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Abstract—With the recent development of advanced metering
infrastructure, real-time pricing (RTP) scheme is anticipated to be
introduced in future retail electricity market. This paper proposes
an algorithm for a home energy management scheduler (HEMS)
to reduce the cost of energy consumption using RTP. The pro-
posed algorithm works in three subsequent phases namely real-
time monitoring (RTM), stochastic scheduling (STS) and real-time
control (RTC). In RTM phase, characteristics of available control-
lable appliances are monitored in real-time and stored in HEMS.
In STS phase, HEMS computes an optimal policy using stochastic
dynamic programming (SDP) to select a set of appliances to be con-
trolled with an objective of the total cost of energy consumption in a
house. Finally, in RTC phase, HEMS initiates the control of the se-
lected appliances. The proposed HEMS is unique as it intrinsically
considers uncertainties in RTP and power consumption pattern of
various appliances. In RTM phase, appliances are categorized ac-
cording to their characteristics to ease the control process, thereby
minimizing the number of control commands issued by HEMS.
Simulation results validate the proposed method for HEMS.

Index Terms—Energy demand, home energy management,
Markov decision process, real-time electricity price.

NOMENCLATURE

HEM Home energy management.

HEMS Home energy management scheduler.

RTP Real-time pricing.

RTM Real-time monitoring.

STS Stochastic scheduling.

RTC Real-time control.

CoEC Cost of energy consumption.

SDP Stochastic dynamic programming.

MDP Markov decision process.

Interrupt signal from customer for th
appliance.
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Maximum waiting time of th appliance.

Initial waiting time of th appliance.

Plug in time of th appliance.

RTP of electricity at th time instant.

Operating statuses of th appliance th time
such as WAIT, OPERATION, SKIP, and
ADJUST.

Power consumption of th appliance at th
time.

Rated power of th appliance at th time step.

Total power consumption of a house at th
time.

Total CoEC of a house at th time instant.

Total CoEC at th time instant and th action.

Number of days for a specific state change from
to at th action.

Policy mapped from value function at th time.

Value function as a mapping of states in MDP.

Appliance’s maximum number of interruptions.

Constants representing operating status of th
appliance at th time instant.

Transitional probability.

Coefficient related to reward function.

I. INTRODUCTION

E NERGY retailers in most electricity markets, provide a
fixed electricity tariff scheme for customers, independent

of the cost of electricity generation during the time of consump-
tion. However, the true opportunity cost of electricity consump-
tion varies with the marginal cost of electricity production. This
causes inelastic behavior in customer electricity demand within
short time frames which may ultimately lead to losses for both
retailers and customers during adverse conditions such as price
spikes/falls [1].
Introducing a time varying electricity retail price, known as

real-time pricing (RTP) is one of the solution. The concept of
RTP was introduced long back, but it has been only recently
possible for practical implementation due to vast technological
improvements in advance metering infrastructure [2], [3]. RTP
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provides benefit to retailers by reflecting marginal cost of pro-
duction and encourages customers to control their electricity
consumption [4]. Smart meters and in-home display units aim
to help customers in reducing their cost of energy consump-
tion (CoEC) and control their appliances on a regular basis [5].
However, due to uncertainty in price variation and electricity
demand, appropriate control of appliances is cumbersome.
A home energy management (HEM) system helps residen-

tial customers to respond to RTP by reducing CoEC [6]. Au-
thors in [7]–[9] have proposed a real-time HEM system with a
complex scheduler, using “particle swarm optimization”, “ge-
netic algorithm” and “linear optimization techniques”. How-
ever, the uncertainties in RTP of electricity or the power con-
sumption of appliances are not considered during their appli-
ance scheduling processes. Authors in [10], whereas, propose
a decision support tool using linear programming optimization
and a price predictor to get hour ahead price information and
plan the upcoming energy consumption. However, the predicted
price is not included in the optimal scheduling of appliances.
This problem is mitigated by [11] and [12], where a predictive
tool along with real-time optimization is proposed. Neverthe-
less, the real-time optimization and control along with predic-
tive techniques is a difficult task and may lead to less accurate
results
In another study, stochastic optimization with an objective

of minimizing expected electricity payment using Monte Carlo
simulations [13] andMarkov decision process (MDP) [14], [15]
is proposed. The uncertainty in RTP is incorporated via expected
downside risk [13] and price prediction noise [14]. MDP is used
at individual appliance level in [14] with an objective of re-
ducing the appliance’s energy consumption cost. The optimal
time slots that can be used for appliance operation are found.
Similarly in [15], appliances are scheduled individually using
MDP to find the optimal appliance switching statuses. How-
ever, uncoordinated MDP at appliance level may lead to sudden
increase in the cost of energy consumption at house level (i.e.,
sudden operation of several appliances may lead to an increased
cost of consumption). Authors in [16] developed a hardware de-
sign for HEM system to reflect the RTP variations. They use ma-
chine learning algorithm with hidden Markov chain to incorpo-
rate uncertainties in both RTP and customer behavior. However,
the stochastic appliance scheduling process needs to be defined
well.
Contributions: The objective of this paper, therefore, is to

find the optimal way of scheduling the appliances to minimize
the CoEC and hence proposes home energy management sched-
uler (HEMS). This paper is unique from [7]–[14], as it considers
the uncertainties in both RTP and residential appliance power
consumption pattern during appliance scheduling. Unlike [14]
and [15], a top down approach from house to appliance level
is taken, i.e., a set of appliances are selected optimally for con-
trol based on their stochastic behavior, with an overall objective
of reducing the total cost of energy consumption in a house.
The proposed HEMS works in three subsequent phases, i.e.,
real-time monitoring (RTM), stochastic scheduling (STC), and
real-time control (RTC).
Synopsis: In Section II, the proposed HEMS is described.

The operation of HEMS with these three subsequent phases is

summarized in Section III. A test system description and sim-
ulation results are presented in Section IV followed by conclu-
sions in Section V.

II. PROPOSED HEMS USING SDP

This section introduced a new HEMS using SDP and can be
deployed in houses. Retailers bid in the wholesale electricity
market on a day-ahead/real-time basis to cater their load de-
mand. The customers/end-users, whereas, have a choice to ei-
ther take fixed price or RTP based tariff from demand aggre-
gator or retailer. In some cases, the demand aggregator uses RTP
signal from retailers and provide demand-response/load-reduc-
tion by adjusting customers’ load and provide coupons/incen-
tives in return. Although promising, this method may not be
attractive to the customers who want to have the flexibility to
modulate their loads themselves and be rewarded accordingly.
This paper, therefore, proposes RTP signals (from either de-

mand aggregators or retailers) to be send directly to customers/
end-users to adjust the loads themselves, giving them flexibility
to choose the level of load adjustments and achieve the reduced
cost of energy consumption. The optimal decision to control the
appliance is taken byHEMS in order to reduce the cost of energy
consumption. Appliance control process is performed byHEMS
at house level where every HEMS in a network are remotely
connected to the utility to obtain RTP information. Therefore,
network size is not an issue for practical implementation due to
the independent operation of HEMS. It has better performance
than a centrally controlled algorithm for residential appliances
in a large network which may raise scalability issue.
The functionality of HEMS and retailer/utility and demand

aggregator interference can be summarized using Fig. 1. In
this paper, seven controllable appliances including water heater
(WH), air conditioner (AC), electric vehicle (EV), dish washer
(DW), cloth washer (WA), cloth dryer (DR), and swimming
pool pump (PP) are connected through HEMS and the un-
controllable appliances are directly connected to utility. The
proposed HEMS works in three subsequent phases, i.e., RTM,
STS and RTC and can be summarized in Fig. 2. In RTM phase,
HEMS monitors appliance characteristics and data is processed
to make it ready for the STS phase, where SDP is used for
scheduling appropriate appliances. In RTC phase, HEMS takes
appropriate actions on the selected loads. The dispatch of
RTP signal can be done every 5/15/30 min depending on the
local distribution network and market arrangement. This paper
assumes that RTP signal is available every 5 min and hence the
proposed process is repeated every 5 min. The three phases are
described below in detail.
Flow chart of the overall control process is summarized in

Fig. 3. At each time step, real-time price and the total energy
consumption of a house is observed to compute the cost of en-
ergy consumption. If the CoEC exceeds a predetermined limit,
RTM, STS, and RTC phases are triggered subsequently. (The
limit of CoEC is predetermined as the average of maximum
CoEC of a house.) This is necessary to reduce the number of
control commands, which in turn will affect the longevity of
various appliances.
The current state of CoEC is mapped with the policy values

to obtain optimal action or schedule of curtailment. Transition
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Fig. 1. Descriptive diagram of HEMS and utility interference.

Fig. 2. Timing diagram of control process.

Fig. 3. Operation of HEM Scheduler with RTM, STC, and RTC phases.

and reward blocks help to run MDP for the above computation.
After 1 min, the selected appliances are controlled or switched
off. This process is repeated every 5 min (same as RTP update)
to have an optimal control of appliances to reduce the cost of
consumption. The terms Transition probability , Reward

, Action , Policy at th time step are elaborated in
detail later in this paper.

A. Real-Time Monitoring (RTM) Phase

In RTM phase, the RTP and Appliance data is collected,
which can be used in STS phase. RTM phase is vital as it
provides the currents statuses of the appliances which is used to
predict the optimal set of appliances for control in the next time
step. Based on appliances characteristics, they can be classified
into three categories namely Cat1, Cat2, and Cat3:
• Cat1: Appliances that can be delayed for a certain time
such as DW, WA, DR, and PP.

• Cat2: Appliances whose operation schedule depends on its
charging characteristics such as EV.

• Cat3: Appliances that can be adjusted with the change in
the temperature set point such as WH and AC.

Customers have flexibility to specify whether an appliance
can be interrupted or not, i.e., Appliance with signal

' or “False”. Furthermore, maximum
number of interruptions of a particular appliance
is maintained below ‘two’ to prevent adverse effect on life
span of the appliance. Depending on the appliance cate-
gory (Cat1/Cat2/Cat3), the operating status of appliances
(WAIT/OPERATION/SKIP/ADJUST) is determined. Descrip-
tions of various statuses are as below:
• Appliances which are connected to HEMS but not in oper-
ation are in status “WAIT”

• Appliances which are already in operation are in status
“OPERATION”

• Appliances which should not be controlled at a particular
time due to constraints are in status “SKIP”

• Appliance which can be adjusted with its set point is in
status “ADJUST”

The algorithm provides less possibility of interruption to the
appliances which are in “OPERATION” and “ADJUST” status
during STS whereas appliances in “WAIT” status have higher
possibility to be controlled. Appliances’ lifespan is reduced and
customers’ comfort is affected when operating appliance are in-
terrupted. Therefore, the rationale is to avoid interrupting those
appliances which are in operation. Appliances that are waiting
to be connected, whereas, can be delayed up to maximum
allowable time and hence are suitable for control. The three
categories (Cat1/Cat2/Cat3) of appliances and the decision for
corresponding operating status (WAIT/OPERATION/SKIP/AD-
JUST) are discussed further.
Cat1 and Cat2 Appliances: Maximum allowable waiting

time or delay of a corresponding appliance under
Cat1 is specified by the customer. Customer also specifies
departing time and charging status of electric vehicle
(Cat2) which helps to calculate maximum possible delay of
electric vehicle. Slow and normal charging are
the two possible charging statuses. The maximum allowable
delay for electric vehicle can be calculated using (1)–(3) as
follows:

(1)

(2)

(3)
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Charging cycle duration of a battery can be obtained
by dividing the nominal capacity of the battery by
charging power for the th charging status as in
(1). Remaining charging time can be calculated
as in (2). Here, is the initial state of charge (SOC)
of the battery when electric vehicle is plugged in to HEMS.
Here, evolution of SOC of the battery is considered to have
linear relationship with time while charging [17]. Maximum al-
lowable waiting time of electric vehicle is calculated as in (3).
Here, is the time when electric vehicle is plugged in to
HEMS. Status of appliances in Cat1 and Cat2 are determined
using Algorithm 1.
When appliance, , is plugged in to HEMS at time

, it should wait until the next time step
. The initial waiting time before connecting the appliance is

denoted as . If an appliance is still waiting to be con-
nected at time , it should be assigned “WAIT” status. This is
valid irrespective of customer input, . If plug in time,

, of an uninterruptible appliance is before , it means
that the appliance is already in operation which should not be
interrupted and hence is assigned “SKIP” status. Whereas, if

is less than earlier time step and if total waiting
time and number of interruptions are within
limits, then appliance can remain in the previous status (i.e.,
it can be delayed further until limits are not exceeded). When
limits for and are exceeded, appliance is consid-
ered in “SKIP” status.

Algorithm 1 (Cat1 and 2)—Determine status of
appliance at time

input , ,

if

if

,

elseif

elseif

if

,

elseif and

and

if then

if then

elseif and ( or

)

end

Algorithm 2 (Cat3)—Determine status of appliance
at time

if and

elseif and

Cat3 Appliances: Thermostatically controllable appliances
such as WH and AC are considered in this category. Variation
of water temperature is modeled using (4). First, second, and
third terms in (4) represent compensation of thermal losses to
ambient, process of heating inlet cold water replacing used hot
water and input heat energy, respectively [18]:

(4)

where is water temperature at time , is ambient
temperature, is inlet cold water temperature, is surface
area of the tank, is standby heat loss coefficient, is water
consumption rate, is density of water, is specific heat of
water, is binary signal for thermostat settings, and is
energy input rate of WH:

(5)

Furthermore, thermodynamic equation for AC is shown in
(5). Here, is the room temperature at time . -heat
loss coefficient, is equivalent heat capacity, -interior
mass conductance of the house, is energy input rate of AC,
and is binary signal for thermostat settings [19]. For Cat3
appliances, if customer input, , is false, then the set
point is adjusted to reduce for power consumption of the appli-
ance and is assigned “ADJUST” status. Otherwise, appliance is
assigned “SKIP” status. This is summarized in Algorithm 2.

B. Stochastic Scheduling (STS) Phase

Although, real-time monitoring of appliances’ usage and
price information gives the details of current status of various
appliances, it is not sufficient to make a decision for appropriate
selection. It is due to uncertainties in electricity price variation,
appliance operation, user behavior and preferences. Hence,
STS includes the uncertainties in decision making at each con-
trol time step. This phase helps in identifying the appropriate
appliances to be controlled.
Stochasticity in RTP and Demand of Electricity: An infinite

horizon discrete time dynamic model is formulated for the sto-
chastic control process where time steps are indexed by

. This scheduling problem focuses on CoEC at each
time step. The total CoEC of a house at the th time
step from to is the product of RTP of electricity, ,
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total power consumption, , and the time step, , i.e.,
as shown in (6):

(6)

(7)

Here, total power consumption, at the th time step is
calculated as in (7). It is the sum of power of adjustable
and non-adjustable appliances.
CoEC is considered as a time varying stochastic variable and

its behavior is analyzed in this study. Initially, a discrete time
stochastic process for is created as

, where . A set of states is represented
by for the above stochastic
process. The th state (for all ) is defined by a range of
predefined CoEC in a house so that lies within a range
of a particular state . Let us consider discrete cost variables

to occupy a value in a set of states
. The sequence of , is con-
sidered as a Markov chain as the future CoEC is independent of
the past CoEC, conditioned on the present value. It can be fur-
ther elaborated by a transition probability, i.e., if the chain is in
state, , the transition probability, , represents
how the chain chooses to jump to next state, , at the time step

as in (8):

(8)

As CoEC satisfies dynamics of Markov dependent structure,
MDP is a suitable method for optimal scheduling of appliances
within a house [20], [21]. MDP can be defined as five tuples

, where represents length of planning
horizon, is a finite state space of discrete states reflecting
CoEC, is for a finite action space and , is a
transition function describing probability of distribution of next
states as in (8). Further, is cost of executing
an action in a state and it represents , which is a state depen-
dent reward function.
Problem Formulation: MDP is used to minimize CoEC via

optimal scheduling of appliances. Expected outcome of this
process is optimal STS of appliances. An infinitely repeated
24-h cycles are considered and is discretized into intervals of 5
min with a time horizon of .
State Space: State space is defined to replicate a range of

CoEC. For this purpose, CoEC of a house is observed at every
time step for an entire season. A probability density function for

is formed to define boundaries of CoEC for states from
the data obtained. and are boundaries for CoEC for
the th state, as defined in (9):

(9)

Boundaries and can be found by cumulative distri-
bution function (CDF) of CoEC. It is considered as 50%, 10%
for and , respectively, as in Fig. 4 and
the state space is defined as .
Action Space: An action space , contains a set of actions

. denotes the th set of actions

Fig. 4. Defined boundaries of states.

that can be applied in the th state, , at the th time instant.
is power set of the action space . An action is consid-

ered as a set of appliances that can be curtailed at a given time
step.
Consider a set , consisting of number of controllable ap-

pliances in a house as in (10). A subset can be defined as the
available appliances connected to HEMS at the th time instant.
Then, an action, (i.e., a set of possible curtailment of
appliances), is defined as a subset of as in (11). The power
set, , denotes number of all possible subsets of or
number of actions as in (12):

(10)

(11)

(12)

In this study, seven controllable appliances are con-
sidered in a house. For instance, if two appliances and are
connected to HEMS at the th time step, then ,

and . Hence, four actions are pos-
sible which are , , and . Empty set
represents action of no curtailment. and represents
when only one appliance, either or , is selected for cur-
tailment, respectively. When both appliances are selected, ac-
tion is possible.
Transition Probability: Transition function is a function of

probability that CoEC jumps from state to at the
th time step during the th action and is defined as

,[0,1]. As the probability de-
pends on states and actions, an action and state dependent tran-
sition probability block is defined. Initially, daily power con-
sumption profile of each appliance in a house is observed for
a particular season. Daily variation of RTP is also observed for
the given time frame. Then, Algorithm 3 is repeated for each ac-
tion to calculate transition probabilities as summarized below.
Algorithm 3 starts with the calculation of CoEC at th
time step for th action as defined in (13):

(13)

Here, sum of power of appliances that can be curtailed
during the th action is subtracted from total power consumed

to find total power consumption during the th action.
This value is multiplied by and , the RTP and length of
time interval, respectively, to obtain . Here, is the
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Fig. 5. Block of transition probability .

number of appliances in the th action. State change of
at the th action from to from subsequent time steps
and are observed on daily basis. Number of days is

counted for this specific jump . It is divided by the total
number of days where states changes from to the other states
from 1 to 6. to obtain the transition probability

. This process is repeated at each time
step. Further, Algorithm 3 is repeated for each action to obtain
the transition probabilities of all possible state changes or
jumps for the whole action space and is shown in Fig. 5.

Algorithm 3—Computation of transition probability block

fortime to 24hrs(4minincrement)

initializecount

forday to 90

Calculate CoEC as in (18)

for state to 6

for state to 6

if

end if

end for loop of state

end for loop of state

end for loop of day

end for loop of time

Reward Function: Accurate definition of reward function
is vital in MDP due to its importance in decision

making. It helps to choose best possible action, , for appro-
priate selection of appliances. A reward value is defined as in
(14), which is four tuples, , , , as follows.
1) Reward component 1 —Ratio of state change
from to as an effect on jumps from one state to
another. Purpose of this component is to provide less
reward for a state changing from low to high value (for

) and to provide more reward for a state changing

from high to low value (for ). As an effect of this
reward component, an action which causes furthest state
change from high to low value will be chosen.

2) Reward component 2 —Status of appliances
which are “WAIT”/”OPERATION”/”ADJUST”. Appli-
ance in “WAIT” status is given with a higher reward
value comparing to the other statuses “ADJUST” and
“OPERATION”. In our study, values for for WAIT,
OPERATION, and ADJUST are considered as 1, 0.5,
and 0.75, respectively. Purpose of appliance status
in reward function is to prioritize appliances which are
in “WAIT” status and still not in operation rather than
appliances which are in operation. It allows in main-
taining appliance comfort and reduces the possibility
of appliances being interrupted in the middle of their
operation.

3) Reward component 3 —Summation of
power ratings of appliances, involved in a particular
action. Reward depends on the availability of power
curtailment in a particular action. Purpose of this com-
ponent is to provide higher reward for an action with
more curtailment of loads comparing to actions with less
curtailment of loads. Therefore, an action with highest
available power for curtailment will be prioritized for
control.

4) Reward component 4 —A function
of waiting time of an appliance. Appliance which is
delayed more is considered to have less reward com-
paring to appliance which is delayed less. Time varying
term provides this function. Here,

is the maximum allowable waiting time of ap-
pliance . Purpose of this component is to prioritize
appliance which is delayed less comparing to other ap-
pliances which are delayed more. As an effect, appli-
ance that can be sufficiently delayed is chosen to be
controlled:

(14)

Coefficient is chosen by utility according to their require-
ment. However, when there is no curtailment (i.e., ),
reward is considered only as the ratio of jump in states. Overall,
reward function is designed so that it provides benefit to cus-
tomer by satisfying their need and by reducing cost.
Markov Decision Process (MDP): Objective of MDP in this

study is to maximize the reward function, so that HEMS mini-
mizes CoEC. Reward of execution is the sum of all rewards
along the path from (initial state) to the first goal state.

is the set of goal states (i.e., which terminates
an execution) [22]. Here, transitions are managed stochastically
by transition block, . A policy is defined as a
mapping from state space to action space and at th time
step, an optimal action is mapped to all possible states. An op-
timal policy is obtained from MDP. A value
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iteration algorithm is used to evaluate optimal policy to satisfy
the objective. Algorithm 4 explains the value iteration and is
summarized below.
The value function is initialized based on dynamic program-

ming. A value function is defined as a mapping from state
as in (15). Bellman operator is used to update

the values iteratively for having successive approximation at
each state per iteration. A Bellman equation related to value
functions with an objective function is created as in (16) using
reward and transition blocks. Dynamic-programming algo-
rithm is used to search the solution space by using the recursive
structure of the Bellman equation which is more efficient than
exhaustive-search algorithms.

Algorithm 4—Value Iteration

Initialize ,

While

for each state

end while

return

Here, a Bellman residual of a state is defined as the absolute
difference of a state value before and after Bellman operation.
Value iteration stops after convergence. The largest Bellman
residual of all states becomes less than a predefined threshold
. Finally, optimal policy is obtained from value function is as
in (17). In real-time, if CoEC lies in state , the optimal action
mapped in the proposed policy will be chosen for control. Ul-
timately, optimal policy gives the optimal curtailment schedule
of appliances shown in (15)–(17) at the bottom of the page.

C. Real-Time Control (RTC) Phase

In RTM phase, the status of appliances are determined which
helps to find the optimal policy or the optimal action with a set of
selected appliances in STS phase. Then in RTC phase, HEMS
send signals to adjust selected set of appliances. Fig. 6 illus-
trates the change in operating statuses of Cat1 and Cat2 appli-
ances. Appliances can be in any of the five conditions as shown
in Fig. 6 (conditions represent “if” clauses in algorithm 1).Con-
dition 1 shows an appliance connected to HEMS within time

to and identified to be in “WAIT” status during RTM.
It has an initial waiting time of . If this appliance is se-
lected for control during RTC, it will be delayed for another 5
min. Hence, operating status of this appliance again becomes
“WAIT”. This is true irrespective of customer input “INTRP”.
Then, at next time step, , utility connects this appliance in
offline STS program to check whether reconnection is possible.
If reconnection is possible at , appliance is connected, oth-
erwise, it is delayed until next time step. Condition 2 shows
appliances which cannot be interrupted in the middle and are
already in operation during RTM. Then, it is considered to be
in “SKIP” status and continuously connected to utility without
subjecting to RTC. Condition 3 shows appliance in “OPERA-
TION” status during RTM. If this appliance is chosen to be con-
trolled, it is interrupted after 1 min from a time step for next 3
min and goes to “WAIT” status after RTC. Condition 4 illus-
trates an appliance which is already delayed in time step
and is in “WAIT” status. If the maximum waiting time and max-
imum number of interruptions are not exceeded, it can be fur-
ther delayed at and again stays in “WAIT” status. Condition
5 shows an appliance already in “WAIT” status during RTM. It
will be reconnected during RTC and will go into “SKIP” status
if and only if the maximum limits for waiting time and interrup-
tions are exceeded.
RTC of Cat3 appliance, however, is different. If a Cat3 appli-

ance is identified to be in ADJUST status during RTM, then the
set point of the appliance is adjusted during RTC. AC set point is
increased andWH set point is decreased by 2 . A HEM sched-
uler in utility should have the capability to switch on, switch off
or delay appliances connected to relevant HEMS in order to re-
duce overall energy consumption cost of a house.

III. TEST SYSTEM AND SIMULATION RESULTS

A single house with seven controlled appliances connected to
HEMS is taken as test system (as shown in Fig. 1). RTP of elec-
tricity is considered as the reflection of electricity spot price in

(15)

(16)

(17)
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Fig. 6. Operating statuses of appliances before RTM and after RTC phase.

Fig. 7. Definition of states for CoEC.

electricity market during simulation and is broadcasted to indi-
vidual HEMS. Electricity market spot price for a typical summer
period (i.e., 3 months) in Australia is taken for this study [23].
As discussed in Section II-B, state space

represents a range of CoEC. Its boundaries are
defined by finding CDF of CoEC data as in (9). As CoEC lies
in the range of 0–300 cents, the boundaries of states B1-B7 are
0.00, 1.00, 1.50, 2.00, 3.50, 20, and 300 cents, respectively, and
is shown in Fig. 7. A state dependent reward function is defined
for each time step as in (14). Change in reward is observed when
there is no curtailment (i.e., ) and when all seven appli-
ances are controlled ( is taken as 1 and component of waiting
time is omitted). Reward gets a higher value when the
state changes from 6 to 1 in the next time step and it has the least
value when there is a jump from state 1 to 6 as shown in Fig. 8.
This ensures that there is higher reward for larger curtailment.
The optimal action is plotted as in Fig. 9. During 1800–2000
h, policy values are higher and hence allow more curtailment.
If policy reaches 14, the 14th set of action or the appropriate
combination of available appliances is subjected to control to
reduce CoEC (i.e., WH and SP). Similarly policy value 58 and
83 represent a combination of [SP, DW, EV] and [WH, SP, EV],
respectively. Each policy value represents a set of appliances
that can be curtailed at that time step.
The details of selected appliances during 1800 to 2200 h are

shown in Fig. 10. Before each control action, HEMS evaluates
the current state of CoEC and matches with the corresponding
policy value to select appliances appropriately. WH and SP are
selected at 1804 h and the respective policy value is 14. The
14th action represents the availability of only WH, and SP (i.e.,

Fig. 8. Reward when there is no curtailment and maximum curtailment.

Fig. 9. Optimal policy values for two consecutive days.

Fig. 10. Optimal policy values for two consecutive days.

[0 1 1 0 0 0 0] is the binary representation of second (WH) and
third (SP) appliance) representing policy value.
The change in appliances statuses, when they are subjected

to control, is summarized in Table I. If a Cat 1 or 2 appliance is
subjected to control which was initially under “WAIT” or “OP-
ERATION” status, it is again kept at “WAIT” status confirming
that the waiting time and the maximum number of interruptions
are not exceeded.
Similarly, if a Cat 3 appliance is subjected to control, which

was initially under “ADJUST” status, it is again kept at “AD-
JUST” status confirming that the set point limit and the max-
imum number of interruptions are not exceeded. Table II shows
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TABLE I
CHANGES IN APPLIANCE STATUSES WHEN THEY ARE SUBJECTED TO CONTROL

TABLE II
APPLIANCE STATUS CHANGES AT 1940 h

Fig. 11. Dish washer power profile of the house with HEMS (Cat 1).

Fig. 12. Water heater power profile of the house with HEMS (Cat 3).

the changes in statuses of appliance at 1940 hours in a particular
day. Here, AC, WH, SP, WA, and EV were available for con-
trol during this time and AC, WH, SP, and WA are selected for
control in STS phase. Their respective status changes are shown
in Table II. For example, WH which was already in “OPERA-
TION” is switched off and kept in “WAIT” status. Operation of
Cat 1 appliance happens by switching ON and OFF during the
control process. As an example, a dishwasher operation with
and without HEMS is illustrated in Fig. 11. Here, a constant
power consumption is assumed during different functions of a
dishwasher such as washing, drying and disinfection. The power
profile and the temperature variation of water heater is shown in
Fig. 12. Here, the set point adjustments are shown when there
is an increase in CoEC.

TABLE III
ENERGY AND COEC SAVINGS WITH HEMS

The effect of HEMS on the seasonal variation is summarized
in Table III. Although on a daily basis, there is no significant en-
ergy reduction as the appliances are shifted rather than curtailed,
a considerable reduction in energy consumption (791.2 kWh)
and CoEC ($187.03) on an annual basis using HEMS (11% re-
duction in annual CoEC).
The efficacy of HEMS on the electricity cost in a day due

to uncertainties in RTP or power consumption is summarized
in Table IV. It also shows the electrocity cost when uncertain-
ties in both RTP and power consumption exist. Firstly, the mean
value of RTP is varied during 1800–2000 h (with a variance
of 0.1) while keeping a constant power consumption profile.
With HEMS, the variations in RTP does not affect the cost of
energy consumption in a day (maintained at 335 cents). Simi-
larly, HEMS effect due to uncertainties in power consumption
profile is observed. The RTP profile is fixed and the uncertainty
in power consumption is modeled by varying the mean while
keeping the variance constant at 0.1. Again, the variation in
electricity cost is suppressed and is maintained at fixed cost of
352 cents in a day with HEMS. Furthermore, the uncertainties
in both RTP and appliance power consumption are considered
using variable mean and constant standard deviation of 0.1 and
electricity cost is maintained at 348 cents. It can be concluded
that that HEMS achieves the aim of maintaining the reduced
daily electricity cost of consumption.
Moreover, the computation time for STS phase of HEMS is

approximately 7.5 s for a house with seven controllable appli-
ances (using MATLAB software in a 64-bit operating system
with a 2.10-GHz processor), which is well within the RTP time
intervals.

IV. CONCLUSIONS AND DISCUSSION

This paper focuses on an algorithm for a home energy
management unit for reducing the cost of energy consumption,
which operates in three subsequent phases namely RTM, STS,
and RTC.
During RTM phase, HEMS obtains the operating statuses

of each controllable appliances as well as RTP data from the
utility, which is used in the STS phase to schedule the appli-
ances. In STS phase, MDP is used to minimize cost of energy
consumption by predicting the appropriate curtailment of appli-
ances based on the stochastic behavior of cost of consumption.
The STP phase incorporates the uncertainties in RTP and appli-
ance consumption profile intrinsically and helps in optimizing
the cost of energy consumption. Finally, selected appliances are
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TABLE IV
EFFECT OF HEMS ON COEC DUE TO UNCERTAINTY IN RTP AND POWER CONSUMPTION (TYPICAL WINTER DAY)

controlled in RTC phase. The number of control commands are
reduced through appropriate appliance categorization in RTM
phase, which helps in optimal scheduling process in STS phase.
Hence, these three phases complement each other and are neces-
sary to achieve optimal cost of energy consumption in a house.
Furthermore, as the control of appliances is dependent on the

individual HEMS, the network scalability is not an issue and it
is easy to implement regardless of the size of the distribution
network. This process is made possible with the advanced me-
tering infrastructure and there are no additional communication
requirements for the proposed algorithm. HEMS collect the rel-
evant information about the appliances at regular intervals using
home area networks such as Zigbee, HomePlug Wifi, Z-wave,
etc. The demand aggregator/retailers broadcast the RTP signal
to respective customers, who use HEMS to adjust the loads
using the proposed algorithm. As HEMS only communicate to
demand aggregators/retailers, the current low power radio fre-
quency transmitters should be sufficient.
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