In all the 
experiments, the LR connection was allowed to become 
established briefly before the SR connections were started. 
The startup of the SR groups was synchronized, but 
within each group, connections began with a slight ran- 
domness (of three to five seconds). This randomness 
ensured that all connections in the experiment became 
established and started sending data within a few seconds 
of each other. Too closely synchronizing the start causes 
one or more connections to lag. Each connection 
transmitted three hundred kilobytes of data from memory 
to discard servers across the experimental gateways. With 
these data amounts and execution methods, the execution 
of each experiment took over six hundred seconds. 

4.2. Measurement Methods 

The performance of the connections was measured 
by tapping the LAN and by internal monitoring in the 
gateway, using our NETMONliptrace tools. Reference 13 
fully documents NETMON and methods for using it. 
According to both measurements and estimates, NETMON 
adds 5% or less overhead per packet, largely in copying 
part of the packet header packet header into the trace 
buffers [13]. NETMON produces timestamped traces of 
all queue arrivals, departures, and overflows. In addition, 
when RDCR was on, NET.MON mce calls recorded 
which packets arrived in overflow position and .which 
packets were dropped in their stead. 

5. RESULTS AND ANALYSIS 

PDU traces were collected during the experiments 
at each gateway using our NETMONliptrace software. 
Our tcptrace [4] tool collected timestamped TCP headers 
on each Ethernet that had data sources, Since the data sets 
from each collection point (individual gateway or Ether- 
net) have independent frames of reference, that is, the 
tracing timestamps of the individual gateways and origin 
Ethernets are not synchronized, care was taken to analyze 
these sets independently. 

The measures of performance derived from the data 
(and discussed in the results) are the probability of drop, 
the rate of arrival in overflow position, the queueing 
delay, throughput, and throughput fairness. The gateway 
measures, drop rate and delay, are derived indivlidually for 
the LR connection and collectively for the SR graups, 
though individual SR results could also have been 
obtained from the data. Only data from the steady-state 
time periods of each experiment were included in comput- 
ing the summary statistics. The interval analyzed was 360 
seconds. 

The direct measurement of gateway queueing 
delays is a noteworthy feature of this study. The gateway 
measurements (of the queues, and the times and locations 

4 



of congestion recovery actions) verified that the 
bottlenecks occurred as planned. Data was analyzed for 
all the output and input queues. Delays at the non- 
bottleneck queues were minimal, averaging a few hun- 
dredths of a second. One noteworthy confirming meas- 
urement was that the traffic load of acknowledgements, 
flowing in the reverse direction to the data, also did not 
cause significant queueing or delays exceeding a few hun- 
dredths of a second. In the experiment results, only meas- 
ures at the bottlenecks, Gateways 1,3 and 4, are shown. 

Tables l-5 show the summary statistics for the three 
experiments in the study, covering probabilities of drop 
and overflow position, queueing delays, throughput, and 
throughput fairness. 

5.1. Probability of Drop 

The probabilities of drop for LR when Random 
Drop Congestion Recovery is off show that the traffic of 
the least frequent sender is indeed disproportionately 
likely to be in the overflow position compared with other 
senders (Table I). The fact that LR is the least frequent 
sender during steady state can be confirmed by looking 
ahead to the throughputs shown in Table 4. RDCR 
improves LR’s chances it-r the multibottleneck experi- 
ments, but the SR connections still have lower drop rates, 
even though they occupy more of each queue. In the Sin- 
gle Bottleneck experiment, RDCR worsens LR’s probabil- 
ity of drop. The contrast between the single bottleneck 
and multiple bottleneck results is discussed at the end of 
this section. 

Table 1: Probability of Drop (Percent) 

Experiment GWl GW3 GW4 
I LROn 5.56 0.00 0.00 
I LROR 3.87 0.00 0.00 
I SROn 3,72 -- -- 
I SROff 3.51 -- -- 
II LROn 8.33 8.51 0.00 
II LR Off 22.73 17.65 0.00 
II SROn 3.46 3.49 -- 
11 SROff 2.97 2.72 -- 
III LR On 9.52 0.00 5.00 
III LR Off 20.00 16.67 0.00 
III SR On 2.81 3.08 3.17 
IIISROff 2.79 2.34 3.17 

- 

5.2. Overflow Position Arrivals 

In the experiments with RDCR on, a related meas- 
ure was the overflow position arrival rate of LR. These 
rates are shown in Table 2. The rate of LR overblow posi- 
tion arrivals increases with the number of bottlenecks. 

Table 2: Overflow Position Arrivals (Percent) 
for LR in RDCR 

GWl GW3 GW4 

5.3. Queueing Delays 

Table 3 presents the measured queuemg delays at 
each of the bottleneck links during the analyzed 360 
second interval of steady-state. The delay at a bottleneck 
is consistently lower for LR with RDCR than without. 
With RDCR, packets are on the queue for a time before 
they are dropped, while without it dropped packets spend 
no time waiting. In averaging the delays, the time on the 
queue of packets randomly dropped was not included. 
Even without averaging in their short waiting times, the 
dropping of these packets is the reason for the delay 
decrease brought about RDCR, because their presence for 
their shortened queue occupancy times mean shortened 
waiting times for the undropped packets behind them. 

The delays of the SR connections increase with the 
number of bottlenecks. This is an odd result, because the 
SR connections each traverse only one bottleneck. 

Table 3: Queueing Delay/Standard Deviation (Sets) 

I 
Experiment GWl GW3 GW4 
I LROn 6.8510.929 -- __ 
I LROff 7.03/l .204 -- -- 
I SROn 7.0510.965 -- _- 
I SROff 7.25/1.156 -- _- 
II LROn 6.5911.103 7.0311.479 -- 
Il LROff 6.86/1.14 7.40/1.059 -- 
Il SROn 6.9211.206 7.14/1.208 -- 
11 SROff 7.36/1.118 7.3311.084 -- 
IIILROn 7.4010.749 

7.5 1 j0.896 
7.1311.093 
7.7810442 

8.5510.777 
IIILROff 9.4810.407 
IIISROn 7.2910.862 7.2310.888 8.5711.320 
IIISROff 7.6010.837 7.6OlO.911 8.80/1.156 

5.4. Tbroughputs 

With respect to LR, throughput in this study offers a 
dismal view of Slow-start TCP traversing multiple cong- 
ested gateways. The throughput of LR is slightly 
improved by RDCR in the multibottleneck experiments, 
but it is dauntingly low either way. 



The maximum throughput for a TCP connection is on the 
order of: 

wINDow/RTr 

Just looking at the gateway queueing delays, the LR con- 
nection should have throughputs proportional to those of 
SR: 

I: LR=lXSR 
II: LR=2XSR 
III: LR = 3 X SR 

A ceiling on the throughput of LR in the multibottleneck 
experiments would be l/2-1/3 of each SR connection’s 
We see from Table 4 that LR’s throughputs are consider- 
ably lower. This is an effect of packet drops, necessitat- 
ing retransmissions. With the long round-trip time of LR, 
the retransmissions are slow to come. 

Table 4: Avg Connection Throughput (Bytes&c) 

5.5. Throughput Fairness 

As the simulation studies [5,9, lo] predict, the 
measurements from our experiments show a benefit to 
equal senders from randomized drops at congestion. This 
effect is consistent whether or not RDCR also benefits the 
LR connection. 

The fairness imposed by RDCR on the SR 
throughputs is especially clear when quantified by the fol- 
lowing fairness metric [14]: 

r 1 

F= 
n( 

v 
n ;2) 

IE 

where xi = ith connection’s throughput 

n = number of connections 

Table 5 presents the computed throughput fairness of the 
SR connections. 

Table 5: SR Throughput Fairness 
(Maximum Fairness = 1.0) 

5.6. More on the Single Bottleneck Results 

The figure of merit for RDCR is the probability of 
drop. In the simplest test configuration, with a isingle 
bottleneck, RDCR increases the probability of drop of the 
long round-trip time connection. We have to ask if, in the 
single bottleneck case, the number of LR packets in the 
queue at any given time is comparable to the numbers 
from the SR connections. The LR throughput is indeed 
close to that of SR. With the single bottleneck, the 
overtlow position arrival rate of LR is low. Passing 
through multiple bottlenecks increases how often LR 
packets arrive to find a full queue, and therefore increases 
their benefits from RDCR. 

6. CONCLUSIONS 

Random Drop Congestion Recovery improves the 
fairness of homogeneous connections that have the same 
bottleneck, but beyond that, it has limited value. It 
reduces only somewhat the disproportionate probability 
that long round-trip time traflic is dropped during conges- 
tion recovery, The harm that any drops cause the LR 
traffic is seen in its low throughputs in the multibottleneck 
experiments. Moreover, from the results of the Single 
Bottleneck experiment, RDCR may worsen the perfor- 
mance of long round-trip time traffic. 

There are interactions among intemet gateways, 
despite their lack of explicit intercommunication. Multi- 
ple bottlenecks exert cumulative influence, and ,they need 
not be balanced to do so, as the three bottleneck experi- 
ment, with extra high loads at the tInal bottleneck, shows. 
As might be expected, local traffic affects the gateway’s 
through traflic performance, but the reverse is aIso true. 
Our measurements show how the queueing delays of the 
local traffic increase when there is a significant down- 
stream bottleneck for the through traffic. This measurable 
impact of through traffic on local traffic means that con- 
nections can be affected by events at gateways distant 
from them. The role of the through traffic in creating per- 
formance interactions across gateways and localities 
should be further studied. Gateway congestion control 
and performance management algorithms should be 
evaluated in topologies that have both local and through 
traftic. Finally, a single bottleneck contiguration, though 
easiest to measure, should not be used to predict algorithm 
performance. 

Based on the throughput fairness results, RDCR 
appears to be an ideal supplement to congestion avoidance 
schemes that group trafIic together more or less by round 
trip time, such as the binary selective feedback scheme [6] 
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and Fair Queueing f 151. These are not stateless so the 
attractions of the statelessness of Random Drop are no 
longer primary. Rather, the primary benefit is that Ran- 
dom Drop provides a completely uniform environment. 

Researchers are just beginning to consider whether 
randomizing algorithms beyond RDCR, for inst‘auce, Sto- 
chastic Fairness Queueing [16], will pay off in Internet 
gateway performance. Whatever these algorithms, meas- 
urements will be needed and some of the revealed effects 
of the algorithms will be unexpected. 
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