
F
l

F
D

a

A
R
R
A
A

K
P
L
R
L
D
L

1

i
I
E
i
p

L

r
o
e
d
r
i
a
d

p
a

0
d

Electric Power Systems Research 81 (2011) 1995– 2004

Contents lists available at ScienceDirect

Electric  Power  Systems  Research

jou rn al h om epage: www.elsev ier .com/ locate /epsr

ully  reference-independent  LMP  decomposition  using  reference-independent
oss  factors

angxing  Li ∗

epartment of EECS, The University of Tennessee, Knoxville, TN 37996, USA

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 1 March 2011
eceived in revised form 1 May  2011
ccepted 3 May  2011
vailable online 20 July 2011

eywords:
ower market

a  b  s  t  r  a  c  t

The  decomposition  of  locational  marginal  price  (LMP)  under  the  popular  DCOPF  framework  generally
depends  on  the  choice  of  the  reference  bus.  A previous  work  has  achieved  reference  independence  for  the
overall LMP  and  LMP  congestion  component,  but not  all individual  LMP  components.  This  paper  proposes
a method  to  obtain  a  truly  reference-independent  LMP  decomposition  such  that  all  three  components
of  LMP  at  each  bus  will  be  invariant  w.r.t.  the choice  of the  system  reference  bus.  This  is  achieved  with
loss  factors  based  on  a  new  AC-based  distribution  factor  model,  which  depends  on the  network  topology
and the  present  operating  condition  only,  but not  the  system  reference  bus. This  model  gives  reference-
MP  decomposition
eference-independent
oss factor
COPF
oss distribution factor (LDF)

independent  loss prices,  which  can  serve  for  a better  loss hedging  financial  transmission  rights,  since  the
choice  of reference  bus  will  not  change  the  loss  prices.  Further,  this  paper  uses  the  fictitious  nodal  demand
(FND)  model  to obtain  loss  distribution  factors  (LDFs).  FND  gives  more  reasonable  power  flows  since  losses
should  be  distributed  in  each  individual  line,  rather  than  at load  buses  when  the  load-weighted  LDFs  are
applied.  Also,  the  proposed  reference-independent  distribution  factors  and  loss  factors  may  have  great
potentials  in  other  areas  of power  system  analysis.
. Introduction

The locational marginal price (LMP) methodology has been
mplemented or is under consideration at a number of US RTOs or
SOs such as PJM, New York ISO, ISO-New England, California ISO,
RCOT, and Midwest ISO. LMP  at a given Bus B can be decomposed
nto three components: marginal energy price, marginal congestion
rice, and marginal loss price [1–5]. This can be written as

MPB = LMPenergy + LMPcong
B + LMPloss

B (1)

A number of earlier works [6–18] have reported LMP-related
esearch results. In particular, Refs. [6–13] discussed the modelling
f LMPs and its decomposed components. Also, a distributed ref-
rence bus model is discussed in [14]. The sensitivity of LMP  is
iscussed in [13,15]. The comparison of AC-based and DC-based
esults is discussed in [9,13].  A modification of LMP methodology
s proposed in [16]. Forecasting of LMP  considering load variation
nd uncertainty is presented in [17,18].  Loss hedging rights are
iscussed in [19,20].
Ref. [10] presents an ACOPF-based decomposition which is inde-
endent of the choice of energy reference bus. Ref. [8] presents an
pproach to calculate reference-independent LMP  and its conges-
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378-7796/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2011.05.002
© 2011 Elsevier B.V. All rights reserved.

tion component based on DCOPF using linear programming (LP).
Since LP-based DCOPF is popularly employed in industrial prac-
tices for real-time LMP  calculation at a number of RTOs/ISOs, this
paper uses DC models to extend the previous LMP  research in [8].

In the decomposition model in [8], LMP  congestion component
at Bus B, i.e., LMPcong

B , remains invariant w.r.t. different reference
buses, and the combination of the other two  components, i.e.,
LMPenergy + LMPloss

B , is also reference-independent. The LMPcong
B is

needed for financial transmission rights to hedge the transmission
congestion cost, while LMPloss

B is useful for the proposed loss price
hedging in [19,20]. Since the previous works did not provide a sepa-
ration of LMPenergy and LMPloss

B , this can be controversial when loss
price hedging is considered. Based on this motivation, this paper
will present a decomposition model that makes three individual
LMP  components fully independent of the choice of reference. This
is achieved by using a loss factor model based on a proposed new
AC-based distribution factor model, which depends on the network
topology and the operating condition only and does not require a
system reference bus. Also, the loss factor and the LMP  loss com-
ponent at the man-made reference bus will not be zero, while the
literature gives zero values. The non-zero values are more reason-
able since in reality there is no reference bus and every bus should

have some contribution to losses.

There are a few assumptions of the formulations in this paper
that are listed here to avoid confusion: (1) each bus has one genera-
tor and one load for simplicity of discussion; (2) each transmission

dx.doi.org/10.1016/j.epsr.2011.05.002
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:fli6@utk.edu
dx.doi.org/10.1016/j.epsr.2011.05.002
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onstraint (thermal, contingency, nomogram, etc.) may  have bidi-
ectional limits in reality, but it is modelled as if a unidirectional
imit for simple formulation; (3) a single-block generation cost or
id model is assumed, while in reality a monotonically increasing
ulti-block model is commonly used; and (4) the demand elastic-

ty is not explicitly modelled since unserved loads can be simply
iewed as generation resources.

. Review of DCOPF formulations for LMP  calculation

.1. Model 1 (lossless)

Earlier studies of LMP  calculation with linearized OPF ignore
ine losses. Thus, the energy price and the congestion price follow

 perfect linear model given by:

in
N∑

i=1

ci × Gi (2)

.t.
N∑

i=1

Gi =
N∑

i=1

Di (3)

N

i=1

GSFk–i × (Gi − Di) ≤ Limitk, for k = 1∼M (4)

min
i ≤ Gi ≤ Gmax

i , for i = 1∼N (5)

The LMP  decomposition of this model is straightforward and
gnored here. It is well known that the actual GSF values depend on
he choice of reference bus. However, the line flow models in (4)
ased on the reference-dependent GSF are reference-independent.
o, this model produces the same power flow results and hence
he same LMP  regardless of the choice of reference bus. This model
an be acceptable for estimation purposes or as a starting point for
arket-related research. However, it may  not be preferred in oper-

tion because of the lack of the loss component. Also, the energy
nd congestion components will vary w.r.t. different choices of ref-
rence.

.2. Model 2

When losses are considered, the key to consider marginal loss
rice is marginal loss factor (LF) and the marginal delivery factor
DF), defined as:

Fi = 1 − LFi = 1 − ∂PLoss

∂Pi
(6)

LFs and DFs will be one of the main topics in this paper. For
ow, they are assumed available. Then, we can formulate different
C-based OPF models. A straightforward approach presented in the
ast is to multiply DF by nodal injections to account for losses in
he energy balance equation while keeping (2)–(5) unchanged.

in
N∑

i=1

ci × Gi (7)

.t.
N∑

i=1

DFi × Gi −
N∑

i=1

DFi × Di + offset = 0 (8)

N

i=1

GSFk–i × (Gi − Di) ≤ Limitk, for k = 1∼M (9)

min
i ≤ Gi ≤ Gmax

i , for i = 1∼N (10)
arch 81 (2011) 1995– 2004

The LMP  decomposition of this model is straightforward and can
be found in [8,13].  It has been observed that the marginal DF may
produce doubled losses in Eq. (8) without offset. Ref. [13] rigorously
proves that in a fully DC-based model the value of offset should be
the estimated total system losses. Without offset, generators may
output doubled losses. Also, offset may  consider errors in initial loss
estimation.

2.3. Model 3

This is the optimization model named LP2 in [8] for LMP  calcu-
lation considering losses. It can be written as:

Min
N∑

i=1

ci × Gi (11)

s.t.
N∑

i=1

Gi −
N∑

i=1

Di − PLoss = 0 (12)

PLoss −
N∑

i=1

LFi × Gi +
N∑

i=1

LFi × Di + offset = 0 (13)

N∑
i=1

GSFk–i × (Gi − Di − LDFi × PLoss) ≤ Limitk, for k = 1∼M (14)

Gmin
i ≤ Gi ≤ Gmax

i , for i = 1∼N (15)

As previously mentioned, LMPcong
B is reference-independent,

and the combination of the other two  components, i.e., LMPenergy +
LMPloss

B , is also reference-independent. But each of LMPenergy or
LMPloss

B is still reference-dependent.

2.4. Model 4

Another model of LMP  with losses is proposed in [13] using an
iterative approach. It can be written as:

Min
N∑

i=1

ci × Gi (16)

s.t.
N∑

i=1

DFest
i × Gi −

N∑
i=1

DFest
i × Di + Pest

Loss = 0 (17)

N∑
i=1

GSFk–i × (Gi − Di − Eest
i ) ≤ Limitk, for k = 1∼M (18)

Gmin
i ≤ Gi ≤ Gmax

i , for i = 1∼N (19)

Here an iterative approach is used. Initially, DFest
i = 1, Eest

i = 0,
and Pest

Loss = 0; and essentially a lossless DCOPF is performed. Then,
DFi, Ei and PLoss are updated to start a new DCOPF. This is repeated
till convergence. It is also discussed that a two-iteration simplifi-
cation, i.e., lossless model in (2)–(5) for the first iteration and then
(16)–(19) for the second iteration, can produce good enough results.
The LMP  decomposition of this model is the same as Model 2, as
shown in [13]. An important feature of this formulation is the fic-
titious nodal demand (FND) model to mimic  line losses. For each
line, 50% of the line loss is assigned to each connected bus as an

extra demand, represented by Ei. Hence, the losses are distributed
in each line. As shown in Section 5, this FND model can be used to
give fairer and more reasonable loss distribution factors (LDFs) to
improve Model 3.
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. Reference-independent distribution factors and loss
actors

.1. Motivation for reference-independent LF

When losses are considered, LF is commonly employed as shown
n Models 2–4. However, LF in the previous works depends on
he reference choice. In general, this leads to reference-dependent
ecomposition.

Model 3 is the present state of the art in terms of achieving
eference-independence LMPcong

B and (LMPenergy + LMPloss
B ) using

C model. The LMP decomposition is given by:

MPenergy = � (20)

MPloss
B = −� × LFB (21)

MPcong
B

= �  − �+
M∑

k=1

�k × GSFk–B = −
M∑

k=1

(
�k ×

N∑
i=1

LDFi × GSFk–i

)

+
M∑

k=1

(�k × GSFk–B) (22)

From (20) to (21), the combination of LMP  energy and loss com-
onents can be written as

MPenergy + LMPloss
B = � − � × LFB = � × (1 − LFB) (23)

There are only two  variables in (23). Hence, if we  can find a
ay to make one variable (such as LFB) reference-independent, the

ther variable, �, will be reference-independent as well. Therefore,
 fully reference-independent LMP  decomposition can be achieved.

.2. Basic model for loss factors

As shown in [13], LF can be modelled as:

Loss =
M∑

k=1

F2
k × Rk (24)

Fi = ∂PLoss

∂Pi
= ∂

∂Pi

(
M∑

k=1

F2
k × Rk

)
=

M∑
k=1

Rk × 2Fk × ∂Fk

∂Pi
(25)

In the above equations, the line flow Fk should be obtained
rom state estimation results in operation. If we assume a per-
ect data measurement and state estimation to simplify our
iscussion, Fk will be the same as the results from economic
ispatch by solving ACOPF or a close approximation (a lossless
COPF as an extreme simplification). Although either ACOPF or

ossless DCOPF needs a voltage zero-angle reference, the line
ow Fk should be always reference-independent. Hence, seeking
eference-independent loss factors (LFi) is converted to seeking a
eference-independent ∂Fk/∂Pi, the distribution factor (a.k.a. sen-
itivity factor) of line flow w.r.t. bus injection. Please note ∂Fk/∂Pi
nvolves real power only.

The real-power-only ∂Fk/∂Pi naturally makes one to consider a
inear lossless DC network, in which a line flow is usually considered
s the aggregation of the contribution from all power sources (gen-
ration as positive and load as negative) based on superposition.
his can be written as
k =
N∑

j=1

GSFk–j × (Gj − Dj) =
N∑

j=1

GSFk–j × Pj (26)
arch 81 (2011) 1995– 2004 1997

From (26), we have

∂Fk

∂Pi
= GSFk–i (27)

Hence, the conventional LFi in (25) is reference-dependent
because the above DC-based distribution factor, namely GSF in this
paper, is reference-dependent. For this reason, it is not likely to
have DC-based reference-independent distribution factors. Thus,
we may  have to explore other approaches like AC-based model,
which will be intensively studied next.

To avoid confusion, we  first define the generalized AC-based dis-
tribution factor of line flow in MVA  with respect to nodal injection
in MVA, namely, ∂Sk/∂Si or �k–i for notational convenience. Also, we
need to define the real-power distribution factor, �k–i,RE, as:

�k–i,RE = ∂Fk

∂Pi
= (∂Sk)RE

(∂Si)
RE

(28)

It should be noted that the above definition takes out the impact
of reactive components because the imaginary components in ∂Sk
and ∂Si will partly contribute to the real part of �k–i. Hence, (28) will
be truly the real power sensitivity. It should be noted that in gen-
eral we  have �k–i,RE /= (∂Sk/∂Si)RE. Apparently, the challenge here
is to find a reference-independent �k–i,RE, i.e., AC-based distribu-
tion factor (∂Sk)RE/(∂Si)RE. The remaining part of this section will
show a previous model of AC-based sensitivity, point out an unjus-
tified assumption in its derivation, and then give a mathematically
rigorous model with numerical verification.

3.3. Previous model of reference-independent �k–i

Ref. [21] shows a well-known derivation of �k–i, which is
reference-independent. This is shown as follows:

�k–i = ∂Sk

∂Si
= ∂(Vk1I∗

k
)

∂(ViI
∗
i
)

= ∂(Vk1 · ((Vk1 − Vk2)∗/zk
∗))

∂(ViI
∗
i
)

≈ ∂((Vk1 − Vk2)∗/zk
∗)

∂(I∗
i
)

= 1
z∗

k

·
(

∂V∗
k1

∂I∗
i

− ∂V∗
k2

∂I∗
i

)

=
Z∗

k1,i
− Z∗

k2,i

z∗
k

(29)

Regardless of the difference between �k–i and �k–i,RE that Eq. (29)
does not address, the above derivation implies injection as current
sources, because it assumes that all bus voltages are held invariant
and close enough in both magnitude and angle (i.e., Vk1 = Vi and they
are invariant). The voltage magnitudes may  be close to constant,
but the angle difference can be considerable. In addition, from the
viewpoint of circuit analysis, if there is a current injection change at
Bus i, it should change the voltage at every bus as well. Otherwise,
if voltages do not change, the current and power injection will not
change at all since we have V = Zbus × I. So, generally speaking, volt-
ages are not independent variables if we  consider the network and
do not consider some voltage control actions. Hence, the assump-
tion of constant voltage magnitude and angle is not justifiable and
should be relaxed.

3.4. Reference-independent �k–i,RE

The bus voltage at any Bus B can be written as:
VB =
N∑

j=1

(ZB,j · Ij) (30)
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And the bus injection power at Bus i is given by

i = Vi · I∗i = I∗i ·
N∑

j=1

(Zi,j · Ij) (31)

The existing line flow through Line k at the sending end, i.e., Bus
1, is given by

k = Vk1 · I∗k=Vk1 · (V∗
k1 − V∗

k2)

zk
∗ =

∑N
j=1(Zk1,j · Ij)

zk
∗

·

⎛
⎝ N∑

j=1

(Z∗
k1,j · I∗j ) −

N∑
j=1

(Z∗
k2,j · I∗j )

⎞
⎠

=

[∑N
j=1(Zk1,j · Ij)

]
·
[∑N

j=1((Z∗
k1,j

− Z∗
k2,j

) · I∗
j
)
]

zk
∗ (32)

As we can see from (31) and (32), both bus injection and line flow
re related to the system topology and the initial injections. The
ormer is constant and the latter is independent variables. Hence,
us injection Si and line flow Sk can be expressed using indepen-
ent variables I, and there is no intermediate variable like voltages

nvolved in (31) and (32). This will make the derivation below very
lear without any possible confusion.

Now we need to consider a small change of Ii, say, ∂x. Although
x can be any complex number in theory, here we can consider that
x is applied to the magnitude Ii only to keep the same power factor,
oughly speaking. To facilitate our derivation, we can take angular
hift to make the angle of Ii the reference angle, i.e., 0 degrees for
i. This is because angular shift (or changing voltage/current refer-
nce angle) does not affect bus injection power and line flows, since
hase angles are indeed relative measures while power is not.

Without losing generality, we continue to use the symbol Ii for
implicity after the angular shift. Since IIM

i
= 0, we have

Ii + ∂x)∗ − I∗i = ∂x = (Ii + ∂x)  − Ii (33)

The change of bus injection power at Bus i is given by

Si = ∂x ·
N∑

j=1

(Zi,j · Ij) + Zi,i · I∗i · ∂x

=

⎛
⎝ N∑

j=1

(Zi,j · Ij) + Zi,i · I∗i

⎞
⎠ · ∂x (34)

The change of the kth line flow at the k1 end is given by

Sk = Zk1,i · ∂x

zk
∗ ·

⎛
⎝ N∑

j=1

(Z∗
k1,j · I∗j ) −

N∑
j=1

(Z∗
k2,j · I∗j )

⎞
⎠

+
∑N

j=1(Zk1,j · Ij)

zk
∗ · (Z∗

k1,i − Z∗
k2,i) · ∂x (35)

To obtain �k–i,RE we need to combine (34) and (35). Since the
erturbation ∂x is a real-number scalar (magnitude only), which
an be eliminated, so we have the sensitivity �k–i,RE at the sending
nd Bus k1 given by: [ (

k–i,RE(k1) = (∂Sk)RE

(∂Si)
RE

=
(Zk1,i/zk

∗) ·
∑N

j=1(Z∗
k1,j

· I∗
j
) −
∑N

j=1(Z∗
k2,j

· I∗
j
)[∑N

j=1(Zi,j · Ij) + 
arch 81 (2011) 1995– 2004

( ) ]RE

Similar to (31) and (32), (36) involves only the network topology
and the initial condition of current injections. There is no interme-
diate variable, and there is no reference bus involved. Hence, the
power distribution factor �k–i,RE does not require a reference bus.

Further, if we consider VB =
∑N

j=1(ZB,j · Ij), we can simplify (36)
as follows:

�k–i,RE(k1) =
[(Zk1,i/zk

∗) · (V ∗
k1

− V ∗
k2

) + ((Z∗
k1,j

− Z∗
k2,j

)/zk
∗) · Vk1]RE

[Vi + Zi,i · I∗
i
]RE

(37)

This simplified equation shows the involvement of intermediate
state variables of bus voltages, which are essentially determined
by the initial condition and the network topology. So, it is still
reference-independent. It is not difficult to observe that if we
assume voltages are all close to unity, and Vi(=

∑N
j=1(Zi,j · Ij)) is

much greater than Zi,i · I∗
i
, then (37) is simplified back to (29).

The receiving end sensitivity is similar to (37) except that Bus
k2 is treated as k1. This is given by

�k–i,RE(k2) =

[
(Zk2,i/zk

∗) · (V ∗
k1

− V ∗
k2

) + ((Z∗
k1,j

− Z∗
k2,j

)/zk
∗) · Vk2

]RE

[Vi + Zi,i · I∗
i
]RE

(38)

The sensitivity based on the flow at the center of Line k is the
average of (37) and (38). Thus, we  have

�k–i,RE = �k–i,RE(k1) + �k–i,RE(k2)

2

=
[((Zk1,i + Zk2,i) · (V ∗

k1
− V ∗

k2
) + (Z∗

k1,j
− Z∗

k2,j
) · (Vk1 + Vk2))/2zk

∗]RE

[Vi + Zi,i · I∗
i
]RE

(39)

The above analytical derivation of (39) is rigorous and does not
need the assumption of invariant voltages implied by (29). Hence,
this is the first major contribution of this paper. This can be sum-
marized as below:

The complex power distribution (sensitivity) factor, �k–i, and the
corresponding real power distribution factor, �k–i,RE, are deter-
mined by the network topology and the present operating condition
only, and do not require a system reference.

It should be noted that the derivation of analytical Eq. (39)
assumes the bus injections at the present operating point are cur-
rent sources. This is also implied in Ref. [21] for Eq. (29). This should
be a reasonable assumption because of two  reasons: some loads
behave as current sources indeed as evidenced by many power
system dynamic studies; and more important, the voltage or power
control cannot have instantaneously effect when a very tiny current
perturbation is instantaneously applied to a selected bus.

3.5. Numerical verification of reference-independent �k–i,RE

Numerical tests are presented in this subsection to verify Eq.
(39). The test system is a modified PJM 5-bus system with details
shown in Section 5 (see Fig. 3 and related data). The test procedure
is described as follows:

◦ First, the current injections for a base case are obtained. This is
done with an ACOPF run to find different voltage magnitudes
and angles, which should represent the results from economic
dispatch. The voltage phasors from Buses A to E are 1.1 ∠ 0◦,
1.0797 ∠ − 3.3066◦, 1.0855 ∠ − 3.0619◦, 1.0866 ∠ − 2.6929◦, and
1.092 ∠ 0.7443◦, respectively. Then, solving I = Z−1 × V gives the
bus current injections. The injections will be considered as the
+
∑N

j=1(Zk1,j · Ij)/zk
∗ · (Z∗

k1,i
− Z∗

k2,i
)

Zi,i · I∗
i

]RE
(36)
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Table  1
Verification of �k–i,RE of each line w.r.t. Buses 1 and 4.

Line Analytical: using the proposed
model in Eq. (39)

Numerical: 1% perturbation of
injecting current

Real part of �k–i using the previous
work shown in Eq. (29)

w.r.t. Bus 1 w.r.t. Bus 4 w.r.t. Bus 1 w.r.t. Bus 4 w.r.t. Bus 1 w.r.t. Bus 4

AB 0.3267 0.0047 0.3267 0.0047 0.2402 0.0416
AD 0.2016 −0.3322 0.2016 −0.3322 0.1490 −0.2934
AE  0.4700 0.2221 0.4700 0.2221 0.3265 −0.0427
BC  0.0009 −0.1688 0.0009 −0.1688 0.0693 −0.1279
CD  −0.1037 −0.2869 −0.1037 −0.2869 −0.0999 −0.2931
DE −0.1049 0.3839 −0.1049 0.3839 −0.0822 0.2911

Ref. 
Bus 

∂Pi  ∂Pi

0.67×∂Pi 

0.33×∂Pi 
∂Pi

(a) No curren t can  flow  bac k to the gr ound  
without  a ref eren ce bus to abso rb the injection.

(b) Curren t can flow  to the  re fere nce  
bus  through the network.  

0.33×∂Pi

Fig. 1. Necessity of the reference bus for finding GSF using DC model.

∂Si

(a) AC n etw ork with shunts (b) Equiv alent to h ave multiple sinks 

work

◦

◦

Fig. 2. Using AC net

initial condition here. Note: The voltage angle reference for
ACOPF is Bus 1. Changing it to another bus will change the angle
values at each individual bus, but not the relative differences
between any two phasors. Hence, generation dispatch and line
flow remain the same, because angle is a relative measure, but
power is not. Hence, generation output and line flows from ACOPF
are indeed reference independent.

 Second, a perturbation is performed by applying a 1% current
change at a given bus. The system is solved using V’ = Z × I’ (prime
means the perturbed case), since current injections are the inde-
pendent variables.

 Finally, the ratio of real-power line-flow change versus real-
power bus-injection change is calculated using power flows
from the base case obtained with ACOPF and the perturbed

case. The values of this “numerically” calculated sensitivity, i.e.,
(�Sk)RE/(�Si)RE, are compared with the “analytically” calculated
values, i.e., (∂Sk)RE/(∂Si)RE, using (39). The comparison is shown
in the second and third columns in Table 1.
determin ed b y netw ork  para meters

 to find loss factors.

Apparently, the analytically calculated �k–i,RE using (39) is accu-
rate as verified by the numerically calculated values, i.e.,

(∂Sk)RE

(∂Si)
RE ≈ (�Sk)RE

(�Si)
RE

The distribution factors using the real part of �k–i from the pre-
vious work shown in Eq. (29) is listed in the last column in Table 1.
If compared with Eq. (39), Eq. (29) leads to significant difference.
This is reasonable because of the nonlinearity of power systems,
which means that the sensitivity with the present operating condi-
tion ignored, i.e., sensitivity without no source, is certainly different
from the condition with loads. This justifies the necessity of using

a more complicated analytical model (39) that includes the initial
system condition and considers voltages as variables rather than
constant. And, more numerical tests, not shown here simply due to
space limit, all support Eq. (39).
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Combining (39) with (25), the reference-independent loss factor
s given as follows:

Fi = ∂PLoss

∂Pi
=

M∑
k=1

Rk × 2Fk × �k–i,RE (40)

here �k–i,RE is defined in (39). Since both Fk and �k–i,RE
re reference-independent, the loss factor LFi is reference-
ndependent.

.6. Some illustrative comments

The foundation of the DC power flow model is that the line flow
an be simplified to

k = ık1 − ık2

xk
(41)

Hence, only line reactances are needed in the model. Line resis-
ances and shunt capacitances are all ignored. To calculate the GSF
f Bus i to Line k, it is assumed that there is a small injection ∂Pi at
us i. Here ∂Pi can be viewed as a current injection as well since the
oltage is held at 1.0 p.u. at every bus. Then the resultant line flow
t Line k divided by ∂Pi is the GSF of Bus i to Line k. This is shown in
ig. 1 with the upper-right bus as the reference. As shown in the fig-
re, since we have an injection, we must specify a reference bus to
bsorb the injection. Otherwise, there is no path to let the ∂Pi injec-
ion at Bus i to flow back to ground. This is why a reference/slack
us must be specified. In case we have a distributed reference bus,
hen the ∂Pi injection will flow back at different buses to ground
ith the amount decided by reference-bus weighting factors.

As shown in Fig. 1, when the reference bus changes, the GSF of
ach bus to different lines may  change. This is the reason that LF
rom (25) and (27) is reference-dependent.

In contrast, the AC network model has shunt capacitances that
re typically represented by the “pi” model shown in Fig. 2. The dis-
ribution factor �k–i means the change of MVA  flow through Line k
hen there is a per unit change of an injection at Bus i. As we assume

he injections are all current sources, a small change of Ii leads to
oltage changes at all buses and then leads to changes of injection
ower at all buses with injection sources, positive (generation) or
egative (load). The changes at other buses are essentially equiva-

ent to multiple absorption sinks corresponding to the perturbation
∂Si) at Bus i, as illustrated in Fig. 2. The absorption amounts at
ifferent buses are different, and they are objectively determined
y the system topology and the initial condition (operating point).

t is not determined by any user-defined or man-made reference.
his is the significant difference between the proposed model and
onventional approaches. For instance, the generic Power Transfer
istribution Factor (PTDF) in [22–24] requires a pair of user-defined

njection and sink. Also, the traditional (distributed) reference bus
s essentially a user-defined sink.

The user-defined or man-made source-sink pair or reference
us(es) will give different incremental line flow with a different
hoice of sink or reference. However, the equivalent sinks shown
n Fig. 2(b) are objectively determined by the network topology
nd the present operating point, both of which are reference-
ndependent. Therefore, the AC-based sensitivity factor �k–i (or
k–i,RE) and the loss factor LFi do not need a reference bus defined
y users.

Here is another explanation from the mathematical viewpoint.
he Zbus matrix in Eq. (39) is the inversion of the Ybus matrix. If all
ine resistances and shunt branches are ignored, the AC model is

implified to the DC model. That is, �k–i = �k–i,RE = GSFk–i. Then, we
annot obtain the Zbus matrix because the N × N Ybus matrix is sin-
ular with a rank of N − 1 due to the ignored shunt branches. Hence,
o make the Ybus matrix invertible, we have to specify a reference
Fig. 3. The base case for simulation test.

bus. This means to delete the row and column associated with the
reference bus such that the rank of the new (N − 1) × (N − 1) Ybus
matrix is N − 1 (i.e., nonsingular). Apparently, with shunt branches
and the AC model, the original N × N Ybus matrix is nonsingular and
can be inversed to obtain Zbus.

4. Proposed LMP  model

4.1. Application of FND model for LDF

Beside the proposed reference-independent loss factors
expressed in (40) and (39), another proposed improvement of LMP
model lies in the representation of loss distribution factors (LDFs).
In the previous work [8],  LDFs are simply modelled with bus loads
as the weighting factors as follows:

LDFi = Di

D˙
= Di∑N

j=1Dj

(42)

The proposed improved model applies fictitious nodal demand
(FND) to represent LDFs. This can be done by obtaining line flows
first via an initial ACOPF or DCOPF. Then, the kth line losses can
be calculated as F2

k
× Rk and then equally allocated to each of the

two connected buses [13]. The accumulated FND at each bus will
be used as the weights to calculate LDFi in Eq. (14). The new LDF
model at Bus i can be written as:

Ei =
Mi∑

k=1

1
2

× F2
k × Rk (43)

LDFi = Ei∑N
j=1Ej

(44)

where Mi = the number of lines connected to Bus i.
If compared with the LDF model using bus loads as weighting

factors in (42), this FND-based model is a more reasonable approach
giving better power flow results with very little extra computing
and modelling effort, because there is no new variable introduced
into the optimization model in (11)–(15).

4.2. Proposed models

Here are two  models that will be used in the simulation test in
this paper.
◦ Model 5 (for comparison purpose):
• Eqs. (11)–(15) for DCOPF-based dispatch;
• Eq. (40) and (39) for loss factors;
• Eq. (42) to obtain LDFs using bus loads as weights.
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Table  2
Line parameters.

Line AB AD AE BC CD DE

R (%) 0.281 0.304 0.064 0.108 0.297 0.297
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Table 3
Initial dispatch results from ACOPF.

Gen Alta Park City Solitude Sundance Brighton

Dispatch (MW) 110 100 325.92 0 468.44

Table 4
Initial MW line flows from ACOPF.

LINE AB AD AE BC CD DE

Sending end 249.94 188.13 −228.07 −51.60 −25.73 −238.54
Receiving end 248.40 187.21 −228.47 −51.65 −25.74 −239.97
Line center 249.17 187.67 −228.27 −51.62 −25.74 −239.25

Table 5
Results from Model 5 using Bus A as the reference bus.

Bus A B C D E

Bus gen. 210.0000 0.0000 329.1660 0.0000 465.7886
Bus  load 0.0000 300.0000 300.0000 400.0000 0.0000
Bus  loss 0.0000 1.4864 1.4864 1.9818 0.0000
Loss  factor 0.0071 −0.0176 0.0321 −0.0092 0.0177
GSF  0.0000 −0.1509 −0.2090 −0.3685 0.1120
LDF  0.0000 0.3000 0.3000 0.4000 0.0000
LMP 23.9953 29.7270 30.0000 36.5493 20.0000
LMP  energy 32.5590 32.5590 32.5590 32.5590 32.5590
X  (%) 2.81 3.04 0.64 1.08 2.97 2.97
B/2  (% 10−3) 3.56 3.29 15.63 9.26 3.37 3.37

 Model 6 (final model):
• Eqs. (11)–(15) for DCOPF-based dispatch;
• Eqs. (40) and (39) for loss factors;
• Eqs. (43) and (44) to obtain LDFs using the FND model.

Both models use (20)–(22) for LMP  decomposition. It should
e noted that the DC-based GSF is still needed in the dispatch
odel, i.e., (11)–(15), to model line flows under linear program-
ing because of the nature and advantage of DCOPF in handing

ransmission constraints and achieving a straightforward LMP
ecomposition. Otherwise, the final line flows from dispatch model
annot perfectly produce the same power flow results, and the
eference-independent LMP  decomposition cannot be achieved.

The above models require initial values of system status, such
s line flows, generation outputs, and so on, to obtain Ei in (43),
DFi in (44), offset in (13), and LFi in (40). Since they need to be
eference-independent, the initial values of system status need to
e reference-independent. Apparently, running an initial ACOPF
r lossless DCOPF should fit this need. Then, the DC-based Model

 or 6 can be applied for LMP  calculation with fully reference-
ndependent decomposition.

.3. Role of the initial OPF

It is important to be noted that running an initial ACOPF is
ligned with the popular industrial practice of Ex Post LMP  model.
n operation, there are three typical steps:

. An ACOPF or a close approximation, lossless DCOPF as an
extreme, is performed for Ex Ante economic dispatch.

. State estimation is performed to smooth measurement error and
to provide input (line flows, generation outputs, etc.) for LMP  and
other real-time applications.

. A DCOPF-with-loss model is performed for Ex Post LMP.

If we reasonably assume measurement is perfect to skip the
tate estimation such that we can focus on LMP  models, the above
rocess is basically an ACOPF (or a lossless DCOPF) for dispatch and

 DCOPF-with-loss for LMP  calculation. Since ACOPF (or lossless
COPF) gives reference-independent line flows, generation out-
uts, etc., it is justifiable for the proposed process to use the initial
COPF results for reference-independent LFi and then DC-based
odel 5 or 6 for reference-independent LMP  decomposition.

. Test results

.1. Test case

The PJM 5-bus system [1] is used for simulation in this section.
he system configuration, generation bids, generation limits, and
oads are shown in Fig. 3. Only the Line DE is assumed to have a
hermal limit of 240 MW.  The line parameters are given in Table 2,
here the reactances are from the original case in [1] and the resis-

ances are assumed to be 10% of corresponding line reactances. Each

f the two shunt capacitances of a “pi” model transmission line is
ssumed to have a reactance value of −100 times the line reactance.
nd the reactive generation limits are simply set to 150 MVar, from

eading to lagging. The above data are from [8] except the assumed
LMP  loss −0.2328 0.5746 −1.0450 0.2996 −0.5756
LMP  cong. −8.3310 −3.4067 −1.5141 3.6906 −11.9834

line resistances, shunt capacitances, and the reactive generation
limits, which are not available from [8].

An ACOPF is applied to obtain the initial economic dispatch solu-
tion used for the follow-up LMP  calculation. For instance, the results
can be used to obtain nodal AC currents and voltages and then
the reference-independent �k–i,RE, as exactly shown in Section 3.5.
Then, the reference-independent loss factor, LFi, can be calculated
using Eq. (40). The estimated system losses can be used to set the
offset in Eq. (13), and the line flows can be used to obtain Ei in (43)
and LDFi in (44). Table 3 shows the generation output. Table 4 shows
the MW line flows at the sending end, at the receiving end, and at
the line center.

If the results from an initial lossless DCOPF are applied to find
reference-independent LFi, the final LFi is extremely close to (less
than 3% error) the one obtained using results from ACOPF. This is
reasonable because linearized DC model in high voltage AC system
is usually considered efficient enough.

5.2. Results from Model 5 (bus loads as weights for LDFs)

In this test, LDFs are calculated using bus loads as the weighting
factors as specified in Model 5. So, the LDFs are 0, 0.3, 0.3, 0.4, and
0 from Buses A to E, respectively. Here two  cases are studied: (1)
Bus A as the reference; and (2) distributed reference buses of B, C
and D with bus loads as the weights (i.e., 0.3, 0.3, and 0.4).

As shown in Tables 5 and 6, the GSFs are different w.r.t. different
references. But the dispatches are the same. Each LMP  component
is also identical. The LMPs at the marginal unit buses (C and E)
are equal to the corresponding marginal unit cost. This meets the
principle of LMP  modelling.

Fig. 4 also shows the line flows. It can be easily verified
that the values of bus loss or bus mismatch (=incoming line
flows + generation − outgoing flows − load) accounting for losses
are 0, 1.4864, 1.4864, 1.9818, and 0 at Buses A–E, respectively.
There is no loss balance at Buses A and E because the LDFs are 0

at these two  buses. This is different from reality because losses are
distributed in each line, and every bus should balance some losses.
The next subsection will show that each bus will absorb some losses
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Table  6
Results from Model 5 using distributed reference at B, C, and D.

Bus A B C D E

Bus gen. 210.0000 0.0000 329.1660 0.0000 465.7886
Bus load 0.0000 300.0000 300.0000 400.0000 0.0000
Bus  loss 0.0000 1.4864 1.4864 1.9818 0.0000
Loss factor 0.0071 −0.0176 0.0321 −0.0092 0.0177
GSF  0.2554 0.1044 0.0464 −0.1131 0.3673
LDF  0.0000 0.3000 0.3000 0.4000 0.0000
LMP 23.9953 29.7270 30.0000 36.5493 20.0000
LMP energy 32.5590 32.5590 32.5590 32.5590 32.5590
LMP loss −0.2328 0.5746 −1.0450 0.2996 −0.5756
LMP  cong. −8.3310 −3.4067 −1.5141 3.6906 −11.9834

Fig. 4. Line flow results using load-weighted LDF (Model 5).

Fig. 5. Line flow results using FND-based LDF (Model 6).

Table 7
Results from Model 6 using Bus A as the reference bus.

Bus A B C D E

Bus gen. 210.0000 0.0000 326.9002 0.0000 468.0212
Bus load 0.0000 300.0000 300.0000 400.0000 0.0000
Bus  loss 1.5822 0.8910 0.0244 1.4020 1.0218
Loss  factor 0.0071 −0.0176 0.0321 −0.0092 0.0177
GSF 0.0000 −0.1509 −0.2090 −0.3685 0.1120
LDF  0.3215 0.1811 0.0049 0.2849 0.2076
LMP 23.9194 29.4972 30.0000 36.3131 20.0000
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Table 8
Results from Model 6 using distributed reference at B, C, and D.

Bus A B C D E

Bus gen. 210.0000 0.0000 326.9002 0.0000 468.0212
Bus  load 0.0000 300.0000 300.0000 400.0000 0.0000
Bus  loss 1.5822 0.8910 0.0244 1.4020 1.0218
Loss factor 0.0071 −0.0176 0.0321 −0.0092 0.0177
GSF 0.2554 0.1044 0.0464 −0.1131 0.3673
LDF  0.3215 0.1811 0.0049 0.2849 0.2076
LMP  23.9194 29.4972 30.0000 36.3131 20.0000
LMP  energy 27.6851 27.6851 27.6851 27.6851 27.6851
LMP energy 27.6851 27.6851 27.6851 27.6851 27.6851
LMP loss −0.1979 0.4886 −0.8885 0.2548 −0.4895
LMP  cong. −3.5678 1.3235 3.2034 8.3731 −7.1957

orresponding to its connecting line losses with the FND model for
DFs.

.3. Results from Model 6 (FND-based LDFs)

Here the proposed final model (Model 6) is used for another
imulation run, in which the FND model is applied for calculating
DFs. Results are shown in Fig. 5 and Tables 7 and 8. Again, the

SFs are different w.r.t. different reference buses; but the dispatch

esults and the LMP  decomposition are identical. Similar to Model 5,
he LMPs at marginal unit buses (C and E) are equal to local marginal
nit cost.
LMP  loss −0.1979 0.4886 −0.8885 0.2548 −0.4895
LMP  cong. −3.5678 1.3235 3.2034 8.3731 −7.1957

Fig. 5 shows that the losses are distributed in each line and even-
tually balanced at every bus as FNDs (i.e., Ei). The values of bus losses
are 1.5822, 0.8910, 0.0244, 1.4020, and 1.0218 at Buses A–E, respec-
tively. It can be easily verified that each bus loss equals to its loss
factor multiplied by the system total losses. Hence, this is a fairer
and more reasonable model for obtaining LDFs.

5.4. Comparison with Model 3

Models 5 and 6 use the same LDF model as Model 3. The loss
factor model is the only difference between Models 5 and 3. The
loss factors of Model 3 are reference-dependent; therefore, LF at
the reference in Model 3 should be 0. Hence, LMPloss at the refer-
ence should be 0 as well. This is shown in the results in [8]. For
instance, Tables III and IV in [8] show LF = 0 and LMPloss = 0 at the
reference bus. Note that the weighted average values for LF and
LMPloss should be used for the distributed reference bus in the case
of Table IV in [8].

In contrast, Models 5 and 6 give non-zero loss factors and non-
zero LMPloss at all buses. This should be more reasonable than
Model 3 because in reality there is no reference (slack) bus and
every bus should have some contribution to losses. Hence, LF and
LMPloss should not be zero at a given reference which is purely
man-made or user-defined.

As previously mentioned, Model 6 further improves Model 5 by
using the FND model for a better power flow representation such
that losses are distributed into each line, rather than load buses.

5.5. Comparison with ACOPF-based LMP

Although true ACOPF is not commonly used in industrial prac-
tices due to the convergence issue, it is a good tool for benchmark
purpose because ACOPF gives the exact dispatch results considering
all transmission and generation constraints in full AC model. Thus,
it gives the accurate LMP  at each bus. Therefore, a good approxi-
mate, with-loss, DCOPF-based model should produce results close
to that from ACOPF.

However, it should be noted that decomposition of the exact
ACOPF-based LMP  into three LMP  components has to take some
approximation for linearization because ACOPF only gives the
total LMP  at each bus, which is the Lagrange multiplier of the
corresponding AC power flow constraints [13]. Usually, the gen-
eration shift factors and/or the loss factors are involved during the
approximate decomposition of LMP. Hence, this leads back to the
original question of a fair loss allocation such as being reference-
independent. In other words, ACOPF gives the accurate and unique
results of the generation dispatch and the total LMP  at each bus,
but there is no accurate or unique LMP  decomposition. An impor-

tant goal of the LMP  research works is to identify more reasonable
LMP  decompositions such as the proposed decomposition method
in this paper.
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The ACOPF-based LMPs for the test system are $23.410, $28.272,
30.000, $34.766 and $20.000 per MWh,  from Buses A to E,
espectively. The generation dispatches are 110.00 MW from Alta,
00 MW from Park City, 325.92 MW from Solitude, 0 MW from Sun-
ance, and 468.44 MW from Brighton. If compared with results
rom Model 5 or 6, the numbers are very close. As a matter of fact,
he FND-based with-loss model usually produces the dispatch and
MP  results very close to that from ACOPF, as evidenced in [13].
ence, it is reasonable that the proposed method, which incorpo-

ates the FND model, produces the results very close to ACOPF while
iving a fully reference independent decomposition.

. Conclusions

The main contributions of this paper are as follows:

 First, it presents new analytical equations to calculate the AC-
based distribution factors and then loss factors that only depend
on the system topology and the present operating point. Hence,
the proposed new model of distribution factors and loss fac-
tors is reference-independent. The rigorous derivation considers
the change of bus voltages when there is a perturbation of bus
current injection. This leads to more reasonable distribution fac-
tors, if compared with (29) from [21] that ignores the nodal
voltage changes and the present operation point. The reference-
independent LMP  loss component can serve for a better loss
hedging FTR proposed in [19,20],  since it gives LMP  loss prices
invariable to the energy reference bus.

 Next, this paper plugs the proposed loss factor model into the
original LMP  Model 3 to achieve a fully reference-independent
LMP  decomposition. In addition, it also combines the FND model
in [13] into Model 3 to obtain new loss distribution factors (LDFs)
such that losses are distributed at each line to achieve a fairer
and more reasonable model. Therefore, the final model of LMP
decomposition using the proposed Model 6 is fully reference-
independent, and the system losses are distributed at each
individual line giving a better power flow results.

Future works may  include the investigation of possible appli-
ations of the proposed reference-independent distribution factor
nd loss factor to other areas in power system analyses.
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ppendix A.

ist of symbols
 Lagrangian multiplier of Eq. (12)

 Lagrangian multiplier of Eq. (13)
k Lagrangian multiplier of the kth trans. constraint in Eq.

(14)
k–i AC-based distribution factors from Bus i to Line k

k–i,RE real power distribution factor from Bus i to Line k obtained
from AC-based model

i, ıi voltage angles at Bus i and Bus j

i generation cost at Bus i
i demand at Bus i
Fi marginal delivery factor at Bus i

i, Gmax
i

, and Gmin
i

generation output, minimum limit, and maxi-
mum  limit at Bus i

[

[

arch 81 (2011) 1995– 2004 2003

GSFk–i reference-dependent, DC-based generation shift factor
(or just shift factor) of Line k w.r.t. Bus i

Ei fictitious nodal demand at Bus i to represent 50% of the
losses of the lines connected to Bus i

Fk line flow through Line k
Ii current injection at Bus i
Ik current through Line k
LDFi loss distribution factor at Bus i
LFi marginal loss factor at Bus i
Limitk limit of the kth transmission constraint
LMPB (LMPenergy, LMPloss

B , and LMPcong
B ) LMP  at Bus B (energy, loss,

and congestion component)
M number of lines
Mi number of lines connected to Bus i
N number of buses
Pi net injection at Bus i
PLoss total system losses
offset the offset in loss balance equation
Rk resistance of Line k
Si MVA  injection at Bus i
Sk MVA  flow through Line k
Vi complex voltage at Bus i
xk reactance of Line k
Y bus admittance matrix
Z bus impedance matrix
zk impedance of Line k
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