
IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014 809

Demand Response for Residential Appliances via
Customer Reward Scheme

Cynthujah Vivekananthan, Student Member, IEEE, Yateendra Mishra, Member, IEEE,
Gerard Ledwich, Senior Member, IEEE, and Fangxing Li, Senior Member, IEEE

Abstract—This paper proposes a reward based demand response
algorithm for residential customers to shave network peaks. Cus-
tomer survey information is used to calculate various criteria in-
dices reflecting their priority and flexibility. Criteria indices and
sensitivity based house ranking is used for appropriate load selec-
tion in the feeder for demand response. Customer Rewards (CR)
are paid based on load shift and voltage improvement due to load
adjustment. The proposed algorithm can be deployed in residen-
tial distribution networks using a two-level hierarchical control
scheme. Realistic residential load model consisting of non-control-
lable and controllable appliances is considered in this study. The
effectiveness of the proposed demand response scheme on the an-
nual load growth of the feeder is also investigated. Simulation re-
sults show that reduced peak demand, improved network voltage
performance, and customer satisfaction can be achieved.

Index Terms—Customer rewards, demand response, direct load
control (DLC), hierarchical controller, voltage improvement.

I. INTRODUCTION

C ONCERNS regarding the stability and reliability of an
electricity network arise due to the adverse effect of peak

power demand. Demand response is one way to deal with peak
events and prevent network overloading because it provides the
flexibility required to time shift loads [1], [2]. It is a cost effec-
tive technique and can be achieved by either price based (in-
direct load control) or incentive based (direct load control) de-
mand response programs.
Indirect load control or price based demand response can

be achieved through electricity price changes which encourage
customers to regulate their consumption patterns [3]. Real time
pricing, Time Of Use (TOU) tariffs, and critical peak pricing
can be categorized under price based demand response where
the fluctuations and risks in wholesale electricity prices are im-
posed on the end consumers [4]. The non-residential critical
peak pricing scheme is shown to reduce peak demand [5]. The
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real time pricing scheme has equity problems due to highly
varying day-time and night-time prices [6]. Moreover, it was
also found that consumers are less likely to make active deci-
sions about their load on an hourly basis under the real time
pricing scheme [7].
Direct Load Control (DLC) or incentive based demand re-

sponse can be used by utilities to adjust and time shift customer
load directly during network peak events [8]–[10]. Although
incentives are provided to consumers for their participation in
the DLC program, recent field experiences showed some resent-
ment due to mandatory interruption of electricity services [11].
Few pilot studies involving peak time rebates were conducted in
the past where a priory fixed rebate structure is used which ne-
glects the actual supply-demand status [12]. A variable rebate
based demand response was proposed recently in [13], which
took into account the variability of customer participation and
offered coupons and incentives to achieve peak shaving.
All the models considered above did not investigate detailed

appliance modeling and customer satisfaction, which is neces-
sary for residential demand response. Air conditioners (ACs)
were modeled and proposed to adjust the temperature for de-
mand response in [14]. Similarly, the charging profile of elec-
tric vehicles as a load in distribution networks was considered
in [15]–[17]. A real-time appliance scheduling scheme using
time sensitivities and duty cycles of appliances was considered
in [18]. These previous studies considered only a few selected
appliances in the network. However, a holistic study, incorpo-
rating all major appliances has yet to be investigated.
Moreover, approaches in the literature aimed at network

peak shaving via overload reduction completely neglected
feeder voltage issues. In another study, Peças Lopes proposed
a strategy for load shedding with coordinated voltage support
using an optimization program [19], which was limited to a
small system with few appliances. Optimizing the decision
vector handling multi-layers of the demand response using
customer priority criteria and satisfying both utility and con-
sumer was proposed in [20]. ACs, water heaters and cloth
dryers were the only controllable appliances considered in this
study. Another attempt to bring the actual load consumption
curve closer to the desired load consumption curve through an
optimization process was proposed in [21], but it neglected the
effect on customer satisfaction.
This paper proposes a new incentive based residential de-

mand response using a Customer Rewards (CR) scheme, which
not only achieves peak shaving but also improves the feeder
voltage profile under different spatial distributions of residential
loads. The proposed load control strategy does not depend on the
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TABLE I
SAMPLE CUSTOMER SURVEY QUESTIONNAIRE

cost of electricity consumption. Various indices reflecting cus-
tomer priority, satisfaction, and flexibility are included in this
research. Houses are ranked with a factor reflecting their im-
pact on voltage due to their load. A LV distribution network,
subject to real time load adjustment, is considered in this paper.
Rewards for each customer are based on their willingness to par-
ticipate in the scheme and are calculated dynamically every day.
The paper is organized as follows. The detailed description

of demand response for residential appliances is proposed in
Section II. Specifically, the concept of a customer reward (CR)
scheme is explained in Section II.D. A critical assessment on
the CR scheme is discussed in Section III. The realistic residen-
tial load model including the distribution feeder and the corre-
sponding results are presented in Sections IV and V concludes
the paper.

II. CUSTOMER REWARD BASED DEMAND RESPONSE FOR
RESIDENTIAL APPLIANCES

Customer participation is usually encouraged through a de-
tailed survey at the beginning of the demand response program.
The information obtained is then used to calculate various in-
dices to incorporate customer preferences and hence satisfac-
tion during load adjustment. These indices, including network
topology, are used to define an appropriate load adjustment.
Customer rewards are calculated every 24 hours based on their
participation. The details are discussed below.

A. Seeking Customer Preferences for Demand Response

A customer survey is given to all residential customers for
their inputs and preferences regarding their participation in the
demand response programs. A sample survey or questionnaire
is shown in Table I. Utilities are interested to know appliance
preferences of various customers and their time of operation.
For simplicity, the survey may divide a day into three separate
operation regions namely A, B, and C representing off peak,
shoulder peak, and peak hours respectively.
The survey should be designed to collect important informa-

tion such as the items listed in Table II. In order to verify the

TABLE II
REQUIRED DATA FROM CUSTOMERS.

collected data from customers, past and current appliance usage
patterns can be carefully studied for each house. Customer pri-
ority and the flexible range of usage time for appliances can be
extracted from the above data. Details in the customer question-
naire can be verified with the extracted values. Moreover, these
extracted values can be used when the information provided is
inconsistent and/or ambiguous.
Customer preferences are taken into account before de-

signing the load control algorithm. It is assumed in this study
that each house has ten non-controllable loads (lighting, fridge,
freezer, cooker, electric oven, microwave, television, computer,
stand-by appliance, and miscellaneous appliance) and seven
controllable loads (swimming pool pump, PEV, electric water
heater, dish washer, clothes washer, dryer, and AC). They are
modeled according to residential load modeling data provided
in [22], [23].

B. Calculation of Various Criteria Indices Using Information
From Customer Survey

Information from customers is used to define various indices
for appropriate load selection. Therefore, five criteria indices
( for the criteria index of the house and the
controllable load, ) are proposed in this paper
to reflect the customer’s satisfaction, flexibility, and willingness
to participate in demand response. They are explained next.
1) Appliance Priority Index (API): API is a user-defined

value where the user (i.e., the customer) has the authority to
order/arrange loads that should be operated per the priority of
the duties. This is also obtained from the customer survey con-
sidering the 8-hour time span from 16:00 to 00:00. for
the house and for the appliance can be calculated using
the priority value ( ) in the ordered list. This is shown in
(1). The maximum of represents the total available con-
trollable appliances within that house

(1)

Table III gives the order of appliances in house 1 which has 7
controllable appliances. It is obtained from the customer survey
as in the 2nd column of Table I. It shows that lower priority
appliances, like the swimming pool have higher possibility for
load adjustment. Further, Fig. 1 shows the priority of selected
appliances such as the washing machine, swimming pool, and
water heater for houses in phase-A of a selected feeder. If the
customer chooses to turn on the appliance more than once, it can
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Fig. 1. API of houses in phase-A of feeder 1.

TABLE III
PRIORITY OF APPLIANCES IN HOUSE 1

TABLE IV
FLEXIBILITY OF APPLIANCES

be considered as an “Override”. This “Override” will change the
API for that appliance to 1.
2) Appliance Flexibility Index (AFI): AFI is a measure of

the adjustable range of time of appliances and it depends totally
on their characteristics and necessity. For example, a swimming
pool pump can be operated at any time during a day and there-
fore has the maximum flexibility. Washer and dryer have the
lowest flexibility because they can only be operated in-between
6 p.m. to 11 p.m. This desired appliance operation time range is
obtained from customer survey data. Each customer will specify
the flexible range of time of his appliances in advance, according
to the TOU tariff of that particular season [24]. Off peak (9 hrs),
shoulder peak (11 hrs), or peak region (4 hrs) is selected by a
customer for a desired operation as shown in Table I. Hence,
he/she determines his/her appliance usage pattern within a day
according to a time schedule to reduce the cost. Here, the total
available time is one day or 24 hours.
Finally, the utility calculates the appliance flexibility index

for load adjustment using (2). Here, the user defined data (ad-
justable range of time) is divided by the total available time
within 24 hours. Table IV provides the sample values of flex-
ibility for each controllable appliance when customers are at
home

(2)

3) Appliance Satisfaction Index (ASI): ASI is calculated
every four minutes and indicates how close the appliance oper-
ating state is to its limiting state of operation. ASIs of different
appliances are calculated as shown in Table V and used as
the criteria index . The current power level and time
of operation state of each controllable appliance is used to
calculate this index. The desired values and the set points are

TABLE V
CALCULATION OF ASI FOR DIFFERENT APPLIANCES.

randomly defined within the program. For example, a mean
value of 67 and 25 are chosen for set point of the water
heater and AC, respectively, for random data generation. ASI
is maintained close to unity. Here, is the water heater
tank temperature and is the temperature difference (i.e.,
Actual Room Temperature – Set Point) of AC. For dish washer,
clothes washer, and dryer the cycle has to be completed once
started by the customer. If this load is delayed by utility, then it
will reset and start again at a later time. These loads are given
low AFIs and hence the least priority for adjustment. ASI will
help to maintain a high probability that the dish washer, clothes
washer, and dryer will not be interrupted in the middle of a
cycle via decision matrix values as (9).
4) Power Similarity Index (PSI): PSI represents how close a

load is to the required amount of total load adjustment and it is
used as the criteria index . This is calculated using (3)
for each appliance at each instant

(3)

For example, in a peak day, if a transformer is overloaded by
120 kVA, then on an average 1 kVA is to be adjusted in each
house with the assumption of 120 houses. This required load
adjustment is compared with the rating of each appliance to cal-
culate . For each house, the appliance with the highest PSI
is the most appropriate for the adjustment. Table VI illustrates
how PSI is used to select a particular load for adjustment. If 1
kVA load were to be adjusted, then the washer load, which has a
highest PSI of 0.9091 compared to all other loads in that house,
should be adjusted. Whereas, if 2 kVA load were to be adjusted,
then AC load (PSI is 0.8696) should be chosen. Selection of
AC for the necessary 2 kVA adjustment is much better than the
selection of any other combination of appliances which add ap-
proximately 2 kVA power level (e.g., washer 1.1 kW and dryer
1.3 kW). Here, 2 control commands are reduced into 1, which
means the control algorithm chooses only one load at a step.
Hence the 2 kVA load is chosen for load adjustment instead of
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TABLE VI
PSI CALCULATION OF HOUSE-1 FOR A PARTICULAR INSTANT.

two loads with 1.1 kW and 1.3 kW. This explains the effective-
ness of PSI.
PSI is required to select the closest and most appropriate load

to be adjusted to eliminate overload. Use of PSI will minimize
overall control commands in the network.
5) High Power Consumption Index (HPCI): HPCI aims at

identifying the house which is consuming the highest power at
a time when load adjustment is required. HPCI is calculated as
in (4) and is used as the criteria index . For example, if
a house has 5 kVA of connected load and the load consumption
is 5 kVA at that time, then HPCI is 1 at that time. At other
time instants, if load consumption is 3 kVA, HPCI is 0.6 (
). HPCI is one way to socialize the load adjustment such

that network overload is effectively mitigated

(4)

C. Using House Ranking and Criteria Indices for the Selection
of Appropriate Load Adjustment in the Network

Houses are ranked with a factor to replicate the impact of
load on voltage violation. The random selection of house loads
will result in a number of unnecessary load adjustments when
voltage violation exists. Hence, this ranking mechanism is in-
troduced for each house to avoid unnecessary load adjustment
during voltage problems. Traditionally, the sensitivity method
[25], [26] has been used for load ranking and can be used here
to choose the most suitable house for required load adjustment.
Rank for each house at each instant is calculated using the

voltage magnitude and angle of each house from a three-phase
unbalance load flow program. Voltage sensitivity is considered
as an appropriate voltage measure in this process. Voltage sen-
sitivity parameter ( ) is the average change in the voltages of all
houses in a feeder due to load adjustment at that house. Inverse
Jacobian matrix parameters are used to calculate the voltage
sensitivity at each house. The parameter of the house in
the phase for a three-phase unbalanced system is derived
using (5)

(5)

where is the total of number of houses in one phase.Maximum
and minimum values of the sensitivity parameter in each phase
is calculated and used in (6) to define rank, , for the house

and the appliance in the phase. is the appliance status
(On/Off) signal at a particular time for the house and the
appliance and can be obtained from smart meters. The value of
is 1 if the appliance is on at a particular time and 0 otherwise.

(6)

The overall control process maintains voltage and network
power levels within limits. Here, 0.94 p.u. and 1.06 p.u. are the
minimum and maximum voltage levels, respectively, because

are the Australian standards. Also, network power
limits are taken as the capacity of the transformer (chosen here
as 500 kVA). Power flow equations used during the three-phase
unbalanced load flow program is provided here. The derived
mismatch equations for the load buses are (7)–(8)

(7)

(8)

Here, and are conductance and susceptance of the
feeder connecting the and the house in phase due to
the effect of phase , respectively; is the bus angle at the
house in phase ; and are real and reactive power, respec-
tively; and is the bus voltage. The rank of each house is then
multiplied with the decision value for the appropriate selection
of load.
Overall, the above parameters provide the decision for load

adjustment. These indices (as discussed in Section II-B) along
with the appropriate rank (as discussed in this Section) for each
house are used in decision matrix calculation. , the decision
for the house and the controllable load, is defined as in
(9)

(9)

Where, is the criteria raking matrix for the
criteria index of the house and the controllable load
( ). An efficient solution can be achieved with
the combination of multiple criteria indices into a single crite-
rion by multiplying each criterion with a positive weight and
summing the weighted criteria [27]. For simplicity, this paper
considers unity weights for all five criteria.
For the house in the phase, if is the minimum

in that phase, then and hence . This means
that the corresponding appliance will not be selected for load
adjustment at that time instant. This is reasonable because at that
time instant, the house is the least sensitive to the voltage
violation in the feeder. Since the voltage sensitivity depends
on house locations as well as load consumption, at other time
instants the same house may not have the minimum sensitivity
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and hence the corresponding load can be selected for adjustment
at that time.

D. Customer Reward (CR) Scheme

CR scheme provides rebates to residential customers for their
participation in the demand response. The proposed rebate is a
function of both shifted energy and voltage improvement due
to load adjustments as shown in (10). The shifted energy of
the house is the sum of the product of all load adjustments and
the respective waiting times. Here, waiting time is the time that
is delayed by the controller to re-connect the appliance to the
system. The effective change in voltage within the network due
to a particular load adjustment is taken as the ratio of voltage
deviation of the house to the voltage improvement from the
lower limit

(10)

Here, is the rebate in $/day for house; is the shifted
energy for the house measured at the load adjustment;

is the limit of maximum shifted energy (chosen to be 12
kWhr in this case); is the voltage deviation in p.u. and

is the voltage improvement (from lower limit of 0.94)
in p.u of the house measured at the load adjustment;

is the total number of load adjustments per day for the
house; is the number of houses with voltage violations

in the same feeder as the house; and are cost coefficients
for shifted energy and voltage improvement chosen here as 20
and 1, respectively.
An exponential function for shifted energy is chosen to pro-

vide increased benefit to customers who are willing to partici-
pate in load adjustments for a longer time. The rebate for voltage
improvement due to load adjustment of a house has two com-
ponents, i.e., one resulting in the voltage improvement of that
particular house whose load is adjusted and the second being
the improvement in voltage profile in all other houses down
the feeder. This is important since load adjustment in the house
which happens to be at the beginning of the feeder would inad-
vertently improve the voltage of other houses down the feeder
and therefore should be rewarded accordingly.
In particular, each house will be benefitted by the load adjust-

ment at the end of the day with rebates.

E. Implementation and Operation of Load Control Algorithm

The load control process of CR scheme is shown in Figs. 2
and 3. As shown in Fig. 2, the signal from the smart meters is
received every four minutes. Data processing and identification
of load adjustments are achieved offline in 2 minutes and then
signals are sent for load adjustment.
Communication network like WiMAX has a bit rate in be-

tween 5–25 Mbps where it has a tendency to vary with distance.
Also, 900 MHz system and ZigBee network have a bit rate of

Fig. 2. Time schematic of the load control process.

20 and 250 kbps, respectively. Hence, it takes less than a second
for signal transfer. Further, the data process time calculated in
our program is roughly 10–15 seconds. Here, 2 minutes time
frame is selected as a reasonable time for data collection and
processing and another 2 minutes for sending back data and load
curtailment. Hence, load curtailment happens every 4 minutes.
The 4-minute time window is chosen in this research to make
it roughly aligned with the DMS updates, which usually occur
every tens of seconds to a few minutes.
From time , at each instant , signals from

the primary controllers (smart meters) are received by a sec-
ondary controller. Received appliance state and power data are
used in the load flow program to calculate voltage at each house.
Total network power and voltage at each house are checked to
insure that they are kept within standard limits. The above mea-
surement and data processing occurs every 2 minutes.
Offline load flow studies are performed to obtain the appro-

priate load adjustments in the case that the power level and/or
voltage at each house are violated. The offline load flow block
is an iterative process that selects multiple sets of loads for ad-
justment in that time step as summarized in Fig. 3. The criteria
indices and rankings and hence decision value ( ) are calcu-
lated for each iteration. The maximum value of is used to
find the corresponding load of the house for load adjust-
ment. The power and voltages are recalculated after this load
is adjusted in the offline load flow program. If violations exist,
another load is selected for adjustment by recalculating the up-
dated criteria indices and decision values. This process is re-
peated until violations are removed. At the end of the “offline
selection of load” block, multiple sets of appliances that need to
be adjusted are identified to keep the voltage and power within
limits.
All selected appliances for adjustments are saved and signals

are sent at to relevant smart meters. If loads
are adjustable (such as AC and water heater loads), then the AC
set point is increased by 1 and the water heater set point is
decreased by 1 for 15 minutes. Whereas, the non-adjustable
loads are switched off for 4 minutes. The process is repeated for
the whole day and after 24 hours. Rebates to the customer are
calculated as per (10). Set point adjustments would result in the
reduction of power consumption, which will be used along with
associated waiting time to calculate the shifted power. Fig. 3
summarizes the load control process with CR scheme for a par-
ticular day.
Most of the appliances that do turn ON, run for a certain time

as a constant power load and then turn OFF. This replicates a
discrete event. Once the control signal for adjustment is sent for
certain loads, such as hysteresis type ACs, inverter type ACs,
and water heaters, another signal is not sent for the next 15 min-
utes. For example, at time instant , the control signal is sent
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Fig. 3. Summary of Load control process with CR scheme for a particular day.

for adjusting the water heater of House#4 (say). Once the mea-
surements are obtained at , the decision matrix is calcu-
lated as per (9), and the control signals are sent again at for
another set of load adjustment. This signal would not adjust the
water heater of House#4 until after , where the measure-
ments are taken again. The decision matrix is again calculated

Fig. 4. API during each control (a) without (b) with API in decision process.

Fig. 5. Error in (a) API (b) AFI when API (or AFI) is considered or not con-
sidered during decision making.

at and if the water heater is required to be adjusted, then
the signal would contain a message to adjust the water heater of
House#4 at (as illustrated in Fig. 2).

III. CRITICAL ASSESSMENT OF CR SCHEME

This section critically assesses various aspects of the demand
response and evaluates the necessity of indices, CR, and chal-
lenges in the implementation of the proposed scheme.

A. Significance of Indices in Control Scheme

As discussed in the previous section, customer information is
used to define five indices for effective load control. Here, each
index is critically evaluated to justify its necessity in the load
adjustment algorithm.
A single-phase five-house radial network is considered for

this purpose. All houses are assumed to have seven similar con-
trollable appliances. Initially, two different decision processes
are analyzed; one with API and the other without API. As shown
in Fig. 4, customer priority deviates more if API is not consid-
ered during decision making. That is, appliances with higher
customer priority are also selected for adjustment.
Further, the average selection of loads for 30 random days

is observed. The selection of loads deviates from the reference
API values as in Fig. 5(a), violating customer preferences.
A similar study is done using AFI and results are shown in
Fig. 5(b). Hence, these indices are important in maintaining
customer preferences. Here, all houses are assumed to have the
same reference values for API and AFI. Also, ranks of houses
are kept constant. Actual API and AFI are calculated based
on the number of controls within the day without API and
AFI in decision process. Appliance selection deviates from the
customer specified value if these indices are removed from the
decision process.
Moreover, ASI is significant because it reduces the selection

of appliances which are in the middle of operation. An experi-
ment with and without ASI during decision process is conducted
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Fig. 6. Supply and demand curve with and without CR scheme.

for 30 days and results are compared. The percentage of appli-
ances such as washing machines, dish washers, and dryers inter-
rupted in the middle of operation is 2–5% whereas it is 12.5%
without ASI. Hence, it prevents these appliances from being in-
terrupted in the middle of their operation cycle.
The significance of PSI is analyzed in a case study with and

without PSI. It is observed that controls reduce from 39 to 32 in
a significant day. On an average 15–25% of controls are reduced
by the use of PSI. Hence PSI is an effective factor in the decision
process. HPCI is important in selecting house with maximum
consumption that lead to network problems. It provides benefits
to the customers who have an average consumption schedule
and do not considerably violate the network. If HPCI is not in-
cluded in decision process, a house with maximum consumption
is likely to be selected only 20–30% of the time. This shows that
each criteria index is complementary and necessary for effective
load adjustment.

B. Evaluation of Cost Coefficients for CR

Annual supply and demand curves are used to find cost coef-
ficients of the rebate function in (10). The supply curve is depen-
dent on the marginal operating costs of various generators in the
electricity market. The demand curve changes according to the
consumption pattern of customers. These curves can be obtained
from utilities and market operators and have daily (peak and off
peak) as well as seasonal (summer and winter) variations [28].
For simplicity, the monotonically decreasing demand curve and
monotonically increasing supply curve, as shown in Fig. 6, are
considered for the calculation of and .
During off-peak time, demand is lower and is represented by

the curve DOP, whereas the increase in demand at peak time
can be shown by curve DPK. For a constant tariff (flat rate),
the price is fixed at and therefore the market during off-
peak time operates at point A for quantity demanded . The
increase in demand causes a shortage of supply, which leads
to an increase in price. Due to the increased price, the utility
will increase the quantity of supply from point G to point D, as
shown in Fig. 6, to cater to the increase in quantity demanded

from to . However, due to flat rate, the market operates at
point B. The demand response will reduce the demand and shift
the demand curve to the left, which can be represented as DDR
[29]. At the same time, the supply price increases and shifts the
supply curve to This is because the suppliers are provided
with reduced incentives to exercise market power [30]. Finally,
the market operates at point C after demand response achieves
the reduction from to .
The cost of supply due to demand response is reduced and it

is the difference between (area under the supply curve
) and (area under supply curve ). For simplicity, it

can be represented as as shown in Fig. 6.
Energy values , , and are found using annual supply

curves mapped to the intersection of demand curves with a fixed
price. and are found after the computation of and ,
respectively.
The total rebate in the network for a day should be less than

the reduction in cost of supply due to demand response. Hence,
the total rebate for the network, , that can be offered by the
utilities to their customers should be less than the cost savings
because of demand response. That is, should satisfy
(11)

(11)
Here, is the number of houses in the network. and

are components related to the average shift in energy
and voltage improvement that is calculated from offline load
flow studies using the annual demand and supply curves.
For example, if a 500 kVA network is overloaded by 150 kVA,

then and are 650 kVA and 500 kVA, respectively. The
reduction in cost, i.e., , is $100 using a sample supply
curves from [31]. and are found to be 0.041 and
2.0, respectively, for an average house using offline load flow
studies. If is kept at 1.0, the value of is found to be 20 to
satisfy (11). Note that the utility can choose appropriate values
of and to incentivize the increase of customer participation.
This depends on the network layout, the number of customers,
and the existing tariff. The rebate pattern can be changed by the
utility for every quadrant of the year to accommodate seasonal
load changes.

C. Customer Rewards

A single-phase five-house model is considered to evaluate re-
bate calculations. For simplicity, houses are assumed to have
similar appliances of 1 kVA each. The power consumption pro-
file in each house is assumed to be the same. API and AFI are
fixed in every house as in Tables III and IV.
A rebate for each house is calculated every 24 hours by

the utility to provide benefit to the customers as discussed in
Section II.D. The results obtained for 5 houses are tabulated
in Table VII. H2 pool pump (#2) and electric vehicle (#5)
are adjusted for 12 minutes and for 4 minutes with 1 kW of
shifted power, respectively. Hence, the rebate for the total
shifted energy and the voltage improvement is $0.45 and
$0.51, respectively. So, H2 will get a total rebate of $0.96
( ). It shows an increased rebate towards the end
of the feeder in case 1. Customers towards the end of the feeder
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TABLE VII
DETAILED CALCULATION OF REBATE FOR 5 HOUSES IN ONE FEEDER

TABLE VIII
COST OF ELECTRICITY CONSUMPTION IN A PEAK DAY FOR FEW HOUSES.

will be benefitted with an increased rebate due to more load
adjustments. Here, the total rebate paid by the utility to all five
houses is $9.99. It is interesting to note that H1, at the beginning
of the feeder, has fewer rebates for voltage improvement than
H5 at the end of the feeder. H5 will have significant effect on
the feeder voltage due to load adjustment and, hence, will have
a higher rebate component for voltage improvement than the
corresponding energy component.
Scenarios with traditional demand response (no rebates) and

CR scheme are compared for Australian residential tariff 11,
which is 0.25 $/kWhr [32]. The cost of consumption is cal-
culated based on the price of electricity and energy consumed
every hour. Table VIII shows the cost of electricity for a few
selected customers for a peak day. For instance, with constant
tariff, the consumption cost of H1 is $10.45.
If H1 participates in the traditional demand response, the cost

is reduced to $9.85, due to reduced or delayed load consumption
on that peak day. In the absence of any rebates the customer is
not rewarded for their participation in load adjustment. With the
proposed CR scheme, the rebate obtained due to load adjustment
of H1 is $0.52 ( ). Hence, H1 will pay
only $9.33. Note that the rebate increases towards the end of the
feeder due to significant voltage improvement component.

D. Implementation and Operations of CR Scheme

A two-level hierarchical control scheme is proposed for
demand response in the residential distribution feeder. The
primary control level is used to regulate the feeder voltage
within an acceptable range and the secondary control level
is conceived to prevent respective transformer overload. The
primary controllers (smart meters) are installed at each house
to collect power consumption data and communicate with the

secondary controllers installed at the transformer. Each appli-
ance in the house has appliance units (AU) and communicates
usage characteristic data at each time interval. AUs collect data
from other AUs and then transmit and receive data from central
smart meter via WiFi or ZigBee. The role of the secondary
controller is to maintain all the transformer loads below their
rated values, while minimizing the negative impacts on the
customer side. All controllers have low bandwidth and two
way communication capabilities. Signals obtained from smart
meters include ON/OFF time, power rating, and the power
level of the appliances. This is feasible for houses equipped
with smart meters.
Although the transient effect can be important during the de-

mand response, voltages and currents transients caused by load
change may last for no more than 50 and 20 milliseconds, re-
spectively. In the 4 minute timeframe for load adjustment, this
effect is not considered at this stage.
The step by step load control process, as discussed in the

load control section above, is more efficient because it removes
the rebound effect from the decision of which loads are to be
curtailed. It also provides an appropriate control of power and
voltage as it constantly checks for violation during the offline
process.

E. Scalability

This decision process can be separated for subsystems (For
example, each 500 kVA network). Load curtailment can be
made separately for each subsystem when it is subject to over-
loads or voltage violations. This is made possible by having a
main controller at each transformer level which has access to
relevant smart meters in the houses. Hence, it can be deployed
at a range of scales in small and large configurations easily.
Data processing can be done in parallel for each system and
therefore the time consumed in processing data is minimal.

F. Prevention From Customers Misusing This Scheme

Possible gaming can be avoided by restricting customer load
switching by introducing an override command. This will dy-
namically change the API to 1 for that load and therefore it will
not be selected for adjustment for the rest of the day. If a cus-
tomer chooses to operate a particular load more than two times
in the peak period, then the information is send back to the utility
as an override and rebate would not be paid for that load shift.
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Fig. 7. Hierarchical control scheme for CR based Demand response.

IV. CASE STUDY

Implementation of this control scheme for DLC for residen-
tial customers is shown in Fig. 7. The 11 kV/415 V, 500 kVA
transformers have four feeders. Each feeder contains 30 houses
evenly divided per phase. There are eight 11 kV/ 415 V trans-
formers with controllers further controlled by the controller of
a 33 kV/ 11 kV, 4 MVA transformer. Again, there will be six
33 kV/11 kV transformers which will be controlled by the con-
troller of a 132 kV/ 33 kV, 24 MVA transformer at sub-trans-
mission level.
An indoor thermal model for a house is used which affects

the power consumed by ACs, ambient temperature, and the
floor area of each house. Each appliance contains a mean power
rating and a time usage pattern which closely suits the real
system. A climate model is used to vary the temperature and
it is linked with the time usage pattern of individual appli-
ances. Transformer and other switch gear ratings are chosen
to meet the aforementioned requirement. Further, every house
is assigned with a floor area corresponding to the Australian
2008 new house data [33] which is used for the calculation of
appliance loads. In order to create a realistic system, 90% of the
houses are considered as unoccupied during week days (8 am
to 5 pm) where most of the appliances will be unused as people
are assumed to be at work. Simulations in all models maintain
a fixed time step of 2 minutes of a user-defined interval to

Fig. 8. The voltage profile of the residential feeder-1 without and with con-
troller at peak time (1940 hrs).

Fig. 9. Loading of 500 kVA transformer without and with controller.

generate regular events. Network and transformer loads are
calculated based on the algebraic sum of active and reactive
loads.

A. Impact on Feeder Voltage and Transformer Overload

The voltage profile of a selected three-phase feeder with and
without the proposed control scheme is shown in Fig. 8. Im-
provement in voltage profile is apparent, especially towards the
end of the line at each phase. Similar improvement is observed
in other feeders as well.
Furthermore, the network loading level is observed via the

500 kVA transformer for a 48-hour period and is shown in
Fig. 9. The transformer is overloaded by approximately 50%
for a 2-hour period without any control scheme. The proposed
voltage controller is able to relieve the transformer overloading.
Transformer overloading can still be avoided with the imple-
mentation of a simple overload (power) controller, as shown in
Fig. 9.
A simple overload (power) controller uses the same load con-

trol process (as in Figs. 2 and 3) except for the limitations in
voltage. Therefore, voltages in the network are not monitored
and/or controlled. Fig. 10 reveals the effect of the proposed
voltage controller over the simple overload (power) controller.
When the voltage profile towards the feeder end is analyzed,
the proposed voltage controller performance can be appreciated
during peak hours, i.e., hours 18 and 42, as shown in Fig. 10.
Thus, this illustrates the importance of the proposed control
scheme in eliminating voltage violations.

B. Effect on Customer Loads and its Impact on ASI

The performance of this control scheme on the customer side
is investigated by observing the effect on the operation of a
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Fig. 10. Voltage profile at the end bus of feeder-1 without and with voltage
controlling process.

Fig. 11. ASI of 3 selected PEVs in phase- A of feeder 1.

Fig. 12. ASI of Inverter type Air Conditioners in phase- A of feeder 1.

few critical controllable loads. Fig. 11 shows the waveform of
the charging states, reflected by ASI, of three selected PEVs in
the network. It shows that the PEVs are being charged after ar-
riving home (hour 18) and it achieves 100% charging by mid-
night. Small flat line segments in the graph shows that the PEVs
are disconnected due to the control action and then reconnected
after 4 minutes.
Inverter-based ACs and water heaters are large adjustable

loads where the set points of room temperature and the water
tank temperature can be adjusted during the control action. ASI
values of three selected ACs are shown in Fig. 12. The controller
increases the temperature by 1 during each control action and
is re-adjusted (if required) after 15 minutes. The sudden varia-
tion of the temperature set point of a selected inverter type AC
in phase-A during the control action is shown in Fig. 13. Con-
siderable satisfaction, in terms of ASI for AC loads, is achieved.
ASI of water heater and the tank temperature set point variation
are shown in Figs. 14 and 15, respectively. Similar behavior is
observed for all controllable loads in the network which con-
firms that the control scheme does not affect ASI adversely.

C. Effectiveness of the Proposed Scheme on Network
Overloading due to Load Growth in Forthcoming Years

An annual peak demand growth of 4.36% [34] is assumed
and CR scheme is tested on the 500 kVA network. The system
loading level and ASI of appliances are observed for the next 15

Fig. 13. Temperature Set point variation of inverter type AC in house 2, 4 and
7 of phase- A of feeder1.

Fig. 14. ASI of a selected water heater.

Fig. 15. Set point and actual tank temperature variation of a water heater in
House 7 of Phase- A of feeder 1.

years. Simulation results can be summarized using Fig. 16. ASI
of two selected appliances drops below the acceptable limit of
0.9, when the increase in peak demand reaches 299 kVA. Later,
the system overloads and then diverges when peak power in-
crease beyond 300 kVA. Therefore, the proposed demand re-
sponse scheme can effectively shave the network peak for al-
most eleven years ( ), before the
transformer needs to be upgraded. The proposed control scheme
allows a peak increase of 299 kVA, without worsening ASI and
protecting the network from overload and voltage violations.

V. CONCLUSIONS

Demand response for a residential distribution system using
a Customer Reward (CR) scheme is proposed in this paper.
CR deploys two-level hierarchical control schemes consisting
of the primary controller (smart meters) to regulate the feeder
voltage within an acceptable range and the secondary controller
to prevent transformer overload. Various indices reflecting a
customer’s flexibility and satisfaction for controllable loads are
modeled to obtain decision matrix for load adjustment. Cus-
tomer engagement is encouraged through the reward mecha-
nism. The impact of CR on network voltages, customer satis-
faction indices, and appliance usage patterns are investigated.
Customers are rewarded based on their participation for load
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Fig. 16. Appliance Satisfaction Index vs increased peak demand.

shifting and associated voltage improvement in the feeder. The
proposed demand response via CR scheme can effectively shave
the network peak for several years, before the feeder transformer
needs to be upgraded.
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