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Abstract—The key of reactive power planning (RPP), or Var
planning, is the optimal allocation of reactive power sources con-
sidering location and size. Traditionally, the locations for placing
new Var sources were either simply estimated or directly assumed.
Recent research works have presented some rigorous optimiza-
tion-based methods in RPP. This paper will first review various
objectives of RPP. The objectives may consider many cost func-
tions such as variable Var cost, fixed Var cost, real power losses,
and fuel cost. Also considered may be the deviation of a given
voltage schedule, voltage stability margin, or even a combination of
different objectives as a multi-objective model. Secondly, different
constraints in RPP are discussed. These different constraints
are the key of various optimization models, identified as optimal
power flow (OPF) model, security-constrained OPF (SCOPF)
model, and SCOPF with voltage-stability consideration. Thirdly,
the optimization-based models will be categorized as conventional
algorithms, intelligent searches, and fuzzy set applications. The
conventional algorithms include linear programming, nonlinear
programming, mixed-integer nonlinear programming, etc. The
intelligent searches include simulated annealing, evolutionary
algorithms, and tabu search. The fuzzy set applications in RPP
address the uncertainties in objectives and constraints. Finally,
this paper will conclude the discussion with a summary matrix for
different objectives, models, and algorithms.

Index Terms—Evolutionary algorithms (EAs), fuzzy sets,
linear programming (LP), mixed integer nonlinear programming
(MINLP), multi-objective optimization, nonlinear programming
(NLP), OPF, reactive power optimal allocation, reactive power
planning, simulated annealing (SA), security-constrained OPF
(SCOPF), security constrained OPF with voltage-stability consid-
eration (SCOPF-VS), tabu search (TS), voltage stability margin.

I. INTRODUCTION

PTIMAL allocation of Var sources, such as capacitor

banks, Static Var Compensators (SVC), and STATic
COMpensators (STATCOM), is a critical component in reac-
tive power planning (RPP) or Var planning. Traditionally, the
locations for placing new Var sources were either simply esti-
mated or directly assumed. Recent research has presented some
rigorous optimization-based methods to address RPP. Due to
the complicated objective functions, constraints, and solution
algorithms, RPP is identified as one of the most challenging
problems in power systems.
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The following assumptions are considered while formulating
the Var planning problem in the literature.

» The system is balanced.

* The active and reactive power represent fundamental fre-
quency powers, and additional powers at harmonic fre-
quencies are negligible.

* The size of the Var source is treated as a continuous vari-
able; however, it is in fact discrete.

* The reactive capability of a generator is portrayed by the
conventional PQ-diagram, but for the planning study, it is
usually sufficient to assume a fixed upper limit @y, rele-
vant to the generator MW output.

After a detailed study of the large amount of previous works,
we believe that an informative and succinct literature review in
RPP should summarize the objective function model, the con-
straint model, and the mathematical algorithms. These three
components are briefly discussed next.

The objective function of RPP may be cost-based, which
means to minimize the possible cost associated with RPP such
as variable and fixed Var installation cost, real power loss cost,
and/or fuel cost. Other possible objectives may be to minimize
the deviation from a given schedule of a control variable (such
as voltage) or to maximize voltage stability margin. It is also
reasonable to use a multi-objective (MO) model as the goal of
the RPP formulation.

The constraints in RPP are even much more complicated than
the objective functions. Conventional constraints may include
the normal state (base case) power-flow limits and the contin-
gency state power flow limits. However, more recent works pro-
posed to include the voltage stability limits, under both normal
state and contingency state, due to the increased pressure of
voltage stability and stressed transmission systems. These dif-
ferent constraints are the key of the classification of various opti-
mization models, identified as optimal power flow (OPF) model,
security-constrained OPF (SCOPF) model, and SCOPF with
voltage stability constraints (SCOPF-VS), the present state-of-
the-art in RPP. In some works, the consideration of contingency
analysis and voltage stability may be included in the objective
functions. The relationship in terms of feasible region among
the three formulations is shown in Fig. 1. It should be noted that
in both theory and practice, one of the objective models may
be combined with one of the constraint models to formulate the
RPP problem. However, the constraint model is the key to the
classification of the three optimal power-flow models.

The mathematical solution of RPP is also very challenging
due to a large number of variables and uncertain parameters.
Based on the objective and constraint formulation, RPP could be
mathematically formulated with variables and equations that are
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Fig. 1. Relationship of different RPP models.

partially discrete, partially continuous, nondifferentiable, and
nonlinear. There are no known ways to find the exact global
solution for this complicated optimization problem in a reason-
able time. The solution techniques for RPP have evolved over
many years, and dozens of approaches have been developed,
each with its particular mathematical and computational charac-
teristics [1]. The majority of the techniques discussed in the lit-
erature of the last 20 years may be classified as one of three cate-
gories: conventional methods, intelligent searches, and fuzzy set
applications. The conventional methods include linear program-
ming (LP), nonlinear programming (NLP), mixed-integer non-
linear programming (MINLP), etc. The intelligent-search-based
methods, such as simulated annealing (SA), evolutionary algo-
rithms (EAs), and tabu search (TS), have received widespread
attention as possible techniques to obtain the global optimum
for the RPP problem. However, these heuristic methods need
more computing time in general. Also, fuzzy set theory has
been applied to RPP to address uncertainties in objectives and
constraints.

This paper is organized as follows. Section II illustrates the
possible objectives in the RPP literature. Section III presents
the different constraint models such as OPF, SCOPF, and
SCOPF-VS. Section IV presents the mathematic algorithms to
solve the above models. Section V presents the conclusion with
a matrix to match the objectives, the constraint models, and the
solution algorithms to different papers.

II. OBIJECTIVES OF REACTIVE POWER PLANNING

The majority of the RPP objectives were to provide the least
cost of new reactive power supplies. Many variants of this ob-
jective include the cost of real power losses or the fuel cost. In
addition, some technical indices such as deviation from a given
voltage schedule or the security margin may be used as objec-
tives for optimization. The detailed discussions are presented as
follows.

A. Minimize Var Cost

Generally, there are two Var source cost models for mini-
mization. The first formulation is to model Var source costs
with C - Q. that represents a linear function with no fixed cost
[2]. Apparently, this model considers only the variable cost rel-
evant to the rating of the newly installed Var source ). and
ignores the fixed installation cost. The common unit for C; is
$/(MVar - hour). This means the costs of two 200-MVar Var
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sources are exactly the same as one 400-M Var source. This for-
mulation would always bias a solution toward placement of sev-
eral smaller sizes sources instead of a small number of larger
ones.

A better formulation with the format (Cyp + Cy - Q.) - x
[31-[5]1, [35]-[38] is to consider the fixed cost, Cy ($/hour),
which is the lifetime fixed cost prorated to per hour, in addi-
tion to the incremental/variable cost, Cy ($/MVar - hour). This
is a more realistic model of Var cost, but this would compli-
cate the problem from a nonlinear programming (NLP) to a
mixed-integer NLP (MINLP), because there is a binary variable
x to indicate whether the Var source will be actually installed
or not. The slight difference in the cost model, however, leads
to dramatic difference in the optimization model and the corre-
sponding mathematics technique to solve it.

As a result, the RPP model with the first Var cost function as
an objective is a traditional LP or NLP problem. However, the
second one is a MINLP problem, and some special techniques
are needed for it. More details will be found in Section IV about
the algorithms.

B. Minimize Var Cost and Real Power Losses

This is also a common RPP objective. Based on the Var cost
model presented in the previous subsection, the objective under
this category may be divided into two groups: to minimize
C1(Qc) + C2(Pross) [6], [71, 28], [31], [32],[51] and to mini-
mize (Co + C1Q.) - © + Ca(Pross) [91-[13], [30], [50]. Here
C5(Py,ss) represents the cost of real power loss.

Reference [31] considers the real power losses consumed not
only in the base case but in all contingency cases. So the objec-
tive can be written as follows:

Ne
min F = C1(Q.) + Z Co(Pross)k
k=0

where k(= 0,1,---,L,...N.) represents the k" operating
case. Here, considered are the base case (k = 0), the contin-
gency cases under preventive mode (k = 1,---L), and the
contingency cases under corrective mode (k = L+ 1,--- N,).

C. Minimize Var Cost and Generator Fuel Cost

As an alternative to the cost of real power loss, the fuel cost is
adopted as a direct measure of the operation cost. The minimiza-
tion of real power loss cannot guarantee the minimization of the
total fuel cost in general. Instead, minimization of the total fuel
cost already includes the cost reduction due to the minimization
of real power loss.

This objective consists of the sum of the costs of the indi-
vidual generating units

Cr = Z fi(Pyi)
im1

where f;(Py;) = a0i+a1ini+a2iP;i is the common generator
cost-versus-MW curves approximately modeled as a quadratic
function, and ag;, a1;, az; are cost coefficients.

The objective C1(Q.) + Cr is used in [14], [15]. A MINLP
optimization model with objective (Co+C1Q.) -z + Cr is used
in [16] and [33].
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Fig. 2. Voltage stability curve.

D. Minimum Deviation From a Specified Point

Different from the previous three cost-oriented objective
functions, this objective is usually defined as the weighted sum
of the deviations of the control variables, such as bus voltages,
from their given target values. The target values correspond
to the initial or specified operating points. Minimizing voltage
deviation, i.e., Y, (Vimaz — Vi), where the subscript i repre-
sents different buses for voltage regulation, is modeled as the
objective function in [17].

E. Voltage Stability Related Objectives

Traditionally in RPP, the feasible operation has been trans-
lated as observing voltage profile criteria to ensure that the
system voltage profile is acceptable for system normal and
post-contingency conditions. However, when many power
systems are more stressed, voltage is a poor indicator of prox-
imity to system collapse conditions. Thus, the incorporation
of voltage stability in RPP has become essential. Several pre-
vious works considered voltage stability related measures as
objectives in RPP.

The main function of shunt reactive power compensation is
to provide voltage support to avoid voltage instability or a large-
scale voltage collapse. As shown in Fig. 2, voltage stability is
usually represented by a P-V (or S-V) curve. The nose point
of the P-V curve is called the point of collapse (PoC), where
the voltage drops rapidly with an increase of load. PoC is also
known as the equilibrium point, where the corresponding Jaco-
bian becomes singular. Hence, power-flow solution fails to con-
verge beyond this limit, which indicates voltage instability and
can be associated with a saddle-node bifurcation point.

These instabilities are usually local area voltage problems due
to the lack of reactive power. Therefore, one objective can be to
increase the static voltage stability margin (SM) defined as the
distance between the saddle-node-bifurcation point and the base
case operating point. SM can be expressed as follows:

critical normal
2 5; -8

SM = = _
critical
25
i

where Srermal and Seritical are the MVA loads of load bus i at
normal operating state B and the voltage collapse critical state
(PoC) A as shown in Fig. 2, respectively. One could expect an
improvement in the stability of the system for that operating
point.
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The objective in [18] is to maximize the minimum singular
value of the power flow Jacobian matrix, which is used as a
static voltage collapse index. In [19], the Var planning problem
is formulated as maximization of the active power voltage sta-
bility margin (P-margin) in order to improve the static voltage
stability.

F. Multi-Objective (MO)

Several single objectives have been discussed above, even
though some are essentially weighted sums of different objec-
tives such as active power losses and Var cost. Usually these
weights are easily decided by translating the real power losses
into $. However, the goal of RPP is to provide the system with
efficient Var compensation to enable the system to be operated
under a correct balance between security and economic con-
cerns. If both security and cost are included in the same objec-
tive function, then the weights can not be decided directly and
easily. The objective in [20], [21] includes Var investment cost
minimization, power loss reduction, and voltage deviation re-
duction as follows:

Min F = (Co + C1Q.) - & + Co(Pioss) and Max|Vipmaez — Vi

In [22], the MO model is given as follows:
Min F =10 Z(voltage violation in p.u.)?

+5 Z(generator Var violation in p.u.)?

+ power losses in p.u.

Another MO RPP model was proposed in [34], in which the
objective is designed as minimizing weighted sum of Var cost,
real power losses, and deviation of voltage + deviation of line
flow as follows:

Min F = (Co + C1Q..) - & + Co(Pross)
Vi - V;Js ec 2 S - Ss ec 2
o Z (M) +p?z <|ISZ4IP|>
/1; l max

‘/i max

where V; is the voltage magnitude in bus ¢, Vispec 18 the spec-
ified voltage magnitude in bus %, and Vj;,q, is the maximum
allowable voltage deviation limit at bus 4. .S; is the MVA flow
through line [, Sjpec is the MVA capacity limit of line [ and
Simaz 18 a specified allowable line flow deviation limit. p; and
p2 are weights for different objectives.

Chen and Liu [23]-[26] incorporated the voltage stability
margins (S-margin) directly into the objective function and cre-
ated a comprehensive MO model as follows:

min Fy; = (Co + C1Q.) - v+ Co(Ploss)
min Fr =1—-SM

~ _ Y/ideal| _ i
min F3 = Z o (|VZ VTV | Avl)

In the above formulation, F} is to minimize operation cost
caused by real power losses and Var source investment cost.
F5 is to maximize the voltage stability margin (SM). Fj3 is to
minimize the voltage magnitude deviation, where ®(z) = 0
if z < 0; and ®(z) = = otherwise; V¢ is the specifically
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desired voltage at load bus ¢ and is usually set to be 1 p.u.; and
Aw; is the tolerance of maximum deviation in the voltage.

In addition to the above formulations, [27] presents another
example to treat the voltage stability as one objective in the MO
problem with the three objectives: min F} = C1Q., min Fp =
C3(Pioss), and max F3 = the maximum loadability associ-
ated with the critical state.

III. CONSTRAINTS OF REACTIVE POWER PLANNING

As an optimization problem, RPP considers power flow equa-
tions as the key constraints conventionally, while achieving a
certain objective function as discussed in the previous section.
This model, optimizing an objective function while respecting
the power flow as a constraint, is called the OPF model. More
advanced research has concluded that not only normal state
power flow, but also the contingency power flow, should be
considered. This leads to the model of SCOPF. Recently,
due to a necessity to consider voltage stability, a few papers
incorporated the static voltage stability (VS) margin in the RPP
OPF objective. This provides more realistic solutions for RPP,
but it cannot guarantee whether the voltage stability margin
still exists when contingencies actually happen. Thus, it is
preferable to count on the voltage stability constraints in the
contingency states. A milestone in RPP, the SCOPF-VS model,
was reached in the late 1990’s.

As stated in Section I, theoretically and practically, different
objective models may be combined with one of the constraint
models to formulate the RPP problem except that voltage
stability may be modeled either as an objective function or as
constraints. However, the constraint model is the key to the
classification of the three optimal power flow models. That is
why the RPP models are classified mainly based on constraint
formulations.

A. OPF Model for RPP

1) Introduction to Optimal Power Flow: As shown in
[1]-[27], RPP is typically identified as an optimization problem
in power systems, known as OPF. There are six variables for
each bus: generator active and reactive power output, active
and reactive load, and bus voltage magnitude and angle. At the
same time, there are two equations related to each bus, active
power balance and reactive power balance equations. In the
conventional power flow solution, four of the six variables are
known or specified, the other two are unknown. For a system
with n buses, power flow solves the 2n unknowns from the 2n
equations. Using a suitable mathematical algorithm, a feasible
solution can be obtained.

However, conventional power-flow algorithms do not auto-
matically minimize any objective functions such as fuel cost or
real power transmission losses. They only obtain a single fea-
sible solution. Hence, the need for an OPF arose in the early
1960’s to achieve a desired objective, rather than just a fea-
sible solution. Some controllable power system elements of the
4n known variables in power flow are relaxed into a bounded
range. As a result, an infinite number of feasible solutions are
obtained by solving the 2n equations for more than 2n unknown
variables.
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All these feasible solutions construct a feasible region. An op-
timal solution can be selected from the feasible region to obtain
a desired objective by adjusting the optimal setting for the con-
trollable variables with respect to various constraints. The OPF
is a static constrained nonlinear optimization problem, and its
development has closely followed advances in numerical opti-
mization techniques and computational methods.

2) Formulation of OPF: OPF is formulated mathematically
as a general constrained optimization problem as

Minimize fu,z) (1
Subject to g(u,2) =0 2)
h(u,z) >0 3)

where w is the set of controllable variables in the system; x is the
set of dependent variables called state variables; objective func-
tion (1) is scalar; equalities in (2) are the conventional power
flow equations and occasionally include a few special equality
constraints such as the limit of the number of potential Var com-
pensators; and inequalities in (3) represent the physical limits
on the control variables u, and the operating limits on the power
system.

The control variables u may be defined as follows.

* Generator active power output.

* Regulated bus voltage magnitude.

* Variable transformer tap setting.

* Phase shifters.

» Switched shunt reactive devices.

* Load to shed in special conditions.

The state variables = may be defined as follows:

* Voltage magnitudes at load buses.

* Voltage phase angle at every bus.

* Line flows.

3) Details of OPF Constraints: The details of the OPF con-
straints, represented in (2) and (3) are discussed here. They may
be classified as the conventional power flow equality constraints,
physical limits of the control variables u, physical limits of the
state variables x; and other limits such as power factor limits.

* Power flow constraints

Py — Py~ P(V,8) =0
Qqi + Qi — Qui — Q(V,0) =0

¢ Control variables limits

(active power balance)

(reactive power balance).

Pg‘?i“ < Pyi < P (active power generation limits)
Vgr?in < Vi < Vi™  (PV bus voltage limits)

Tlmin <T, < T/ (transformer tap change limits)
min < Q,; < QUmax

ct ct

(Var source size limits).

e State variables limits

< Qi < QI
v <V < VP (PQ bus voltage limits)
|LF,| < LE/™™

(reactive power generation limits)

(line flow limit).

¢ Other limits
Power factor constraints; etc.
where
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Py generator active power output;
Py load active power;

(Q4i  generator reactive power output;
Qi Var source installed at bus i;
Qi load reactive power;

Vi PV bus voltage;

T transmission tap change;

Vi bus voltage;

LF; transmission line flow;

B. SCOPF Model for RPP

Security constrained optimization was introduced in the
1960s and early 1970s. Alsac and Stott in 1974 introduced
SCOPF with exact ac power flow equations [39]. More work
has been done on SCOPF since then as evidenced in [40]-[43].
Also, a number of previous works applied SCOPF for RPP
[28]-[34]. With the development of the SCOPF model, the goal
of RPP is extended to determine a minimum cost allocation
plan of new Var resources in terms of size and location so as to
guarantee feasible operation both under normal conditions and
after contingencies.

1) Introduction to Security Constrained OPF (SCOPF): A
conventional OPF minimizes an objective function such as Var
costs and/or losses, while maintaining the nonlinear power-flow
balance and the system variables, such as voltages, tap ratios,
active and reactive generations, and line flows within the spec-
ified limits under normal state (base case). However, the op-
timal solution from OPF may lead to a violation of operating
limits under some credible contingency cases. Usually contin-
gency analysis is performed in order to respond to each insecure
contingency case. With the hope to integrate the security (con-
tingency) constraints into OPF formulation, the SCOPF model
was developed as an important step forward in OPF technology.

The SCOPF model extends the capability of the OPF model
to include the effect of potential contingencies, such as outages
of transmission branches, generation units, or substation buses.
The contingencies contribute additional constraints to the base
case OPF problem in that: 1) the nonlinear power flow equations
must be observed under contingency cases and 2) all control
variables must be within prescribed emergency limits. There-
fore, SCOPF minimizes the base case or pre-contingency ob-
jective function while observing both the pre- and post-contin-
gency constraints. In other words, SCOPF determines an op-
timal operating point, such that in the event of any contingency
of a given list, the post-contingency states will remain secure
(within operating limits).

2) Formulation of SCOPF: SCOPF formulation is as fol-
lows: the engine of SCOPF is the basic OPF problem. The orig-
inal OPF formulation in (1), (2), and (3) can be expanded to
include contingency constraints, thus we have

Fu, %)
Subject to  g*(u*,2z*) =0, fork=0,1,...,N.
R*(uF,2*) >0, for k=0,1,...,N,

“)
&)
(6)

Minimize

and
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where superscript “0” represents the pre-contingency case (base
case) being optimized, and superscript “k” (k > 0) represents
the post-contingency states for the N, contingency cases.

Note that the SCOPF formulation considers both the pre- and
post-contingency power flows and all constraints in those states
should always be satisfied. The post-contingency constraints are
of the same dimensional order as those of the pre-contingency
case. If there are m total constraints in a given base case OPF,
there will be (k+1)em constraints in a SCOPF formulation with
k contingencies. As a result, a 1000-bus system with nine con-
tingencies in SCOPF would be equivalent to a 10 000-bus OPF
model. It is apparent that the complexity of SCOPF increases
greatly compared with the OPF problem.

3) Security Level and Operation Modes: The SCOPF is
aimed at scheduling the power system controls to achieve oper-
ation at a desired security level, while optimizing an objective
function such as cost. SCOPF usually treats security level
1—*“secure” and level 2—*“correctively secure”, which are in
secure state. Level-1 security is the ideal operating requirement
but is more expensive than operating with a level-2 security.

Under the security level 1 corresponding to the preventive
mode, all loads should be supplied and no operating limits
should be violated in the event of a contingency. In other
words, level 1 has the ideal security, and a power system
survives any of the relevant contingencies without relying on
any post-contingency corrective action.

Under the security level 2 corresponding to the corrective
mode, any violations caused by a contingency can be corrected
by appropriate control action without loss of load, within a spec-
ified period of time [42].

Note that the contingency constraints model in SCOPF rep-
resents steady-state contingencies. So, the solution of SCOPF is
not assured to be transiently stable.

C. SCOPF Considering Voltage Stability (SCOPF-VS)

As mentioned in Section II-E, there are growing interests to
include voltage stability as constraints in RPP, since reactive
power compensation can increase voltage stability margin. Dif-
ferent from Sections II-E and II-F, which considers voltage sta-
bility in RPP objective functions, this section will discuss the
research considering voltage stability as constraints in RPP.

1) Voltage Stability Analysis (VSA) of Power Systems: Before
the discussion of voltage stability as constraints, it should be
helpful to review some analytical methodologies that have been
proposed and are currently used for voltage stability analysis
such as P-V and V-Q curve analysis, determination of how far
the system is operating from the PoC using continuation power
flow (CPF) [44] based on bifurcation theory [45], or OPF ap-
proach considering a given pattern of load increase and gen-
erator sharing [35]-[38]. It is demonstrated in [46] that bifur-
cation theory is basically equivalent to some typical optimiza-
tion-based methodologies. The computation of PoC can be for-
mulated as an optimization problem, known as total transfer ca-
pability (TTC).

Several computational methods based on bifurcation theory
have been shown to be efficient tools for VSA. However, it is
technically difficult to introduce operational limits and compu-
tationally expensive to use the continuation method, especially
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for large systems with multiple limits. Using optimization tech-
niques for these types of studies present several advantages, es-
pecially due to their capability to handle constraints.

2) Indirect Use of Voltage Stability Margin: Voltage stability
margin may be converted into several voltage stability indices,
which can be used to select weak nodes as new Var source lo-
cations or as candidate locations for the follow-up OPF process
[18], [47]. Ajjarapu, et al. introduce a voltage stability index [47]
from CPF method to serve as an indirect measure to indicate
the closeness to PoC from the present system load level, which
is defined as the ratio of variation of load parameter from CPF
and the voltage variation. The voltage stability index is used to
choose the weak buses in order to reduce the complexity by re-
ducing the candidate locations. Reference [17] uses sensitivity
method and voltage stability margin index to rank the locations
of the new Var source, but the result may be different. Then, par-
allel analytical criteria are employed in an analytic hierarchical
process (AHP) to accommodate the ranks.

In general, these approaches can be viewed as a suboptimal
solution for computational efficiency because it excludes some
scenarios through some indices related to voltage stability.

3) SCOPF-VS: Conventionally, SCOPF does not consider
the change of PoC after possible compensators are connected.
Thus, it is preferable to include the voltage stability con-
straints in the contingency states. This model is referred to as
SCOPF-VS.

References [35]-[38] incorporate a security margin (SM) as
the constraint for two reasons. First, this is to guarantee the volt-
ages at all buses lie within a predefined range at normal condi-
tion. Secondly, this is to ensure the operating point even after
contingency should be away from PoC at least by a pre-defined
“distance” measured in MVA, which is also called S-margin/
MVA-margin. Fig. 3 shows the PV curves before and after con-
tingency and the reduced SM at post-contingency.

It is not necessary to use a separate tool to calculate PoC.
Instead, two sets of constraints, one for normal operating state
and the other for critical state can be used in this model such
that the security margin of post-contingency satisfies the preset
secure distance.

The complexity of the voltage stability constrained model lies
in the requirement of having two sets of network variables and
power flow constraints corresponding to the “normal operation
point” and “PoC”. Reference [38] explores the use of statistical
linear/quadratic approximation function of the path of PoC as
shown in Fig. 4 as an alternative of the variables and constraints
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for PoC state. However, if we increase the number of candidate
buses, the procedure will involve evaluating a high number of
Var support configurations to capture the interaction of Var com-
pensators at different locations.

IV. MATHEMATICAL ALGORITHMS FOR REACTIVE
POWER PLANNING

In the previous two sections, the objective functions and the
constraints are discussed as the optimization formulation of
RPP. This section will discuss the mathematical algorithms
to solve the optimization-based RPP problem. The algorithms
may be classified into three groups: conventional optimiza-
tion methods including nonlinear programming (NLP), linear
programming (LP), and mixed integer programming (MIP);
intelligence searches such as simulated annealing (SA), evo-
lutionary algorithms (EAs), and and tabu search (TS); and
fuzzy set applications to address uncertainties in objectives and
constraints.

It should be noted that there are a number of optimization
solvers available such as MINLP solver DICOPT++ and NLP
solver MINOS. There are also high-level programming lan-
guage tools available such as GAMS, an optimization modeling
language that may be linked with many different solvers.

A. Conventional Methods

1) Linear Programming (LP): The LP-based technique
is used in [4], [5], [8], [11], [14], and [29] to linearize the
nonlinear reactive power optimization problem. The LP ap-
proach has several advantages. Firstly, it is reliable, especially
regarding the convergence properties. Secondly, it can quickly
identify infeasibility. Thirdly, it accommodates a large variety
of power system operating limits, including the very important
contingency constraints. Nevertheless, despite a number of ad-
vantages, its range of application in the OPF field has remained
somewhat restricted because of the inaccurate evaluation of
system losses and insufficient ability to find an exact solution
as opposed to an accurate nonlinear power system model.

2) Nonlinear Programming (NLP): To solve a nonlinear pro-
gramming problem, the first step in this method is to choose
a search direction in the iterative procedure, which is deter-
mined by the first partial derivatives of the equations (the re-
duced gradient). Therefore, these methods are referred to as
the first-order methods such as the generalized reduced gradient
(GRG) method [54].
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The successive quadratic programming (SQP) [19] and
Newton’s method [48] require the computation of the
second-order partial derivatives of the power-flow equa-
tions and other constraints (the Hessian) and are therefore
called second-order methods.

When applied to large-scale power systems, these NLP im-
plementations characteristically suffer from the following two
major problems.

* Even though it has global convergence, which means the
convergence can be guaranteed independent of the starting
point, a slow convergent rate may occur because of zigzag-
ging in the search direction.

» Different “optimal” solutions are obtained depending on
the starting point of the solution because the method can
only find a local optimal solution.

3) Mixed-Integer Nonlinear Programming (MINLP): The-
oretically RPP can be formulated as a MINLP optimization
method with integer variables with values of O or 1 to represent
whether a new Var source should be installed. Reference [3]
presents the recursive mixed-integer programming technique
using an approximation method. Reference [4] employs branch
and bound (B&B) method, which is a typical method for integer
programming. A decomposition technique is then employed in
[4] to decompose the problem into a continuous problem and
an integer problem.

Decomposition methods can greatly improve the efficiency
in solving a large-scale network by reducing the dimensions of
the individual subproblems. The results show a significant re-
duction of the number of iterations, required computation time,
and memory space. Also, decomposition allows the applica-
tion of a separate method for the solution of each subproblem,
which makes the approach very attractive. Benders decomposi-
tion method (BDM) is applied in [31] and [33].

B. Intelligent Searches

Recently, heuristic methods based on intelligent search have
been used in RPP to deal with local minimum problems and un-
certainties. Increasingly, these heuristic methods are being com-
bined with conventional optimization methods to solve the RPP
problem.

1) Simulated Annealing (SA): From a mathematical stand-
point, SA, as introduced by Kirkpatrick, Gelatt, and Vecchi, is a
stochastic algorithm aimed at minimizing numerical functions
of a large number of variables. It allows random upward jumps
at judicious rates to provide possible escapes from local energy
wells [55]. Therefore, it converges asymptotically to the global
optimal solution with probability one.

The two-layer simulated annealing (TLSA) [20], and the
hybrid expert system simulated annealing (ESSA) [21] are
proposed to improve the CPU time of SA while retaining
the main characteristics of SA. SA is combined with many
other approaches such as the genetic algorithm (GA) [12], the
e-constraint method [26], [34], the goal-attainment approach
[23], the weighted-norm approach [24], and the fuzzy logic in
[25] to deal with MO problems.

2) Evolutionary Algorithms (EAs): Natural evolution is a
population-based optimization process. An EA is different from
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conventional optimization methods, and it does not need to dif-
ferentiate cost function and constraints. Theoretically, like Sim-
ulated Annealing, EAs converge to the global optimum solution
with probability one. EAs, including evolutionary programming
(EP), evolutionary strategy (ES), and GA are artificial intelli-
gence methods for optimization based on the mechanics of nat-
ural selection, such as mutation, recombination, reproduction,
crossover, selection, etc. Reference [16] compares the three al-
gorithms, EP, ES, and GA for the same RPP model.

GA is used to select the location and the rating of the Var
source and SLP is used to solve operational optimization sub-
problems as a hybrid method in [5], [11], and [14]. GA is used
in [22] to handle the MO model.

3) Tabu Search (TS): The TS algorithm was first devel-
oped independently by Glover and Hansen both in 1986 for
solving combinatorial optimization problems [56]. It is an
iterative search algorithm, characterized by the use of a flexible
memory. It is able to eliminate local minima and to search areas
beyond a local minimum. TS is proposed in [7], [13] for the
optimal RPP problem.

C. Application of Fuzzy Set Theory

The data and parameters used in RPP are usually derived from
many sources with a wide variance in their accuracy. For ex-
ample, although average load is typically applied in RPP, the
actual load should follow some uncertain variation. In addition,
the cost of generators, Var compensators, and the peak power
savings may be subject to uncertainty to some degree. There-
fore, uncertainties due to insufficient information may generate
an uncertain region of decisions. Consequently, the validity of
the results from average values cannot represent the uncertainty
level. To account for the uncertainties in information and goals
related to multiple and usually conflicting objectives in RPP,
the use of fuzzy set theory may play a significant role in de-
cision-making.

A literature review of fuzzy set theory applied in power
systems is presented in [49]. This survey introduces the basic
principles of the theory, identifies problems suitable for fuzzy
sets, and applies general approaches from fuzzy set theory in
power system planning, operation, and control. Reference [25]
presents an approach to handle the uncertainty of different
goals, which is an important aspect related to MO optimization.
The fuzzy sets may be assigned not only to objective functions,
but also to constraints [50]-[52]. Also, the non-probabilistic
uncertainty associated with the reactive power demand in con-
straints is discussed with fuzzy sets in [50]. Generally speaking,
the satisfaction parameters (fuzzy sets) for objectives and con-
straints represent the degree of closeness to the optimum and the
degree of enforcement of constraints, respectively [50], [51].
With the maximization of these satisfaction parameters, real
power losses and Var cost are minimized, while enforcement
of voltage security is maximized simultaneously, considering
uncertainties [51].

Reference [53] applies the Bellman-Zadeh approach in de-
cision making for MO optimization in a fuzzy environment in
order to obtain harmonious solutions with equal or close levels
of satisfying criteria. Thus, solutions with high levels of satis-
fying criteria that are reached by low levels of satisfying other
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TABLE 1
MATRIX OF OBJECTIVES, MODELS AND SOLUTION ALGORITHMS FOR REACTIVE POWER PLANNING

Objective category OPF(26)

SCOPE(6) SCOPF-VS(4)

Min Var cost [2] IPA
3] Recursive MIP
4] SLP, B&B, PP

[5] SLP and GA

[29] SLP [35] NAG & APEXIV. SM
[36] GAMS/DICOPT++, SM
1371 GAMS/DICOPT++, SM

138] GAMS/DICOPT++, SM

[6] MINOS

171 TS

[8] SLP

9] EP

[10] HEP

[11] SLP, GA
[12] GA, SA
[13] TS

|50] Fuzzy logic
|51] Fuzzy logic

Min Var cost and real power losses

[30] SA
[31] BDM, PM/CM
[32] Recursive LP.PM

Min Var cost and generator fuel cost| [14] SLP and GA
[15] CBA, MINOS

[16] EP, ES. GA

[33] BDM, CM

Min _voltage deviation [17] NLONN, AHP

Max the minimum singular [18] SA
value of Jacobian matrix

Max P-margin [19] SQP

Min Var cost + real power [20] TLSA
loss + voltage deviation 121] ESSA

Min voltage deviation + [22] GA

generator Var deviation +
real power losses

Min Var cost + real power
losses + voltage deviation
+ line flow deviation

|34 |e-constraint method,
SA

Min real power losses+ Var source
cost + voltage deviation

& Max

voltage stability margin (S-margin)

23] Goal-attainment, SA
[24] weighted- norm, SA
[25] Fuzzy logic, SA

[26] e-constraint Method, SA

Min real power losses [27] SPEA
+ Var source cost

& Max PoC

Note:

AHP—Analytic Hierarchical Process
APEXIV—a software package
B&B—Branch and Bound
BD—Bender Decomposition Method
CBA—Cost Benefit Analysis
CM—-Corrective Mode
DICOPT++—MINLP solver in GAMS
EP—Evolutionary Programming
ES—Evolutionary Strategy
ESSA—hybrid Expert System Simulated Annealing
GA—Genetic Algorithm

GAMS—General Algebraic Modeling System, a modeling language

HEP—Hybrid Evolutionary Programming
IPA—Interior Point Algorithm

MIP—Mixed Integer Programming
MINLP—Mixed Integer NonLinear Programming

MINOS—a software package for large-scale linear and nonlinear optimization problems

NAG—Numerical Algorithm Group software package
NLONN—Nonlinear Optimization Neural Network
TS—Tabu Search

PM—Preventive Mode

PP—Parallel Processing

SA—Simulated Annealing Approach
SLP—Successive (Sequential) Linear Programming
SM—S Margin (MVA Stability Margin)
SPEA—Strength Pareto Evolutionary Algorithm
SQP—Successive (Sequential) Quadratic Programming
TLSA—Two-Layer Simulated Annealing

criteria can be avoided. This approach has been initially applied
to reactive power control and planning and may be explored fur-
ther in the future.

Fuzzy set theory enables the integration of the effects of pa-
rameters’ uncertainties into the analysis and offers a better com-
promised solution. In addition, it eliminates the need for many
simulation runs. The fuzzy set method offers the decision maker
with alternatives for selecting the Var location and Var size,

which utilities can employ to make decisions regarding reactive
power compensation in their systems.

V. CONCLUSIONS

This paper introduces the general background, objectives,
constraints, and solution algorithms of Reactive Power Plan-
ning (RPP). The technologies in the literature of RPP are
summarized in Table 1.
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In summary, RPP is typically solved with an optimization
model. The objective function may be the minimization of the
cost, which includes the Var installation cost, power loss cost,
and/or operation cost (generation fuel cost). For Var installa-
tion cost, the formulation of Cy + C - Q. includes a fixed cost
that may lead to the necessity of a binary variable to indicate
whether the Var compensator will be installed or not. Hence,
integer programming is needed in this case. With the ongoing
deregulation in power industry, it is probably more reasonable
to use Var cost + operation (generation fuel) cost as the objective
than to use Var cost + power loss cost, since fuel cost minimiza-
tion is typically applied in market operation and planning. In ad-
dition, the objective may consider some technical merits such as
minimization of voltage deviation from a given schedule, maxi-
mization of voltage stability margin, or a MO model considering
weighted sum of various costs and technical merits. It should
be noted that some alternative approaches in RPP address RPP
using sensitivity analysis based on various indices to avoid the
complicated optimization formulation with the trade-off in ac-
curacy. Not surprisingly, the sensitivity analysis may serve as a
pre-screening to filter some less competitive solutions and then
is combined with an optimization-based approach to find the
best solution.

Under the present status of congested transmission system in
the United States as well as many other power systems, the con-
straints should consider transmission security (or contingency).
Also, voltage stability should be considered in RPP since a
major goal of Var compensation is to improve voltage stability.
Certainly, each of these two considerations requires much more
computation effort in general. However, from a mathematical
standpoint, the major modeling challenge lies in voltage sta-
bility constraints because the potential Var compensation will
change the system voltage stability margin that in turn will
impact the generation dispatch. Hence, the challenge lies in
how to efficiently incorporate the expected new stability margin
into the optimization model of Var location and amount without
repeatedly running extra OPF or CPF to obtain the new voltage
stability margin after Var compensation. As a comparison,
the challenge of security constraints is mainly computational
rather than in modeling, because each contingency case can
be modeled in a way similar to the base case, although many
contingency cases must be included.

As a typical optimization problem, RPP may be solved with
classic optimization algorithms like LP, NLP, or MINLP. Due
to the nonlinearity of power systems, LP loses accuracy due to
linear assumptions. Consideration of nonlinear algorithms and
integer variables will make the running time much longer and
the algorithm possibly less robust. Newer algorithms based on
intelligent searches such as SA, EA, and TS can address the
integer variable very well. However, it is more heuristic than
conventional optimization techniques and needs further investi-
gation regarding performance under different systems. Another
interesting aspect is to include fuzzy set theory to model the un-
certainties in objective function as well constraints.
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