
Sparse Matrix Sparse Vector Multiplication using Parallel and Reconfigurable
Computing

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee

Kirk Andrew Baugher
May 2004

Dedication

This thesis is dedicated to my loving wife and our families for their motivation

and support, which has inspired me to push my goals higher and obtain them.

 ii

Acknowledgements

I wish to thank all of those who have helped me along my journey of completing

my Master of Science degree in Electrical Engineering. I would especially like to thank

Dr. Peterson for his patience, guidance, wisdom, and support for me in obtaining my

degree. I would like to thank Dr. Bouldin for exposing me to microelectronic design and

for serving on my committee. I would also like to thank Dr. Wong for his support and

guidance and also serving on my committee. In thanking Dr. Wong, I wish to also thank

him on behalf of the Joint Institute for Computational Science in Oak Ridge for making

all of this happen by their support through graduate school. Finally, I wish to thank my

peers who have encouraged and helped me make this all possible.

 iii

Abstract

The purpose of this thesis is to provide analysis and insight into the

implementation of sparse matrix sparse vector multiplication on a reconfigurable parallel

computing platform. Common implementations of sparse matrix sparse vector

multiplication are completed by unary processors or parallel platforms today. Unary

processor implementations are limited by their sequential solution of the problem while

parallel implementations suffer from communication delays and load balancing issues

when preprocessing techniques are not used or unavailable. By exploiting the

deficiencies in sparse matrix sparse vector multiplication on a typical unary processor as

a strength of parallelism on an Field Programmable Gate Array (FPGA), the potential

performance improvements and tradeoffs for shifting the operation to hardware assisted

implementation will be evaluated. This will simply be accomplished through multiple

collaborating processes designed on an FPGA.

 iv

Table of Contents
Chapter Page
1 Introduction..1

2 Background..4
2.1 Double Precision Floating-Point..4
2.2 Sparse Representation..6
2.3 Sparse Matrix Sparse Vector Multiplication..9
2.4 Field Programmable Gate Arrays ..11
2.5 Pilchard System ...12
2.6 Computing Platform...13

3 Analysis of Related Work..14
3.1 Floating Point Multiplication and Addition on FPGAs ...14
3.2 Sparse Matrix Vector Multiplication on FPGAs ...15
3.3 Sparse Matrix Vector Multiplication on a Unary Processor..................................16
3.4 Sparse Matrix Vector Multiplication on Parallel Processors.................................16
3.5 Sparse Matrix and Sparse Matrix Sparse Vector Multiplication18

4 Design Approach ...19
4.1 Assumptions...19
4.1.1 Limited IEEE 754 Format Support ..19
4.1.2 Use of Compressed Row Scheme..20
4.1.3 Sparse Matrix and Sparse Vectors ...20
4.1.4 Generic Design Approach..20
4.1.5 No Pre-Processing..21
4.1.6 Addressable Range...21
4.2 Analysis of the Problem...21
4.3 Analysis of Hardware Limitations ...22
4.4 Partitioning of the Problem..25
4.4.1 Transmission of Data ...26
4.4.2 Logic Flow...30
4.4.3 Comparing of Addresses..31
4.4.4 Multiply Accumulator..32
4.5 FPGA Design ...33
4.5.1 Pilchard System Interface ..37
4.5.2 State Machine...40
4.5.3 Comparators...45
4.5.4 Multiply Accumulator Interface ..51
4.5.5 Double Precision Floating-Point Multiplier and Adder...................................54
4.5.6 C code interface ...57

5 Results ..63
5.1 Comparison of Results...63
5.2 Difficulties ...76

 v

5.2.1 Pcore Interface ...76
5.2.2 Memory and I/O Constraints ...77
5.2.3 Logic Glitch ...79

6 Conclusions and Future Work ...81
6.1 Hardware Improvements..81
6.2 FPGA Architecture Improvement..83
6.3 Algorithmic Improvements..84
6.4 Future Applications..87
6.5 Conclusion ...88

References ..91

Appendices...94

Vita...206

 vi

List of Tables
Table Page
2.1 Floating-Point Value Range...5

 vii

List of Figures
Figure Page
2.1 Floating-Point Representation ...4
2.2 Irregular Sparse Matrix ..6
2.3 Structured Sparse Matrix ...6
2.4 Sparse Matrix ...7
2.5 Sparse Vector ...8
2.6 Sparse Matrix Sparse Vector Multiplication..10
2.7 Sparse Vector Multiplication ...10
2.8 Pilchard System ...13
4.1 Memory Bus to Pilchard: Behavioral View...23
4.2 Basic Architecture..26
4.3 FPGA Design Flow..35
4.4 Design Overview on FPGA ...36
4.5 Detailed Architectural View of Sparse Matrix Sparse Vector Multiplier..............38
4.6 Pcore ..39
4.7 FPGA State Machine ...41
4.8 Comparator System..46
4.9 Dynamic Scheduler Before any Matches...47
4.10 Dynamic Scheduler After 3 Matches...48
4.11 Dynamic Scheduler After Another 3 Matches...48
4.12 Fourteen Bit Hit Vector ...49
4.13 Fifty-six Bit Hit Vector..50
4.14 Hit Vector with Over Bit..50
4.15 MAC Interface ...51
4.16 Floating-Point Multiplier Flow Chart ..56
4.17 Floating-Point Adder Flow Chart ..58
4.18 C Code State Machine ...60
5.1 Data Set Performances...65
5.2 Data Set Performances (Log Scale) ...65
5.3 Performance to Hits ...66
5.4 Performance to Hits (Log Scale)..67
5.5 CPU Compares to Performance ...68
5.6 CPU Compares to Performance (Log Scale) ...68
5.7 Performance to Psi ...69
5.8 Performance to Psi (Log Scale) ...70
5.9 Nonzero to Performance ..71
5.10 Nonzeros to Performance (Log Scale)...71
5.11 Vector Loads to FPGA Performance ...72
5.12 Compares per Dataset ..73
5.13 Compares per Dataset (Log Scale) ..74
5.14 Percentage of Theoretical MFLOPS Achieved..75
5.15 Percentage of Theoretical MFLOPS Achieved (Log Scale)..................................75

 viii

Chapter 1

Introduction

 The implementation of sparse matrix sparse vector multiplication on a

reconfigurable computing platform provides a unique solution to limitations often

encountered in software programming. Typical software programming languages such as

C, C++, and Fortran are usually used in scientific computing applications. The drawback

to using such software languages as the primary method of solving systems or systems of

equations is due to the fact that they are all executed in a sequential fashion.

 Many applications based on software languages such as C, C++, or Fortran can all

be implemented in some fashion on parallel machines to help improve their performance.

This can be accomplished using parallel platforms such as MPI [1] or PVM [2]. While

using these parallel tools to implement sparse matrix sparse vector multiplication can

improve the computational performance, a cost is paid for communication over the

network of parallel machines. In addition to the parallel communication cost, efficiently

distributing the workload between machines can be challenging. When designing parallel

architectures, the problem must be broken down into the ideal granularity to distribute

between machines to achieve the best possible load balance. Unfortunately, if the sparse

matrix is structured and that structure is unknown before designing the system, there is no

way of achieving optimal load balance without dynamic scheduling of tasks. While

dynamic scheduling may then improve performance, its overhead also cuts into

performance.

 1

 In this thesis, the focus will be towards the performance of one processor

accompanied by an FPGA compared to a stand-alone processor. The limited focus of

performance comparisons is due to two reasons: the complexities of designing a parallel

computer architecture specifically for this comparison is too costly, and if the FPGA

assisted processor yields better performance versus one processor, then the scaling factor

of both systems to parallel machines could debatably be equivalent provided that

identical parallelization schemes benefit both designs equally.

 The type of data supported for the sparse matrix sparse vector multiplication is

double precision floating-point. This data type corresponds to usage for real scientific

applications using sparse matrix sparse vector multiplication as scientific computations

are typically concerned about data precision and accuracy. This way more reasonable

performance measures can be obtained for actual computation times providing a level of

realism and not just theoretical or simulated results. The particular format for the double

precision floating-point type values used is the IEEE 754 standard [3]. The IEEE

standard is recognized worldwide and is a logical choice for use as a standard to represent

the floating-point values used here. The difficulty in using double precision floating-

point format is the bandwidth that the data type commands as it uses 64-bits to represent

one piece of data putting a strain on I/O and memory.

 The following chapter will provide background into the IEEE 754 floating-point

standard representation, floating-point multiplication and accumulation, sparse matrix

and sparse vector representation, FPGAs, the Pilchard System [4], and the computer

system used. The remaining chapters will discuss areas of related work, the overall

 2

design approach, results, future work, and conclusions describing the successes and

difficulties of this design approach.

 3

Chapter 2

Background

2.1 Double Precision Floating-Point

For double precision floating-point data the IEEE 754 format was utilized. It is

important that format be defined as it has implications for the double precision values’

representation in C to its binary representation in memory and in the FPGA. This format

then ensures compatibility so long as the compiler used for the software code supports the

IEEE 754 double precision floating-point standard.

The double precision standard calls for values to be represented by a specific 64-

bit structure. As can be seen in Figure 2.1 below, the binary structure is broken up into

three sections, the sign bit, exponential bits, and fraction bits. The exponential bit range

is 11-bits in width while the fraction is represented by 52-bits of precision. The exponent

is biased by 1023, i.e. if the exponent field equals 1023, the value’s actual exponent

equals 0.

 s – sign bit

 e – exponential bits

 f – fraction bits

s
m

e f
1 11 52 …widths

sb lsb lsb msb
…order

Figure 2.1 - Floating-Point Representation

 4

Table 2.1 - Floating-Point Value Range

e f Value

e = 2047 f ≠ 0 NaN

e = 2047 f = 0 (-1)s∞

0 < e < 2047 Don’t care (-1)s 2e-1023(1•f)

e = 0 f ≠ 0 (-1)s 2-1022(0•f)

e = 0 f = 0 0

Depending on the value of the three components, the value of the floating-point

number is determined by Table 2.1. In general the formula used to represent a number

from its binary floating-point representation is

V =(-1)s • 1.{[f(22)22 + f(21)21 + … + f(0)0] • 2-23} • 2(e-1023)

The leading 1 is an implied 1 that is added to the exponent. An example of going from

scientific notation to binary floating-point representation is below:

If converting 1.1e1 to its 64-bit double precision floating-point value

1. Convert 1.1e1 to its decimal representation = 11

2. Convert 11 to its binary representation = 1011

3. The leading bit is the implied 1 automatically added to the exponent,

therefore move the decimal left just to the right of the leading 1

= 1.011

4. Since the decimal was moved 3 times, e = 3

5. Add the bias of 1023 to e and convert to binary = 10000000010

 5

6. Now the

f = 011000

and it is positive so s = 0

7. v =

0 10000000010 011000

2.2 Sparse Representation

Sparse matrices or vectors can be defined as a matrix or vector that is sparsely

filled with nonzero data. So for example, a matrix may have only 10% of its elements

filled with nonzeros. Due to this large amount of nonzero values, it is not practical to

spend time operating or accessing zeros; therefore, special methods or representations

have been designed to compress their storage of data. In short, sparse matrices and

vectors can be described such that; given the number of elements in the matrix or vector

that are zero, the use of special measures to index the matrices or vectors becomes ideal

[5]. Some sparse matrices can be structured where the data appears to have some sort of

pattern while other sparse matrices are irregular and therefore have no pattern. By

viewing the following two figures, Figure 2.3 has a diagonal pattern while Figure 2.2 has

no such pattern.

 1 2 2
 8 7 1
 10 11
4 4
 9 7 5
 3 3 7

Figure 2.2 - Irregular Sparse Matrix Figure 2.3 - Structured Sparse Matrix

 6

10 4 -1
-4 9 -1
 8 3 -1
1 -3 7
 1 6 2
 1 -2 5

Figure 2.4 - Sparse Matrix

Because these structures are filled with a high percentage of zeros, it is best to use

a format to only represent the nonzero values so time and memory space are not wasted

on processing or storing zeros. Some popular formats for storing sparse matrices and

vectors are the Compressed Row, Compressed Column, and Coordinate Storage Schemes

(CRS, CCS, CSS) [6]. The matrix in Figure 2.4 above would have the following

representations for these three schemes:

Compressed Row Scheme
Val(i) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
Col(i) = (0,2,3,0,1,4,1,3,5,0,2,5,1,4,5,2,4,5)
Rowptr = (0,3,6,9,12,15,18)

Compressed Column Scheme
Val(i) = (10,-4,1,9,8,1,4,-3,1,-1,3,-1,6,-2,-1,7,2,5)
Row(i) = (0,1,3,1,2,4,0,3,5,0,2,1,4,5,2,3,4,5)
Colptr(i) = (0,3,6,9,11,14,18)

Coordinate Storage Scheme
Val(i) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
Row(i) = (0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5)
Col(i) = (0,2,3,0,1,4,1,3,5,0,2,5,2,4,5,2,4,5)

The Coordinate Storage Scheme is a typical representation of a matrix with the

data represented from left to right and top to bottom in three storage arrays. The arrays

hold the column, row, and values each. The Compressed Row Scheme stores the values

 7

and column addresses in two separate arrays in the same order as the Coordinate Storage

Scheme, except the row pointer, or “Rowptr”, array stores the index of the first number in

each row of the value array. As can be observed, less storage room is necessary when

using the row pointer array versus a full row array as in the Coordinate Storage Scheme.

This can become very important as the number of data become large. The Compressed

Column Scheme works like the Compressed Row Scheme except that values are stored

with respect to column order, the row values are stored in an array, and it has a column

pointer array instead of row pointer array.

 The most popular storage format typically used with sparse matrix sparse vector

multiplication is the Compressed Row Scheme as it lends itself well to coding and

memory access for improved performance with respect to this problem. An advantage of

using these schemes is that pointer indexing can be used for the arrays, which is faster for

indexing large arrays than actual array indexing if programming in C. Because of this

advantage, linked lists are usually not used with large arrays.

Storage for a sparse vector is simpler than for matrices because it only requires

two arrays to store information instead of three. One array stores the values while the

other array stores the value’s vector address. This can be seen in Figure 2.5 below.

 1 Val(i) = (1,2,3)
 Row(i) = (0,3,4)

 2
 3

 Figure 2.5 - Sparse Vector

 8

2.3 Sparse Matrix Sparse Vector Multiplication

Sparse Matrix Sparse Vector Multiplication is simply the multiplication of a

sparse matrix by a sparse vector. The general format follows typical matrix vector

multiplication except that it would be a waste of time to multiply zeros by any number.

Figure 2.6 illustrates this dilemma. To handle this implementation, a storage scheme is

used to hold the data for the sparse structures. Due to the storage scheming, matrix

vector multiplication is no longer a straightforward operation. The column address of the

current row of a matrix being multiplied must correspond with an existing row address of

the vector. If there is a match, then the two corresponding values can be multiplied

together. This situation can be observed in Figure 2.7. If the first row of the sparse

matrix from Figure 2.4 was multiplied by the sparse vector in Figure 2.5, the resulting

answer would be 10*1 + -1*2 = 8. The C code to implement this was derived from the

algorithm for sparse matrix vector multiplication, where the vector is dense and

Compressed Row Scheme is used. The col(j) array is the column address array for the

sparse matrix and directly maps to the matrices matching value in the dense vector.

Do I = 1 to number of rows
 Sum(I) = 0
 Do j = Rowptr(I) to Rowptr(I+1)-1
 Sum(I) = Sum(I) + matrix(j)*vector(col(j))
 End Do
End Do

Because the vector is sparse in the case of this thesis, the matrix value’s column

address must be compared to the vector’s row address and cannot be directly mapped as

above. If the matrix address is less than the vector address, then the next matrix value’s

address needs to be compared. If the matrix value’s address is greater than the vector

 9

Figure 2.6 - Sparse Matrix Sparse Vector Multiplication

Figure 2.7 - Sparse Vector Multiplication

Matrix Vector

X

900 7.1e1

100

Vector

Vector

X
Address

Data

Address Data

1 5 100 205 278 567 610 891

1e1 2e2 5.1e2 1.1e2 7.4e1 .1e0 8.9e3 9.1e4

0

7

150

333

610

761

2.1e1

1e3

4.1e1

1e2

3.2e3

1e0

7.6e1

2

 10

address’, then the next vector value’s address must be retrieved. If they both match, then

they are obviously multiplied together. This algorithm can be seen in the Appendix B

and is the C code that will be compared against the FPGA assisted processor.

The large amount of comparing necessary to implement the sparse matrix sparse

vector multiplication is where the sequential nature of software programming becomes a

weakness. Unfortunately for this algorithm, no optimization exists for an implementation

used for both structured and irregular sparse matrices. Specific algorithms can be created

for the optimization of structured sparse matrices but such an approach is beyond the

scope of this thesis. The critical question however is how often do address matches

typically occur; however, this cannot be answered unless the sparse matrix and vector

formats are known in advance, which affects the load balance of the problem.

2.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays or FPGAs are prefabricated rows of transistor

and logic level gates attached to electronically programmable switches on a chip. To

program an FPGA, many different tools exist to accomplish such a task. Typically a

Hardware Description Language (HDL) is used to describe the behavioral and register

transfer level (RTL) of the FPGA. VHDL or Verilog are the two most popular used

hardware description languages. Programming an FPGA involves the development of

“processes”. A process is essentially a set of digital logic that continuously runs.

Creating multiple processes on one FPGA in essence creates a parallel architecture on a

chip that handles information on a bit or signal level. The ability to create multiple

processes all running simultaneously sharing and computing information on a bit level

gives FPGAs the capability to handle the processing of specific problems efficiently. The

 11

more gates or transistors that are on one FPGA, the more data an FPGA can process at

one time. Because FPGAs are electronically reprogrammable, designs can quickly be

loaded, erased, and upgraded provided that designs have already been developed. Due to

the portable nature of HDLs, HDL designs can be used on many different FPGAs.

The use of FPGAs when improving existing problems is usually targeted to

exploit any and all redundancy and maximize parallelism through multiple processes.

This allows the use of FPGAs to out perform software programs where processing large

amounts of redundant information or parallelism can be exploited. Depending on the

complexity of the design, interfacing and synchronizing multiple processes can be

difficult. If used correctly, FPGAs could demonstrate beneficial performance

improvements.

2.5 Pilchard System

The Pilchard System [4] is an FPGA based platform that was developed by the

Chinese University of Hong Kong to add FPGA functionality to an existing computer.

While other systems that add FPGA functionality to computers utilize the PCI bus of a

computer to interface with an FPGA, the Pilchard System uses the memory bus.

Essentially an FPGA has been placed on a board which fits into a DIMM memory slot on

a computer and can be accessed using special read and write functions in C as if writing

and reading to and from the computer’s main memory. The advantage the Pilchard

System provides is the use of the faster memory bus over the slower PCI bus, which

allows for higher communication speeds in data processing.

The Pilchard System has a relatively light interface that helps HDL programmers

spend less time learning the system and allows for more room on the FPGA to be

 12

Figure 2.8 – Pilchard System

utilized. The Pilchard System in use has a Xilinx Virtex 1000-E FPGA on the board.

Figure 2.8 is a picture of the Pilchard System.

2.6 Computing Platform

The computing platform used to compare performance between the FPGA

assisted computer and the computer performing the software-only sparse matrix sparse

vector multiplication, were kept the same. The computer system used has a 933 MHz

Pentium III processor with a 64-bit memory bus of 133 MHz that the Pilchard System has

access to. The operating system is Mandrake Linux version 8.1 with a Linux kernel no

later than version 2.4.8. The C gcc compiler is version 2.96 and the C library version is

Glibc 2.2.4.

 13

Chapter 3

Analysis of Related Work

3.1 Floating Point Multiplication and Addition on FPGAs

In the early stages of FPGA development and usage exploration, it was deemed

that FPGAs were not suitable for floating-point operations. This was mainly due to the

low density of early FPGAs being unable to meet the high demands of resources by

floating-point operations [8]. Floating-point operations involve separate processes to

handle the exponents, sign values, and fractions. These operations must normalize

portions of the floating-point data as well.

Shirazi, Walters, and Athanas [8], demonstrated that FPGAs became a viable

medium for floating-point operations in 1995 as Moore’s Law had time to alter the FPGA

landscape. Designs were created that supported eighteen and sixteen floating-point

adders/subtractors, multipliers, and dividers. Shirazi, et al., reported tested speeds of 10

MHz in their improved methods for handling addition/subtraction and multiplication all

using three stage pipelines. The multiplier had to be placed on two Xilinx 4010 FPGAs.

Seven years later in 2002, Lienhard, Kugel, and Männer [9] demonstrated the

ability of current FPGA technology of that time and its profound effect on floating-point

operations conducted on FPGAs. Essentially Moore’s Law had continued to provide

greater chip density as faster silicon was being produced. These authors reported design

frequencies ranging from 70 to 90 MHz for signed addition and 60 to 75 MHz for

multiplication.

 14

In comparing the improvements in floating-point calculations over the last several

years, it as become apparent that floating-point operations can be done efficiently and

effectively thus lending them for co-processor uses.

3.2 Sparse Matrix Vector Multiplication on FPGAs

Sparse matrix vector multiplication is the multiplication of a sparse matrix and a

dense vector. Minimal work has actually been documented in applying this to FPGAs.

The need always exists for faster methods of handling sparse matrix vector

multiplication; however, the lack of information involving FPGA implementations leads

to minimal information regarding possible future implementations.

ElGindy and Shue [10] implemented a sparse matrix vector multiplier on an

FPGA based platform. In their research they used the PCI-Pamette, which is a PCI

board, developed by Compaq that houses five FPGAs with two SRAMs connected to two

of the FPGAs. The implementations explored used one to three multipliers and the

problem is described as a bin-packing problem. The bin-packing side of the problem is

handled by preprocessing on the host computer and the constant, or vector values are

stored before computation times are observed. When comparing results obtained, the

single multiplier is outperformed by the other two methods and by software. All of the

execution times grew quadratically as the size of the matrix grew, giving the performance

an O(n)2 appearance. The dual multiplier saw results close to that of the software

multiplier and the triple multiplier showed some improvements in performance over the

software multiplier. Performance was measured in clock ticks with the triple multiplier

taking roughly 200 clocks, the software and dual multipliers were around 50% slower and

the single multiplier was almost 4 times as slow as the triple multiplier. How these

 15

multipliers are developed is not discussed in any detail. The performances of the FPGA

based implementations are only given for the core multiplication. No information is

provided as to how the preprocessing times affect results and if preprocessing is also

done for the software version.

3.3 Sparse Matrix Vector Multiplication on a Unary Processor

Sparse matrix vector multiplication on a single processor is widely used in

scientific computing, and circuit simulations among various other fields. Even though

the use of sparse matrix vector multiplication varies widely across industries, the basic

form remains unchanged. Wong [6] provides a simple model to compute sparse matrix

vector multiplication in compressed row storage and compressed column storage formats.

The very same format can be seen in multiple resources found through Netlib.org [11], a

major website that provides vast amounts of efficient computing algorithms in various

programming languages. The formula driving this algorithm was previously mentioned

in section 2.3 in compressed row storage. This algorithm simply uses a column address

(assuming compressed row storage) from the sparse matrix to pull the appropriate vector

data out for multiplication and accumulation, and can be performed in O(n) time where n

represents the number of nonzero elements in the sparse matrix. No more efficient

implementation of this algorithm has been found for sequential designs.

3.4 Sparse Matrix Vector Multiplication on Parallel Processors

Implementing sparse matrix vector multiplication on parallel processors has been

done with success. In general, the problem is distributed by rows of the sparse matrix

across the parallel processors. Wellein et al [12] demonstrated that use of parallel

 16

machines could provide performance improvements that improve linearly with the

number of processors added to the overall design. Performance was measured in

gigaflops. Some of the machines that were used were vector computers and current

supercomputers such as SGI Origin3800, NEC SX5e, and Cray T3E to name a few.

Gropp, et al., [13] provide ways of analyzing realistic performance that can be

achieved on processors and parallel processors by simply evaluating the memory bus

bandwidth available. They simply state that the sparse matrix vector multiplication

algorithm is a mismatch for today’s typical computer architecture as can be seen by the

low percentage of performance observed to peak performance available by processors.

Geus and Röllin [14]evaluated the problem to improve eigenvalue solution

performance. Eigenvalue problems can compute sparse matrix vector multiplication

“several thousand times” for large sparse matrices and thus take up “80 to 95% of the

computation time.” Performance speedup was achieved by “pipelining the software” by

forcing the compiler to prefetch data. Matrix reordering and register blocking found

some additional improvements as well. The additions help improve performance in an

assisted sense. The same preprocessing techniques can be implemented in applying

designs to an FPGA. What makes Geus and Röllins’ research applicable is their

application of their parallel implementation on more standard parallel computing

platforms. The workload was again distributed by rows, more specifically in this case,

blocks of rows per processor. Performance improvements were seen from 48% (DEC

Alpha) to 151% (IBM SP2). These results also demonstrated that the inherent problem

scales well.

 17

3.5 Sparse Matrix and Sparse Matrix Sparse Vector Multiplication

Virtually no resources are available in this area for reference, let alone discovery;

however, the need exists for scientific computations. These computations are used in

Iterative Solver [15] methods, Eigenvalue problems [6], and Conjugate Gradient methods

[6]. Khoury [15] also stated the lack of existing information regarding this area. Khoury

needed sparse matrix multiplication in solving blocked bidiagonal linear systems through

cyclic reduction. Khoury had to develop a sparse matrix multiplication method due to

being unable to find resources supporting such areas. Unfortunately, Khoury’s results

were skewed due to compilers unoptimizing the design and the heap not being cleaned

appropriately.

Sparse matrix multiplication is an area of interest; however, due to the very core

of its operation being sparse vector multiplication. Sparse vector multiplication is also

the basis behind sparse matrix sparse vector multiplication. Sparse matrix sparse vector

multiplication can then be looked as a core component of sparse matrix multiplication. In

speeding up sparse matrix sparse vector multiplication, sparse matrix multiplication can

be sped up as a result.

 18

Chapter 4

Design Approach

 The flow of the design process involves making assumptions and providing an in-

depth analysis of the problem. In observing the big picture considering sparse matrix

sparse vector multiplication running in software on a stand-alone processor, the biggest

possible limitation was considered to involve the sequential compares. Due to this

observation, the FPGA design was built around the parallelization of the compares and

the supporting components. The following sections will discuss the assumptions made,

analysis of the problem, analysis of the hardware limitations, detailed partitioning of the

problem, and design of the implementation on a FPGA.

4.1 Assumptions

To help constrain the problem to reasonable limitations to allow for an effective

implementation of sparse matrix sparse vector multiplication, some necessary

assumptions are required. All assumptions made apply to both the HDL and to the C

algorithm used except where an assumption can only apply to the HDL.

4.1.1 Limited IEEE 754 Format Support

In the design of the floating-point multiplier and accumulator, support is not given

to all features of the standard. The floating-point multiplier and adder can at the least

handle, NaN, zero, and infinite valued results but that is all. Neither of the two support

rounding, invalid operations, or exceptions including the handling of underflow and

overflow. Overflow should not be an issue since rounding is not supported. Invalid

operations are those such that there is a divide by zero, magnitude subtraction by

 19

infinites, and an operation involving a NaN among other scenarios. A full list can be

found in the IEEE 754 Standard.

4.1.2 Use of Compressed Row Scheme

The assumption is made that all sparse matrices used are formatted using the

Compressed Row Scheme. This is so there are no discrepancies in performance of data

that use different storage format schemes. This constraint also helps simplify the design

process by limiting the support to one input format. The storage scheme will be

combined with only using the C programming language to eliminate performance

discrepancies across various programming languages.

4.1.3 Sparse Matrix and Sparse Vectors

It is assumed that the design involved in this scope of work is to improve

performance of sparse matrix sparse vector multiplication. All matrix and vector

structures that are not sparse will not have competitive performance results as that is out

of the design scope; however, the ability for dense matrices and vectors to be solved will

be available. This is necessary as a portion of a sparse matrix and sparse vector

multiplication could have the potential of appearing dense. Since this possibility is

supported, dense matrix vector multiplication can be accomplished but with a significant

cost in performance. Dense matrices and vectors are still expected to conform to the

Compressed Row Scheme.

4.1.4 Generic Design Approach

In the consideration and design of this sparse matrix sparse vector multiplication

algorithm, a general approach towards the possible sparse matrix structure is assumed.

Due to the vast types of structured sparse matrices, many designs would be necessary to

 20

cover them all. This design is to have the capability to solve any type of sparse matrix.

This also makes the assumption that no optimizations are made towards any particular

sparse matrix structure such that it might reduce the performance of a different structured

sparse matrix.

4.1.5 No Pre-Processing

It is also assumed that no pre-processing of matrices or vectors will take place. It

is recognized that pre-processing of sparse matrices and even sparse vectors can help

improve performance; however, the implementation would then be constrained to one

particular type of sparse matrix sparse vector multiplication. That would defeat the

purpose of not optimizing for any one particular type of sparse matrix structure.

4.1.6 Addressable Range

The addressable range for data will be limited by 32-bits in any one particular

dimension. This means the potential address span of a matrix could be 4,294,967,296 by

4,294,967,296. The vector address range must also be able to support up to a 32-bit

address value.

4.2 Analysis of the Problem

In analyzing the overall problem to solve the multiplication of sparse matrices

with sparse vectors, one key critical area appears to allow for the most improvement

given the sequential nature of the C programming language. This important area is the

penalty paid by the C program if the address values for a matrix and vector value do not

match. When this occurs, the program must then begin searching through the next

address values of the matrix or vector, comparing the addresses one-by-one until a match

is found or no match can exist. This searching adds another nested for loop to the

 21

algorithm thus creating a potential O(n3) worst case scenario to solve the matrix vector

multiplication. It is this main point that the FPGA design will focus upon.

As mentioned earlier, the sequential nature of the C code prevents the algorithm

from handling concurrency in the processing of a piece of data multiple times at once.

The more parallelism that can be explored and put to use in the FPGA design, the greater

the benefit can become for using an FPGA.

4.3 Analysis of Hardware Limitations

The hardware limitations imposed by the equipment being used is important to

mention, because it ultimately has a significant impact on the overall design. Limitations

can be found on the FPGA, Pilchard System, Memory Bus, and Computer system used

with the underlying theme of memory limitations.

The FPGA used, the Xilinx Virtex 1000-E, has its own limitations being

resources. This FPGA part has approximately 1.5 million gates, 12,288 slices and 4Kbits

of block RAM. While this may appear like plenty, the double precision multiply

accumulator uses 26% of the available slices, 18% of the FF Slices, 21% of the LUTs,

and 120,000 gates. If using Dual Port RAM [16] IP from Xilinx to hold data leaving and

entering the Pilchard System as is customarily done, that will cost over 70,000 gates.

Very quickly 20-25% of the FPGA’s resources have been used as an absolute minimum

for the sparse matrix sparse vector multiplication design to work with. While the design

will likely fit, room for improvements like adding an additional adder or even multiply

accumulator will become difficult if not impossible. Another issue regarding limitations

of the current FPGA is its age. The Xilinx part being used is becoming obsolete, as there

are much larger and faster FPGA parts available today. While how a design is created in

 22

 23

Memory Bus

SMSV

Pcore
Pilchard

HDL has the largest effect on overall system speed, that overall system speed is limited

by the speed of the logic available on the FPGA itself. If a faster and larger chip were to

be available the design would have better performance as more parallel compares could

also fit. The effects the FPGA size and speed has on the overall design will be explored

further in the Results, and Conclusions and Future Work Chapters.

The limitations of the Pilchard System’s interface affect the overall I/O bandwidth

of the FPGA system. Figure 4.1 below displays a behavioral view of the memory bus

and Pilchard connection. It is highly unlikely that the sparse matrix sparse vector code

design will run at the Pilchard interface’s top speed; therefore, it only makes sense to run

the sparse matrix sparse vector multiplication code at half the Pilchard System’s speed.

This way for every 2 clocks cycles of the Pilchard, the sparse code can work on twice the

amount of data as it would have been able to if it could have worked at twice the speed.

Figure 4.1 - Memory Bus to Pilchard: Behavioral View

This then puts more pressure on the Pilchard System’s interface to operate at a higher

speed since the code beneath it will be running at half that. Unfortunately, simply

passing information through the Pilchard at its top speed of 133MHz is too difficult for it

to handle. This makes the target top speed for the code underneath it (likely limited by

the floating-point unit speeds) slower than hoped. Due to the Pilchard operating at twice

the clock speed as the sparse operating code, the Pilchard then needs to read in 2 64-bit

values from the memory bus in two clock cycles so that it may send 128-bits for every

sparse code clock cycle. Although the code to handle this is relatively straightforward

and not very complicated, producing results that operate allow the Pilchard to operate at

100Mhz will remain a challenge.

An additional limitation of the Pilchard System is the lack of onboard RAM or

cache. This requires that the Pilchard then take the time to access main memory, which is

costly, while the C code has the benefit of being able to take advantage of cache. If the

Pilchard Board were to have onboard RAM and/or cache, the entire vector and extremely

large portions of the matrix could quite possibly be stored right on the board itself, saving

the Pilchard System and sparse matrix sparse vector code time in having to constantly use

and compete for the memory bus for data.

Another major limitation is the memory bus itself. The memory bus operates at

133 MHz and is 64-bits wide; therefore only 1 double precision floating-point value can

be passed per bus clock cycle. This will put a significant strain on the memory bus as

potentially thousands to hundred of thousands of double precision values will be passed

along the memory bus alone, not to mention all of the 32-bit address values that need to

be compared. Two 32-bit address values can be passed per clock cycle.

 24

4.4 Partitioning of the Problem

With the necessary assumptions made, analysis of the problem completed, and

hardware limitations explored, the problem can then be partitioned. When partitioning a

problem four main factors need to be considered to achieve the best possible load

balance. These factors are decomposition, assignment, orchestration, and mapping [17].

Decomposition involves exposing enough concurrency to exploit parallelism, but not too

much such that the cost of communication begins to outweigh the benefits of parallelism.

Assignment considers the assignment of data to reduce communication between

processors and balance workload, and efficiently interfacing parallel processes is what

orchestration entails. This means reducing communication through data locality,

reducing synchronization costs, and effective task scheduling. Mapping is simply

exploiting existing topology and fitting as many processes on the same processor as

effectively possible.

Altering one of these attributes of a parallel design effects the other attributes.

Ideally some sort of complete balance is achieved between them all. These attributes will

be addressed specifically or implied as the problem is partitioned in the subsequent

sections. The greater the understanding of both the software and hardware issues, the

more effective the partitioning process can be, which leads to a more complete design.

The decomposition and mapping stages are essentially predetermined due to hardware

limitations and data format already being determined. The data has already been

decomposed into 64-bit double precision floating-point values and 32-bit address values.

The only other area of decomposition is in the parallel comparators, which is attempting

to create the maximum number of parallel compares on the FPGA. As for mapping, the

 25

goal is for the entire sparse matrix sparse vector architecture to fit on the FPGA chip

provided. The problem will be analyzed with the flow of data as it moves from the

memory bus to the FPGA to the multiply accumulators. Figure 4.2 provides a general

architecture for the possible design.

4.4.1 Transmission of Data

The transmission of data encompasses several different issues. Those issues

include the transmission and storage of the sparse vector, sparse matrix, answers, and any

handshaking if necessary.

In the handling of the sparse vector, consideration must be given towards either

the storage of the vector addresses and vector data, or just the vector addresses. Because

the vector is constantly reused throughout sparse matrix sparse vector multiplication, it

Comparator

MAC

R
A
M

R
A
M

VectorMatrix

Figure 4.2 – Basic Architecture

 26

only makes sense to store the vector information and not resend the same information

repeatedly. In determining how much of the sparse vector to store, as much as

reasonably possible should be stored due to the large amount of reuse in the comparison

of matrix column addresses and vector addresses. If only the vector addresses are stored,

it would result in a reduced overhead for storing the vector data; however, it would cost

more to send the vector value when a match is repeatedly found for one vector location.

Consideration could also be given to storing vector values only after a match is found

instead of storing them when they may or may not be needed. The cost for sending the

vector data when needed would ideally be the same as sending the value before knowing

if it is needed. This way unnecessary resources are not spent in transmitting vector

values that will never be needed. The downside to following this path is that the

complexity to handle this format would be increased on both the FPGA side and

supporting C code. Additional logic would be needed to determine if the vector value

exists and how to handle the request of it. The space would have to be available to store

all possible vector values for each address stored so there would be no benefit in memory

reduction, only in overall performance so long as the extra complexity does not negate

the benefits. Both vector address and value could be stored, with the convenience of

having all necessary vector data available at the cost of memory usage. Registers are

inexpensive on an FPGA and thus a large number of vector data could be stored to make

the additional overhead cost worthwhile.

After determining the storage scheme for the sparse vector, it is more than likely

that the entire vector will not fit all at once on the FPGA. This makes the decision of

 27

how to store the sparse vector even more important because the more often a new section

of the vector is stored, the more often the vector loading overhead will be incurred.

When sending matrix information over the memory bus to the FPGA, similar

issues are encountered as with the vector transmission, which was determining whether to

send matrix values with the addresses, or just the addresses alone. If matrix addresses

were accompanied by their values, then those values would be readily available to begin

multiplication. If the values were not needed, they would simply be discarded. The

downside to sending the values with addresses is that if the values are not needed then

time was wasted on the bus sending the information. The less matches there are per

compare, the more costly. If considering sending the addresses alone, after a match is

found the matrix value could be requested by the FPGA. While this format may reduce

the waste of matrix value transmissions, some form of handshaking would have to be

introduced to notify the C code what values need to be sent. Unless performed cleverly,

handshaking could be costly and it disrupts any notion of streaming data to the FPGA.

The final area to evaluate in data transmission is how data is transmitted over the

memory bus itself. This partly depends on the storage scheme of vectors and how matrix

information is processed. In regards to sending vector information to the FPGA, if both

vector values and addresses are transmitted then simply transmitting two addresses in one

clock and the corresponding values the next two clock cycles should be efficient. The

memory bus would be utilized to the fullest. If vector values were transmitted as needed

then they would need to be transmitted after a certain number of compares have been

processed. The C code would need to know what vector value(s) to transmit; therefore,

the FPGA would have to initiate some form of handshaking. Upon completion of

 28

handshaking, the C code should send only the necessary vector values in the order needed

by the FPGA.

In the former method mentioned of sending vector values with addresses, the data

can simply be streamed in until all vector registers are full. In the latter format, vector

addresses could be streamed in, but values would only be transmitted after some

additional handshaking to notify the C code of what is needed. In general, vector

transmission is a cost only paid when necessary to load up vector data or send vector

values separately.

Most of the bus time will be spent sending matrix information instead of vector

information in the overall scheme of things. Here, two main different methods are

explored, streaming and block transfer. The streaming method is tied to the transmission

of both matrix addresses and values. This could be accomplished by sending two address

values in one memory bus clock cycle followed by two clock cycles of sending the two

corresponding values. The C code and FPGA code should already have a set number of

transmissions before either needing to take any special action.

The block transfer method would send a set number of matrix addresses or block

of addresses, and the FPGA would respond in some manner with a request for matrix

values if there were a match. The C code would then send the correct matrix values for

multiplication. This block transfer process would be repeated as necessary.

In comparing the two different data transmission methods, both have their

advantages and disadvantages. The streaming method requires no loss of time in having

to implement any handshaking. A disadvantage of streaming; however, is that two out of

every three clock cycles are spent sending data that may or may not be needed when most

 29

of the time addresses are needed for comparing. The block transfer method does not

waste valuable clock time in transmitting unwanted matrix values, but additional

handshaking is necessary which has its own penalties to be paid. All of these different

methods have their advantages and drawbacks.

4.4.2 Logic Flow

The flow of logic and data must be controlled in some fashion as it enters the

FPGA because there is not enough bandwidth to handle requests for comparison

information, multiply information, handshaking, and answers all simultaneously. The

entire design has one 64-bit bus to utilize therefore the data trafficking must be

controlled. Several different possible states must be considered. Data needs to go to

comparators in some efficient and highly parallel manner, data needs to fill vector

information stored on the FPGA, and data needs to be directed to the multiply

accumulators. Also, the state machine will need to accommodate the ability to send

information back to memory bus for the C code to retrieve. In addition to the state

machine providing all of the necessary states, it must flow between states in a logical

manner and have the capability to jump to any necessary state given any possible

condition. The state machine should also be able to protect the sparse matrix sparse

vector code from operating when it should not. Ideally the state machine will help

improve orchestration between processes. Also, in orchestrating the processes and data

communication, a balanced workload should be strived for by keeping the assignment of

data dispersed appropriately.

 30

4.4.3 Comparing of Addresses

As the flow of data moves from the memory bus to the state machine, it should be

sent into a structure to handle parallel comparisons. This is essentially the main reason

for this entire implementation of a sparse matrix sparse vector multiplication. Ideally the

more parallel compares that can be implemented the better; however, a few

considerations need to be made. As the number of simultaneous compares increase, the

more room on the FPGA is used. At the very least, enough space needs to be provided

for a floating-point multiply accumulator as well as minimal control for data flow. To

accommodate greater amounts of concurrent comparators, the capability needs to exist to

handle the possible large amount of data resulting from all of the comparing. One giant

comparator cannot efficiently do all of the comparing at once as it would be too slow, so

the comparing would have to be divided in multiple processes. The more processes

running, the more individual results there are to multiplex. If more than one element of

the matrix is being compared then a matching result can exist for as many elements of the

matrix being compared. This creates a dynamic load balance of results being passed on

to the multiply accumulator. When and how often multiple results will be calculated is

unknown and can make handling the results difficult. Dynamic task scheduling must

then be employed to help balance possible imbalanced results passed on to the multiply

accumulators. The increased complexity becomes very real as parallel comparators are

added and increased in size while trying to achieve optimal performance. In determining

how to handle this portion of the design, a balance needs to be achieved between creating

as many compares as possible, with still being able to provide the means to handle the

results under desired operating speeds.

 31

4.4.4 Multiply Accumulator

Performing any kind of matrix vector multiplication requires the use of multiply

accumulation. When a row of a matrix is multiplied to the matching elements of a vector,

all of the multiplication results need to be accumulated for the resulting answer vector’s

corresponding element. When performing this operation on sparse matrix sparse vector

data, the essential nature remains the same of needing to multiply values together and

sum those results. Constructing such an architecture to handle this is not as obvious as

handling dense matrices and vectors where maximum parallelization can be achieved due

to the static scheduling nature of information and results. In consideration of sparse

matrix sparse vector multiplication on an FPGA sharing resources, loading balancing

becomes a factor as well as limited real estate for placing MACs.

The effects of an imbalanced load and the uncertainties of the frequency at which

address matching will occur, complicates multiply accumulator design immensely. These

unknowns make it extremely difficult if not impossible to create an optimized

architecture when designing for the general case with capabilities to handle any situation.

The multiply accumulator design must therefore be able to handle dense matrices and

vectors. Obviously performance will suffer heavily for dense data since that is not the

target of the design, but what level of sparseness to target the design, cannot be

determined so it must be prepared to handle all sparseness. The structure of the sparse

matrix and sparse vector also play a part. What is important given the limited design

space is that the “best bang for the buck” is achieved. In other words, in the

determination of how many multipliers and accumulators are to be used; it is desired that

all of the arithmetic units placed on the FPGA stay busy. There is no point in wasting

 32

space on the chip if arithmetic units are not used often, because it is all about designing

for the average or general case and getting the most out of what is available or in use.

Another issue to observe when creating the multiply accumulation units is how to

handle answers or the sums created. Ideally, one or multiple answers could be found at

one time. The problem in doing so range from discerning one sum from the next, to

knowing which values in the pipelined adder correspond to what partial sum. Unless

there are multiple multiply accumulator units available to keep track of their own sum,

keeping track of multiple sums would become difficult and complex even though the

capability would be convenient. Traversing an entire row of the matrix and vector to

obtain just one sum would create the need to reload the entire vector per matrix row. This

would become costly due to not maximizing reuse; therefore, the multiply accumulator

must solve for a partial sum for a given row of the answer vector. In simplifying the

work of handling vector storage and reuse, handling partial sums instead of full sums

becomes another complexity to consider. It must then be determined if the FPGA or the

computer keeps track of the partial sums, while keeping in mind that there could be a few

partial sums to thousand upon thousands of them. If handling partial sums, each partial

sum can be sent back out to the CPU to let it finish each sum. As can be seen as the data

flows from the memory bus down to the multiply accumulators into answers, the effects

of each part all tie in to each other and will be put together in one design in the following

section.

4.5 FPGA Design

The architecture of the sparse matrix sparse vector multiplication algorithm

attempts to utilize the partitioning of the problem to the highest degree possible. The

 33

overall design has been broken down into six major components, the interface to the

Pilchard System or Pcore, State Machine, Comparators, Multiply Accumulator Interface,

the Double Precision Floating-Point Multiplier and Adder, and the C code that is used to

interface to the Pilchard System from the user side.

In developing these components in HDL, the flow chart in the Figure 4.3 shows

the general design flow process in developing HDL for a FPGA. Essentially, after the

specifications and requirements of a system have been determined, HDL in the form of

behavioral and structural code formats is simulated to check for accuracy. If simulation

provides accurate results, the design is then synthesized and re-simulated, or post-

synthesis simulation. After post-synthesis simulation produces valid results, the design is

place and routed which provides the real design that will go into an FPGA. The place

and routed design is also simulated to check for accuracy. If the design continues to

prove accurate, it is placed on the FPGA for actual implementation. Unfortunately, the

Pilchard System does not currently allow support for simulation after synthesis or place

and route. This deficiency is critical as these simulations can often show design flaws

that pre-synthesis simulation cannot, thus making debugging of actual performance

extremely difficult.

In general, the sparse matrix sparse vector multiplier reads in 128-bits of

information in one clock cycle. With this information, vector addresses and values are

both stored on the FPGA to minimize the complexities of having to request vector values

on an as needed basis. After storing a vector, matrix addresses are compared to vector

addresses in mass parallel. Sending in 56 addresses in one block transfer, 4 separate

matrix addresses per sparse code clock, achieves this block transfer size. The

 34

System Requirements

Architectural
Specifications

Behavioral
Description

Structural
Description

Simulation

Design Synthesis

Placement and Routing

Physical
Implementation

Figure 4.3 - FPGA Design Flow

 35

determination of this block transmit size will be discussed later. When an address value

has exceeded the vector address range, the partial sum for that answer vector element

corresponding to the portion of the vector and matrix is found and the overall design will

proceed to the next row. After a portion of the vector has been compared to all of the

corresponding portions of the matrix rows, the next 32 vector locations are loaded and

compared to the rest of the remaining rows of the matrix. This is repeated until all partial

sums have been found. Figure 4.4 provides a very general description of the design on

the FPGA.

On a more systemic level, after the vector is stored and matrix vector address

comparing begins, the results from the compare matches are encoding with some flags in

the 64-bit output to handshake with the C code. While matches are being found, the

vector values that will be necessary for multiplication are stored in four buffers in the

SMSVM
State Machine

Comparator

MAC

V
e
c
t
o
r

128 Pcore

Figure 4.4 - Design Overview on FPGA

 36

order that they will be multiplied. Following the handshaking, all of the matching matrix

values are streamed in for multiplication with their corresponding vector values in one of

two multipliers. Up to two multiply results are then ready to be accumulated per clock.

The adder will then accumulate all of the multiply results and intermediate partial sums

into one consolidated partial sum. There is just one adder to accomplish this. The

following sections describe each portion in detail. Figure 4.5 on the next page offers a

more detailed view of the overall architecture.

4.5.1 Pilchard System Interface

Two main vhdl files, Pilchard.vhd and Pcore.vhd, predominantly handle the

Pilchard System interface. The former helps setup the actual interfacing between the

FPGA pins and Pilchard board to memory bus while the latter is in a sense the wrapper

around all of the supporting sparse matrix sparse vector code design. It is the Pcore file

that needs to be manipulated to accommodate the input and output requirements of the

design to the Pilchard interface for the memory bus. The Pcore operates by receiving a

write and a read signal when there is a request to send information or read information to

and from the Pilchard’s FPGA. Also, there are dedicated lines for the input and output of

data as well as address lines if interfacing directly with generated block RAM on the

FPGA. There are other signals available but they are mainly for use with the Pilchard

top-level VHDL file or for external testing and will not be used in this design.

 37

State Machine

CMPA

CMPB

CMPC

CMPD

V
E
C
T
O
R

Dynamic Task Allocation

F
I
F
O
1

F
I
F
O
2

F
I
F
O
3

F
I
F
O
4

MULT 1
MULT 2

ADDER

MAC
Controller

MAC
FIFO

Flags

64
64

64

64
128

32

32

32

32

P
C
O
R
E

Figure 4.5 - Detailed Architectural View of Sparse Matrix Sparse Vector Multiplier

 38

SMSVM

Async
FIFO

Controller

PCORE

P
I
L
C
H
A
R
D

R
A
M

CLK CLKDIV

Figure 4.6 - Pcore

When developing the Pcore, the requirements and needs of the underlying system

are important. The necessary components can be seen in Figure 4.6 above. Since the

sparse matrix sparse vector multiplication will be operating on a clock cycle twice as long

as Pcore’s clock, it is important that the synchronization between clocks and the

communication of information between those clocks is accurate. To make-up for the

slower speed of the matrix vector multiplication, twice the amount of memory bus data

can be sent to the sparse code to operate on. Pcore will have the capability to read in two

64-bit values in two clock cycles and pass one 128-bit value on to the sparse code in one

sparse code clock cycle. This allows the memory bus to stream data in, while providing a

way to get the information to the sparse matrix sparse vector code on a slower clock.

The difficulty lies in the synchronization of passing the data back and forth

between the top level Pilchard structure and the slower clock of the sparse code. The

 39

slower clock is based off of a clock divider from the main clock and will be referred to as

clockdiv. Because the faster clock operates at twice the speed of clockdiv, the 128-bits

being passed along to the sparse code needs to be held long enough for the sparse code to

accurately retrieve the 128-bits. To accomplish this, an asynchronous FIFO buffer was

generated using Xilinx’s Coregen program. This generated core can handle reading data

on one clock while writing data out on a different clock. Due to the core being available

for professional use, it is reliable and can handle the asynchronous data transfer

effectively. The use of this asynchronous FIFO was a convenient and time saving

solution to handle the memory bus to sparse matrix sparse vector code data transfer.

When passing answers back from the sparse code through the Pcore out of the

FPGA, Xilinx’s Coregen block RAM was used. Using block RAM to output data

ensured that data would be stabilized for the memory bus to read from. This is important

due to interfacing two different clock speeds again. The depth of the RAM was four.

Currently only two locations are in use; however, that can be expanded if desired.

4.5.2 State Machine

The state machine is the main interface to the Pcore when controlling the data

read into the FPGA and also for controlling and monitoring the sparse matrix sparse

vector multiplication process. The different states utilized to accomplish this are:

INITIALIZE, ADDRESS, DATA, PROCESSING, REPORTw, REPORTx, SEND, and

MACN. All states check an input signal called “din_rdy” that when goes high, notifies

everything that valid 128-bits of input are available. If this signal is not high, the state

machine simply holds its current status and position. Figure 4.7 gives a graphical

representation of the state machine.

 40

ADDRESS DATA PROCESSING

SEND_ANS REPORT

MACN

New
Vector

Next Row

Get data

Get
Addresses

Overflag=1
Matchflag=1

Matchflag=0
Overflag=1 Overflag=0

Vector stored
Now compare

Repeat 1x

Matchflag=0
Overflag=0

INITIALIZE

Figure 4.7 - FPGA State Machine

 41

The INITIALIZE state is run first and only once. It receives the first writes from

the C code, which notify the state machine of how many rows exist in the matrix. This is

necessary so that the state machine knows when it is handling the last row so it can

transition to appropriate states. After this state, the state machine moves to the

ADDRESS state.

The ADDRESS state receives the address data for the vector and stores the

addresses in registers. Registers are used for storage to help simplify their frequent

access by the compators. Due to the 128-bit input, 4 32-bit addresses can be

simultaneously stored into registers in one clock cycle. After the four addresses are read

from the input, the state machine will transition to the DATA state for the next two clock

cycles.

The DATA state breaks the 128-bit input into 2 64-bit inputs, which represents

vector data, in one clock cycle and stores them into block RAM designated to hold vector

values. Because in the previous state; 4 addresses were read in, the DATA state is held

for 2 clock cycles so that it will have read in 4 vector values. After reading in 4 vector

values, the state machine transitions back to the ADDRESS state. The transition back

and forth between these two states goes on until 32 vector addresses and values have all

be input into the vector registers. When this is done, the state machine moves on to the

PROCESSING state.

The PROCESSING state constantly reads in matrix addresses for mass parallel

comparing. This state keeps count of how many input values have been read in using a

decrementing counter. The counter allows for 14 block transfers of 4 matrix addresses

 42

each. When the counter is zero, the maximum number of address values has been read in

and the state will transition to the REPORTw and REPORTx states.

The two REPORT states are executed successively. The REPORTw stage is the

next stage after PROCESSING, and it buffers the 1 clock delay required to ensure all

comparing is done so the comparator results can be sent to the C code. This one clock

delay is necessary for the transition from REPORTw to REPORTx state. The REPORTw

state is left out of the diagram for simplification. In the REPORTx state, information is

gathered from all of the comparing of addresses. All of this information is used to notify

the C code if there were any address matches, what addresses had matches, if the matrix

addresses went over the current address range stored on the vector, and a special last

address match flag. All of this information must fit into one 64-bit output signal to

simplify the number of clocks of handshaking down to one. Five bits ended up being

extra and are reserved for future use. One bit each is reserved for the match flag, over

flag, and last address match flag. The overflag signals to the C code that a matrix address

wnt past the vector address range. The match flag indicates that there was at least one

match, and the last address match flag indicates if the last bit in the 56-bit encoded

compare result stands for a match if equal to one. This is done for redundancy checking

to ensure the very last bit is transmitted correctly. The remaining 56 bits are used to

encode which matrix addresses matching occurred on. This will be described in the

Comparator section. After reporting the status of compares back to the C code,

depending on the status, the state machine will transition to one of three states: the

MACN, SEND, or back to PROCESSING state. The MACN state has first priority, as it

needs to be next if there were any address matches. The SEND state has second priority

 43

meaning if there were no matches and the over flag is high, then a partial sum needs to be

found based on the current data that has been input and calculated to be sent to the C

code. Last priority is given to moving to the PROCESSING state. This is only done if

there were no matches and the over flag has not been set high; therefore, continue

processing more matrix addresses.

If the MACN state is next, all of the matrix values that correspond to matches will

be read in, in order. As these values are read in, they are sent to two multipliers to be

multiplied with their corresponding vector values. Because there is no dedicated signal to

the FPGA to notify it when the C code is done sending matrix values, the C code will

send in all zeros when it is done. This is necessary because the “din_rdy” flag is already

in use to notify the MACN stage if it even needs to be looking for valid input. It is

possible that there may be a delay in sending matrix values to the FPGA; therefore, an

input of all zeros will be acceptable. If the MACN stage receives all zeros as an input, it

knows it is time to move on to the next state. The purpose for sending all zeros as

notification is due to the fact that a zero should never be stored as a matrix value to begin

with because zero values should not be stored, thus providing flexibility in reading

inputs. After reading in all of the input values, the state machine will transfer to the

SEND stage if the over flag is high; otherwise if no answer needs to be sent, go back to

the PROCESSING state.

In the SEND state, the state machine simply waits for the floating-point multiply

accumulator to find the current partial sum. When the partial sum is ready, the state

machine notifies Pcore that an answer is ready to be sent out from the FPGA. When this

is done, the state machine checks if the flag was set to notify it that the last row of the

 44

matrix was being processed. If so, then the state machine needs to go back to the

ADDRESS state to begin loading a new vector; otherwise, the state machine will transfer

back to the PROCESSING state to begin handling another partial sum for a different

matrix row.

4.5.3 Comparators

Each comparator is made up of four parallel compare processes for each of the

four matrix addresses input per clock during the PROCESSING state. Each process

handles 8 compares in one clock cycle for a total of 128 simultaneous compares in one

clock cycle. This is where the strength of the design lies. Figure 4.8 displays the overall

comparator design in its entirety with an individual compare process shown in greater

detail.

For each of the four processes per matrix address, only one match can exist, as all

vector addresses are unique per row. After the initial 32 compares per matrix address are

executed, the four individual process results are multiplexed to check for a match. If

there is a match, several different tasks occur. One task is that the corresponding vector

value for that match is grabbed and sent off to a dynamic task scheduler to handle the

random nature that multiple matches may occur. What the dynamic task scheduler does

is keep all of the matches in order in the four buffers that will feed the two floating-point

multipliers. Each buffer is filled in order as a match is found, so if buffer one is filled

first, buffer two is next. After buffer two, buffer three is next and so on. After buffer

four is filled, the dynamic task scheduler should assign the next matched vector value to

the first buffer. Due to the random matching nature, the next buffer to fill on a clock

 45

CMPA

CMPB

CMPC

CMPD

Dynamic
Task

Scheduler

Input
(127->96)

Input
(95->64)

Input
(63->32)

Input
(31->0)

128
bits

0

7
8

15
16

23
24

31

Vector
Addresses

8
CMPs

8
CMPs

8
CMPs

8
CMPs

MUX

Dynamic
Task

Scheduler

Matrix
Addr

Input
(127->96)

CMPD

Figure 4.8 - Comparator System

 46

cycle depends on how many matches the previous clock cycle had and which buffer was

next to have been filled first in that previous clock cycle. Figures 4.9, 4.10, and 4.11

demonstrate this process.

Another task that is completed on a match is the encoding of matching addresses

for the REPORTx state. A 14-bit vector is used for each of the four main sets of

comparators to encode matching information. To break it down, 56 addresses from the

matrix are sent to the FPGA in one block transfer. This means 4 matrix addresses are

used at once for 14 clock cycles. If there is a match for a particular matrix address on the

first of the 14 sends, then the highest bit of its particular vector is assigned a one. If there

was a miss, a zero is put in that bit. As compares are completed the results are encoded

in all 14-bits representing the 14 clock cycles to transmit the block transfer. These

vectors are assigned their values when the four processes for each matrix address are

multiplexed. After the block transfer is done, the four vectors must be rearranged into

FIFO
1

FIFO
2

FIFO
3

FIFO
4

Dynamic Task Scheduler

Ptr1 Ptr2 Ptr3 Ptr4

Figure 4.9 – Dynamic Scheduler Before any Matches

 47

FIFO
1

FIFO
2

FIFO
3

FIFO
4

Dynamic Task Scheduler

Ptr2 Ptr3 Ptr4 Ptr1

1 32

Figure 4.10 - Dynamic Scheduler After 3 Matches

FIFO
1

FIFO
2

FIFO
3

FIFO
4

Dynamic Task Scheduler

Ptr3 Ptr4 Ptr1 Ptr2

1 32 4
5 6

Figure 4.11 - Dynamic Scheduler After Another 3 Matches

 48

one 56-bit vector such that the order of the matches are preserved. Figures 4.12 and 4.13

show how this comes together.

The final task performed by the comparator is monitoring matching and if a

matrix address goes over the vector address range. If there is just one match by any of

the comparator processes, the match flag goes high for that block transfer. Similarly as

soon as the first matrix address exceeds the vector range, the over flag goes high. To

support these functions, two smaller functions are performed. When the first compare

trips the over flag to high, that exact location in the entire 56 address compare scheme is

identified and sets that particular location in the 56-bit encoded vector to a one. After an

over is triggered, all of the remaining bits of the 56-bit encoded vector are set to zero, so

when the C code knows the over flag has been tripped, the first “one” it encounters in

checking the encoded match vector from right to left signifies the position of where the

first matrix address exceeded the vector address range. That matrix address will then be

the starting address when that row is returned to, to multiply with the next section of the

vector. Figure 4.14 in the next page shows an over bit being assigned to its appropriate

location in the 56-bit encoded vector.

1
 0 0 0 0

Match
on 1st
CMP

Match
on 4th
CMP

Over
occurs CMPA Output Status

Vector

1

3
0

Figure
0
1
 4.12 - Four

4

 0
1

teen Bit Hi

9
0

t Vector
0
0
 0

0

 1 0 0 1

1

1

1

 1

Fig

 0

 0

Fig
0
0

ure 4.13 -

ure 4.14 - H
0

1

Fifty-six Bi

0

Marks ove
from CMP
Output 6

it Vector w

50
0
0
t Hit Vecto

r @ 24
A

ith Over B
0

1

r

0

0

it
1
1

1

1

1
 0
 0
1
 0
 0
1
 0
 0
1
 0
 0
CMPA
CMPD
CMPC
CMPB
0

0

0

0

55
 40
0

0
0

3

3

3

3

0
 0
 0
 0
0
 0
 0
1
 0
 0
0
 0

39
 24
0
 0
 0
 0
0
 0
 0
 0
0
 0

23
. . .

4.5.4 Multiply Accumulator Interface

The multiply accumulator interface handles several processes involved in the

overall design of finding a partial sum. Figure 4.15 displays how these processes

interconnect. Due to the dynamic scheduling of the four buffers that feed into the

multipliers from the comparators, handling the multiplier input data becomes a static

workload. The first multiplier reads data from buffers one and three while alternating

between them to multiply with the top 64 bits of the 128-bit input signal. The second

multiplier alternates between the second and fourth buffer multiplying the buffer data

with the bottom 64 bits of the input vector. This ordering is to preserve the matching

order of addresses from the comparator such that the appropriate matrix and vector values

are multiplied together. What happens is the upper 64-bit input value is multiplied by a

buffer one value simultaneously while the bottom 64-bit input value is multiplied by a

buffer two value. On the next clock cycle, the same halves of the input are sent to

MULT 1
MULT 2

ADDER

MAC
Controller

MAC
FIFO

Figure 4.15 - MAC Interface

 51

the same multipliers, but multipliers one and two get their vector values from buffers

three and four respectively. This alternating sequence continues until all data has been

sent in for multiplication. The advantage in using two multipliers and four buffers lies in

that there is no backup of data on the FPGA, the two 64-bit multipliers can handle the

128-bit input.

As the multiplication results are found, they are fed into an adder. Over time,

addition results are accumulated into one partial sum, but the process of accumulation is

complex. Due to the pipelined nature of the adder, results cannot be available on the next

clock following the input. As the number of values to accumulate drop below what can

fit in the pipeline, the values must be temporarily stored in a buffer until another result is

available to be added with. There will be times when there are so many values to

accumulate, that accumulation has not finished before the next round of multiplication

results come in. Soon monitoring all of the data to be summed becomes difficult. Input

to the adder can come from two multipliers, the output of the adder, and the FIFO buffer

used to store overflow. The combination of obtaining these values and when they are

available is complex. There could be two multiplication results available or there could

be only one. There could be an adder result available too. Not helping the situation is if

data is being stored in the buffer. When data is requested from the buffer, there is a two-

clock cycle delay. Depending on if data is requested from the buffer, as the second or

first input into the adder is another issue as well.

To begin sorting out this complication, priorities must be set as to what

component’s result has the highest and lowest priority with respect to being an input into

 52

the adder. The multiplication results are given the highest priority because their four

buffers must be cleared as soon as possible to avoid a backup of matching vector value

information. If a backup were to occur, the system as a whole would have to stall, a

situation to be avoided if possible. Because they are given such priority and the MACN

stage can have the buffers cleared during that state, this potential back up is avoided.

Multiplier one will have priority over multiplier two as multiplier one would be handling

a greater number of matches if the number of matches is odd. Next in line on the priority

chain is the adder result. Last priority is given to retrieving data from the buffer. A mini-

pipeline is established to handle the funneling of data into the adder, mainly due to the

possibility of there being one answer available for a clock or two before another potential

input is ready. This pipeline is also used to time input into the adder upon a request for

data from the buffer. When one input is available and waiting for another input, the first

input will hang around for two clock cycles. If no other input is available at that time, it

is written to the buffer to wait for a longer period for another input. When multiple

inputs are present, the prioritized scheme is used to determine what values get put into the

adder and what value is written to the buffer.

Some complications involved in using a buffer with a delayed output is that if a

request has been made for buffer data, it then holds the “trump card” over all other inputs.

This is because of the complicated nature of timing its availability with the

unpredictability of other inputs. If the first input for the adder is a call to the buffer for

input, the process monitoring all the activity will wait for another input to be available

while the buffer output is taking its two clock cycles to come out. If something becomes

available, the newly available data is sent to one of three stages to time it with the

 53

buffer’s output into the adder. If more than one piece of data becomes available while

waiting on output from the buffer, the priority scheme kicks in. If two inputs are

available, one will be sent into to the buffer while the other will be sent with the buffer

output to the adder. If data is available from both multipliers and the adder while not

waiting for output from the buffer, an overflow signal must be used to store the second

extra piece of data available. The worst-case scenario is, when two values are being

pulled from the buffer (one ahead of the other) and values become available from the

multipliers and the adder. Now both buffer outputs hold the highest priority, one

multiplication result gets written to the buffer, the other multiplication results is written to

the overflow signal, and the adder result is written to a second overflow signal.

Fortunately this worst-case scenario cannot happen in consecutive clocks or every other

clock as it takes that many clocks for such a situation to develop. This allows time

immediately following the worst-case scenario to clear out the two overflow signals so

they are not overwritten. Another reason why the worst-case scenario cannot repeat itself

is once multiplication results are incoming and the worst-case scenario has occurred, for

the next several clock cycles the multipliers will control the inputs into the adder thus

flushing out any remaining multiplication results so the worst-case scenario still cannot

repeat itself. All adder results in the meantime are written to the buffer.

4.5.5 Double Precision Floating-Point Multiplier and Adder

The floating-point multipliers and adder both handle double precision (64-bit)

data and are pipelined processes. The multipliers are 9 pipeline stages and the adder has

13 pipeline stages. Both support the IEEE 754 format and are constrained as mentioned

in the Assumptions section.

 54

The multipliers XOR the sign bits to determine the resulting sign of the answer.

The fractional part of each input has a one appended to them to account for the implied

one and both are multiplied together. Meanwhile the exponents are added together and

then biased (subtracting by 1023) since the biases of each will also have been added

together. The exponent result is then checked for overflow. After these simultaneous

processes have a occurred, the top 54 bits of the multiplication result are taken, and the

rest discarded. If the highest bit of the multiplication result is a one, then the exponent

needs to be incremented by one and the fraction shifted left by one. If the highest bit was

a 0 then shift the fraction part by two to the left. After the fractional shift, keep the top 52

bits to fit the fraction format in the IEEE standard. The sign bit, exponent, and fraction

all need to be put together to form the 64-bit double precision representation. The

following flowchart in Figure 4.16 outlines the behavioral model of two floating-point

numbers being multiplied on a bit level.

The floating-point adder is more involved. First the larger input needs to be

determined. Subtracting the two exponents does this. If the exponent difference is

positive then the first operand is the larger; otherwise, the second operand is. The larger

operand’s exponent is stored for the answer while the exponent differential will be used

to shift right the fraction part of the smaller number to normalize it to the large fraction

for addition. The sign bit will also be equal to the larger number’s sign bit. If subtraction

is being performed (sign bits are different), the smaller number’s fraction needs to be

two’s complemented after being shifted. Before any modifications are made to either

fraction or before they are added, a 1 is appended to the highest bit to account for the

implied one in the exponent. After these previous steps have been done, the two fractions

 55

Sign Exponent Fraction Value

E1

E F

Bias
Adjust

XOR Add Append 1

Multiply

S1

S

F1 F2S2 E2

MSB
MSB

Incr. by 1
Shift Left 1

Shift Left 2

=1
=0

=1

=0
? ?

S E F

Figure 4.16 - Floating-Point Multiplier Flow Chart

 56

are summed. After the fractions are added, the resulting fraction must be shifted left until

the highest bit was one to renormalize the fraction. The sign bit, exponent, and resulting

fraction are all appended together in order to form the double precision addition result.

The flowchart in Figure 4.17 depicts this process.

4.5.6 C code interface

The C code that will interface with the Pilchard System is an optimized code that

is written to cater to the state machine inside of the FPGA; therefore, to a large degree the

state machine of the C code will look identical to the FPGA state machine. The Pilchard

System comes with a special header file and C file that defines special functions to map

the Pilchard to memory, and to read and write to the Pilchard System. The Read64 and

Write64 commands will read and write 64 bits of data and the inputs to the functions are

assigned their values by using pointers. This is so 64-bit double precision values do not

have to be manipulated in order store the data in upper and lower 32-bit halves of the data

type required for the special read and write functions.

The C code will begin by opening up the necessary files that are in CRS format,

check to see how big the matrix and vector both are, dynamically allocate space, and

store all of the data in arrays. After closing those files, the Pilchard space in memory will

then be initialized. Now the processing can begin. The C code has several states,

INITIALIZE, SEND_VADDR, SEND_VDATA, CMPING, GET_STATUS,

SEND_MDATA, and GET_ANS. The code will start out in the INITIALIZE state by

sending the FPGA the number of rows in the matrix. It will then transition to the

SEND_VADDR state by sending two addresses consecutively to achieve the 4 32-bit

 57

Sign(S) Exponent(E) Fraction(F) Value

S E F

E1 S1 F1 F2 S2 E2

? ? Subtract

?

E1>E2
S=S1

E2>E1
S=S2

E2>E1
Fa=F2

E1>E2
Fa=F1
Fb=F2

E2>E1
E=E2

Ed=E2-E1

E1>E2
E=E1

Ed=E1-E2
Append 1

E Ed Fa Fb

 Add

S

Fb=F1

Figure 4.17 - Floating-Point Adder Flow Cha

 58
Shift Right
by Ed
If S1 XOR S2 = 1
2’s Compl Fb
 Shif
st

t left until
1 “1” is out
Adjust E
by shift
rt

address input. After this state, the program will go to the SEND_VDATA state where

four separate writes will be performed to write four vector values that correspond with

the address values. After sending 32 vector locations, the state machine then moves to

the CMPING state. If for some reason, there is only an odd number of vector data left or

if the amount of vector data to be sent is less than 32, then the C code will send all zeros

for the address data and values. This is so an over flag will be correctly triggered

provided that the matrix addresses exceed the vector address range. These states keep

track of where they are in the vector so that each new section of the vector is loaded into

the FPGA appropriately. Figure 4.18 provides a graphical view of the state machine.

The CMPING state is very straightforward in that it sends matrix addresses to the

FPGA for comparison. It sends 56 addresses, 2 in one write. If the amount of addresses

to send runs out before 56 addresses have been sent, the program will send all ones as the

addresses to trip the over flag on the FPGA and let it know that the row is done. Before

leaving this state, the program checks to see if it has sent information from the last row.

Next the state machine will proceed to the GET_STATUS state where it will read the 64-

bit output from the FPGA to get status information on what to do next. If the match bit is

high, the program will know to go to the SEND_MDATA next. After this check, the

over bit is checked. If the over bit is one, the program will scan from right to left the 56

bits of the FPGA output to find the first one. The first one that is found is the point in the

row address transmission that the matrix address values exceeded the vector address

range. This point is remembered for when this row is processed again after a new set of

vector information has been stored on the FPGA. This way the row continues where it

 59

SEND_VADDR SEND_VDATA CMPING

GET_ANS GET_STATUS

SEND_MDATA

New
Vector

Next Row

Send data

Send
Addresses

Overflag=1
Matchflag=1

Matchflag=0
Overflag=1 Overflag=0

Vector sent
Now compare

Repeat 3x

Matchflag=0
Overflag=0

Repeat 1x

INITIALIZE

Figure 4.18 – C Code State Machine

 60

left off. After finding the over bit, that bit is set to zero. This is done because the

SEND_MDATA stage will check these bits for a one, and will send the corresponding

data if a one is found. After all of the over processing is done, or after a match flag is

found without the over flag equal to one, the state machine will transfer to one of three

states: SEND_MDATA, GET_ANS, or CMPING. If the match flag was high, the state

machine will go to the SEND_MDATA state next. If the over flag was high then the

state machine transitions to the GET_ANS state; otherwise, the CMPING state is next.

If the state machine goes to the SEND_MDATA stage, the program will traverse

the 56-bit match vector from left to right to send matching data in order. After gathering

two matches it will write the two matrix values. If there are an odd number of matches,

the program will send in dummy data so that there have been an even number of writes

(so the asynchronous FIFO gets 128-bits in Pcore – the FPGA will not process dummy

data). After the matching data has been sent, all zeros are sent to notify the FPGA that all

data has been sent. This occurs when 56 values have been transmitted or while sending

data, if the stop-point is reached (point at where an “over” occurred), the state will

terminate the sending of data and send in all zeros to signify that it is done. If the over bit

is high the state machine then moves to the GET_ANS state, otherwise it moves on to the

CMPING state.

The GET_ANS state simply waits in this state for a valid answer to present itself

from the FPGA. When it does, the partial sum is taken and added to the existing partial

sum for that particular row in the answer vector. If the program had been processing the

last row of the matrix (but not the last row and set of columns) it will then go to the

 61

SEND_VADDR state to send in new vector data and start processing the next chunk of

the matrix. If the last row and column were just processed then the program has finished;

otherwise, the program will proceed to the CMPING stage where the next set of row

addresses will be compared.

 62

Chapter 5

Results

The following chapter summarizes the results of the FPGA assisted computer’s

design implementation in comparison to the stand-alone processor’s results. Several

points of interest will be observed and evaluated to help distinguish the differences and

similarities in the results. The overall performance of the FPGA design yielded slower

results than hoped in that the stand-alone processor outperformed the FPGA design. The

design was place and routed with timing constraints of 50 MHz for the sparse matrix

sparse vector portion of the FPGA while the Pcore interface ran at 100 MHz bus speed so

it could supply 128 bits per 50 MHz clock. Approximately 70% of the FPGA’s slices

were used and approximately 60 of the 96 block RAM locations were also utilized. The

following sections will discuss and interpret the results and difficulties encountered in

developing a double precision floating-point sparse matrix sparse vector multiplier on a

FPGA.

5.1 Comparison of Results

In the process of evaluating results, it is important to properly put them in

perspective. To accomplish this, various characteristics of sparse matrix sparse vector

multiplication data will be utilized in the analysis of the results, which are: overall

performance, hits (when a matrix element address and vector address match to yield a

FPMAC), compares, hits-to-compares ratio (Ψ), quantity of nonzero values, the number

of vector loads, and percentage of theoretical MFLOPS achieved. Several sets of test

data were used to determine all of the following evaluations. When observing these

 63

results, dataset 4 was varied four times with those variations all yielding extremely

similar results. A table with all of the statistics regarding each dataset can be viewed in

Appendix A.

The performance of the FPGA assisted implementation proved to be slow at best

when compared to the stand-alone computer’s performance. Across the various tests, the

stand-alone’s performance averaged 50-60 times faster than the FPGA assisted

computer’s implementation. This slow-down will be discussed further in the difficulties

section later in this chapter. The figures throughout this chapter depict the difference in

computational performance to the characteristics mentioned above. In the all of the

graphs, the legend shows the curves for the “CPU time” and “FPGA time” where the

“CPU time” refers to the total time for the stand-alone processor to compute its results,

while the “FPGA time” represents the time taken for the FPGA and supporting CPU to

compute its results. Both times include the time spent communicating the data over the

memory bus. Due to the large performance difference between designs, all

characteristics plotted versus performance are done on both a base 10 and logarithmic

scales for execution time. Also, all graphs with time being represented by the y-axis, is

in microseconds.

Figure 5.1 plots performance time versus the datasets used. The performance

slow-down in the FPGA design is obvious when comparing results between the two

design implementations. This graph depicts the 50-60x performance difference

throughout the datasets. The performance of the two designs appear to mimic one

another on the logarithmic scaled graph in Figure 5.2.

 64

Overall Performance

0

500

1000

1500

2000

2500

Data 1 Data 2 Data 3 Data 4a Data 4b Data 4c Data 4d Data 5

Data Set

Ti
m

e
(u

s)

CPU time
FPGA time

Figure 5.1 - Dataset Performances

Overall Performance

1

10

100

1000

10000

Data 1 Data 2 Data 3 Data 4a Data 4b Data 4c Data 4d Data 5

Data Set

Ti
m

e
(L

og
 u

s)

CPU time
FPGA time

Figure 5.2 - Dataset Performances (Log Scale)

 65

The following two figures, Figure 5.3 and 5.4, display the number of hits to

execution time. Both figures continue the trend of 50-60 times performance slow-down

for the FPGA based design. The hits were determined by determing the total number of

actual vector address to matrix address compare matches in each dataset computation.

The performance times generally increase for both designs as the number of hits increase.

This is likely due to the additional number of floating-point operations and matrix data

that needs to be communicated. The four points with nearly identical performance as the

number of hits vary represents the dataset 4 variations where the number of hits has been

altered on purpose with the intentions of observing performance tradeoffs as the number

of hits are varied for any given dataset.

Performance to Hits

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350

Hits

Ti
m

e
(u

s)

FPGA time
CPU time

Figure 5.3 - Performance to Hits

 66

Performance to Hits

1

10

100

1000

10000

0 50 100 150 200 250 300 350

Hits

Ti
m

e
(L

og
 u

s)

FPGA time
CPU time

Figure 5.4 - Performance to Hits (Log Scale)

The next two figures, Figure 5.5 and Figure 5.6, depict the performance numbers

of both the FPGA and CPU for the number of compares incurred by the stand-alone

processor. The results show the performance time increasing with the number of

compares executed. The logarithmic scale shows both performance times increasing at

relatively the same scale. At the far right hand side of Figure 5.6, it appears as if the

performance time continues to increase for the CPU while the FPGA performance begins

to level out. The results here are surprising, as it was expected that the logarithmic

curves would at least converge proving the effectiveness of the parallel compares on the

FPGA. While the trend mentioned on the far right hand side of the graph may support

this expectation, there is not enough data here to fully support that expectation.

 67

Compares to Performance

0

500

1000

1500

2000

2500

0 500 1000 1500 2000

Compares

Ti
m

e
(u

s)

FPGA time
CPU time

Figure 5.5 - CPU Compares to Performance

Compares to Performance

1

10

100

1000

10000

0 500 1000 1500 2000

Compares

Ti
m

e
(L

og
 u

s)

FPGA time
CPU time

Figure 5.6 - CPU Compares to Performance (Log Scale)

 68

Viewing the graphs in Figures 5.7 and 5.8, comparing Ψ to performance does

show an interesting trend between the datasets. Each row of a matrix multiplied by the

vector yields its own number of compares and hits. A ratio for each row can then be

determined to evaluate the number of hits to compares. Ψ represents the average of these

ratios over all of the rows of a matrix. Ψ is important because viewing the performance

trends against the number of hits or compares separately does not take the whole picture

into account. The performances between the stand-alone and FPGA assisted computer

designs could have a different relationship when looking at the effects Ψ has on them. In

order to isolate the effects Ψ has on both methods, the same dataset was used for each

plot below; however, the number of hits was varied to alter Ψ. These are the first four

points of Figure 5.7 and Figure 5.8 and are the four variations of dataset 4. The next

Psi to Performance

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Psi

Ti
m

e
(u

s)

FPGA time
CPU time

Figure 5.7 - Performance to Psi

 69

Psi to Performance

1

10

100

1000

10000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Psi

Ti
m

e
(L

og
 u

s)

FPGA time
CPU time

Figure 5.8 - Performance to Psi (Log Scale)

three points were datasets with relatively the same number of nonzero values, while the

last data point is a small matrix. The varied data essentially shows no performance

variations. This is most likely due to the structures of each dataset being similar, with the

matched data positioned close together in the matrix too. The three data points in the

center convey the potential impact Ψ has on the overall performance. Evaluating these

three points show a potential for performance time increasing as Ψ increases.

The next characteristic observed is the number of nonzeros found in each matrix.

Figures 5.9 and 5.10 clearly depict performance reduction as the number of nonzeros

increase. This effect happens because larger amounts of data are being processed. For

 70

Nonzeros to Performance

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600

Nonzeros

Ti
m

e
(u

s)

FPGA time
CPU time

Figure 5.9 - Nonzero to Performance

Nonzeros to Performance

1

10

100

1000

10000

0 200 400 600 800 1000 1200 1400 1600

Nonzeros

Ti
m

e
(L

og
 u

s)

FPGA time
CPU time

Figure 5.10 - Nonzeros to Performance (Log Scale)

 71

each nonzero value that exists, at least one compare must be executed on the stand-alone

computer while 32 compares will be performed on the FPGA.

The final characteristic observed is the number of vector loads necessary to

complete a full sparse matrix sparse vector multiplication on a FPGA. Each vector load

only represents a portion of the main vector loaded as portions are loaded as needed and

only once each. Loading the entire vector only once may mask having to load the vector

in pieces by not using any additional load time, but each load disrupts the flow of the

program and requires a partial sum per matrix row, per vector load. Obviously as there

are more vector loads, the longer overall computation will take due to the requirement for

more partial sums. Figure 5.11 shows the performance of the FPGA to the number of

vectors loads.

Vector Loads to Performance

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7

Vector Loads

Ti
m

e
(u

s)

FPGA time

Figure 5.11 - Vector Loads to FPGA Performance

 72

One other area that provided interesting results was comparing the number of

FPGA compares versus CPU compares for each dataset. Due to the 128 simultaneous

compares per 50 MHz FPGA clock cycle, the number of compares performed reaches

into the tens of thousands, while the CPU performs just the number of compares

necessary. It is important to mention though, that the FPGA pays no penalty for

computing excess compares as they are all done in parallel. Figure 5.12 shows these

results as Figure 5.13 puts the same results on a logarithmic scale.

The various graphs paint a large picture of the different intricacies affecting the

big picture. Most of the characteristics do not influence the outcome on their own, but

have a collective effect. The most important characteristic is Ψ as it takes into account

the amount of data flowing through the number of compares, and the number of floating-

FPGA vs CPU Compares

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 2 4 6 8

Dataset

C
om

pa
re

s

10
CPU Compares
FPGA Compares

Figure 5.12 - Compares per Dataset

 73

FPGA vs CPU Compares

1

10

100

1000

10000

100000

0 2 4 6 8

Dataset

C
om

pa
re

s

10
CPU Compares
FPGA Compares

Figure 5.13 - Compares per Dataset (Log Scale)

point operations that will be necessary to solve the problem due to hit quantity. Because

of this consequence, there is no single MFLOPS to be obtained. As Ψ will vary, the

actual MFLOPS or the percent of theoretical MFLOPS achieved will also vary. For

example, the third dataset has320 hits. The stand-alone CPU runs at 933 MHz; therefore,

its theoretical MFLOPS is 933. Its actual MFLOPS for this problem is 12.8. The

theoretical MFLOPS for the FPGA design is 150 while the actual MFLOPS is 0.278.

The percentage of the theoretical MFLOPS yielded is 1.07% and 0.19% for the stand-

alone and FPGA based designs respectively. Figures 5.14 and 5.15 display the variation

in percentage of theoretical MFLOPS achieved as Ψ varies.

When looking back over the graphs, the number of nonzero values plays a major

role in all of these results, for each nonzero value is processed through the designs.

 74

Percentage of Theoretical MFLOPS Achieved

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Psi

Pe
rc

en
ta

ge

Percent of MFLOPS CPU

Percent of MFLOPS FPGA

Figure 5.14 - Percentage of Theoretical MFLOPS Achieved

Percentage of Theoretical MFLOPS Achieved

0.01%

0.10%

1.00%

10.00%

100.00%
0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Psi

Pe
rc

en
ta

ge

Percent of MFLOPS CPU

Percent of MFLOPS FPGA

Figure 5.15 - Percentage of Theoretical MFLOPS Achieved (Log Scale)

 75

What needs to be taken into perspective is that when comparing results, the number of

nonzero values must be taken into consideration. If the amount of nonzero values’

addresses is relatively the same in comparing results across datasets, the results should

allow for comparison between other characteristics. If the number of nonzero values is

not relatively the same, then the results cannot be compared. The next sections discuss

the difficulties involved.

5.2 Difficulties

Several areas of difficulty were encountered in the development of the sparse

matrix sparse vector computation engine. The areas included developing a proper

interface from the FPGA back out to the C code, to memory and I/O limitations, and a

minor glitch.

5.2.1 Pcore Interface

An extremely large amount of time was spent in this single area alone of

developing a consistently working Pcore interface to connect the sparse matrix sparse

vector multiplication code to the memory bus. Roughly 33% of the design time was

spent creating and adjusting a Pcore interface to adequately support the overall design.

The Pcore interface must monitor data traffic on two different clock speeds between the

memory bus (100 MHz) and the sparse matrix sparse vector multiplication code (50

MHz). The synchronization of data between the two different clocks presented the

greatest challenge. There is no guarantee there will be a consistent stream of data with the

memory bus; therefore, the Pcore interface must be very versatile as well as fast. To

further increase the difficulty of this task, the Pilchard System’s design does not lend

itself to post-layout simulation, a key stage in the design process where the designer can

 76

get a much more realistic view of how a design will work in reality, versus the perfect

world of presynthesis simulation. Pcore designs ranged from using block RAM as the

main device for interfacing to the memory bus, to relying on the handshaking read/write

signals to grab and send data appropriately. Various combinations of designs were

implemented with varying ranges of success. Often this part of the design drove the

overall clock speed of the design as whole. This is because the pcore needs to be twice as

fast as the rest of the FPGA so it could properly supply twice the amount of data (128

bits) as the memory bus (64 bits) in one 50 MHz clock cycle. The final design involved

using an asynchronous FIFO buffer created by Xilinx’s Corgen to handle the movement

of data between the two different clock speeds. A small (4 address locations) block RAM

was used for data leaving the FPGA to the memory bus to read.

5.2.2 Memory and I/O Constraints

The constraints the memory and I/O limitations held on the design dominated the

performance of the FPGA assisted sparse matrix sparse vector multiplication results.

These limitations ranged from space on the FPGA, to FPGA slice usage, to a lack of

RAM on the Pilchard System board to supply this data hungry design with information as

fast as possible.

When possible, Xilinx Coregen components were utilized to help save space and

time in the FPGA design; however, this was not always enough. Originally the FPGA

was to hold a vector of size 64 and perform 256 simultaneous compares. Unfortunately,

doing so utilized 87% of the FPGA’s slices when combined with the rest of the design.

Attempting to completely place and route a design with the usage of slices reaching over

75% becomes difficult, not even considering the small likelihood of meeting timing

 77

constraints. To alleviate this limitation, the onboard vector size was cut back to 32, thus

reducing the total number of simultaneous compares to 128 in one clock cycle. The

vector data was also moved to block RAM from registers. The slice usage dropped to

70% of the FPGA’s available 12,288 slices. This was enough to allow the design to be

place and routed at the necessary timing constraints. The effects of reducing the vector

size on performance in presynthesis simulation were felt immediately as simulation times

nearly doubled. The effects on the actual FPGA was never observed due to the larger

design never being able to be place and routed.

Lastly, due to the need for the FPGA to have constant and quick access to large

amounts of data, the use of onboard RAM on the Pichard would have been very

beneficial. The FPGA must grab data from the main memory (RAM) on the CPU, which

is a very time consuming operation when typical programs can utilize cache. The

availability of RAM on the Pilchard board would not only act similar to cache, but it

would also give the FPGA the ability to have the entire vector stored nearby instead of

some location off in the main memory. This would eliminate time lost for memory bus

contention. Also, large amounts of the matrix could be stored and possibly the entire

vector. This reduction in the use of the memory bus would reduce the communication

cost incurred essentially over the entire design execution time.

The one single factor that potentially had the largest effect was the result of the

I/O constraints. The design is highly dependent upon the I/O or memory bus due to the

large amounts of data transfer. A small test was conducted to measure the time to

perform 10 writes to get an estimate of how much time is spend on I/O in the overall

design. This test concluded that 10 writes would take 4.5us. Simulation provided

 78

accurate results but the implementation of the Pilchard System Wrapper could not

accurately be simulated nor could a memory bus be accurately simulated; however, the

execution time estimated by the simulator painted a much different picture. If dataset 3

was considered, the FPGA execution time was 2300us. By determining the number of

writes and using the small test data, it was determined that 30% of that execution time

was spent conducting I/O. While this seems underestimated and the small test is likely

inaccurate when referring to a larger design, the simulation results estimated that the

design should be executed in 53us, a 97% improvement. At the very least, I/O

performance has a huge impact on the design whether that be 30 to 97% of the execution

time.

While performance results did not meet the desired goals, it is clear what is

necessary to alleviate these problems through larger FPGA’s, multiple FPGA’s, improved

interfacing, and onboard RAM. These suggestions for improvements with further details

can be found in the next chapter, Conclusions and Future Work.

5.2.3 Logic Glitch

Through the various tests run on the FPGA design, a minor flaw in the logic was

exposed. Fortunately this glitch has no effect on performance or accuracy when the

FPGA produces results. The flaw was identified as the FPGA logic not synchronizing

correctly with the host C code when a set of compares produced no hits for a partial sum;

thus yielding a partial sum of zero. Currently, several conditions must be met for a zero

partial sum to occur and these conditions are all not being met. When this occurs, the

FPGA essentially locks into the SEND state. Extensive simulation never brought this

situation to light when using the same test data that would cause the error in real-time

 79

calculations on the FPGA; thus underlining the importance of post-synthesis and post-

layout simulation capabilities. Due to the specific nature of this issue, it can be

efficiently resolved by creating a process on the FPGA to monitor if hits ever occur

during a partial sum. It no hits ever occur, the C code and FPGA will not expect nor send

a zero partial sum respectively, and both will move on to the next appropriate state. This

method would eliminate a list of conditions that need to be met by the current

architecture.

 80

Chapter 6

Conclusions and Future Work

In hindsight, the overall design was successful in the fact that results were

achieved with data from which to extrapolate and learn from sparse matrix sparse vector

multiplication on a FPGA. When comparing the performance to the stand-alone

processor, a significant gap in performance must be corrected and improved upon. The

following chapter will discuss future work by analyzing areas of improvement and

interesting applications to apply this design to. Finally, conclusions will be given

encapsulating the entire experience.

6.1 Hardware Improvements

A few areas are available to improve from the hardware side of the system. The

Pilchard System is aging; new Xilinx Virtex-II Pro FPGAs are larger, faster, and have

optional PowerPC processors on board, and/or onboard memory or cache could be added

to the system. The Pilchard System was designed to operate on a 133 MHz memory bus;

however, today’s computers have much faster memory buses with speeds of up to 800

MHz [18]. The Pilchard System could not take advantage of today’s bus speeds. If the

overall system hardware was upgraded, several innovations could play an immense role

without the sparse matrix sparse vector design even changing. If the bus was dedicated to

the FPGA’s needs and running at a speed of 800 MHz, the bus could theoretically support

up to 8 FPGAs all running at 100 MHz assuming the Pilchard board would be compatible

or if it were upgraded.

 81

Upgrading the FPGA could play a significant role in improvement as well. If a

board using a Xilinx Virtex-II Pro X were placed on one of the latest computers,

speedups and improvements would be found in several areas. Xilinx Virtex-II Pro X

XC2VPX70 has almost three times the number of slices (33,088) as the Virtex 1000-E

(12,288 slices and 4Kbits of block RAM) and has 5.5Mb of dual port block RAMs

available allowing for significant upgrades in vector storage size, concurrent compares,

and vector data storage. With that much block RAM available; it is even possible that the

entire vector and even small to midsize sparse matrices could be stored on the FPGA at

the very least. The optional PowerPCs could also be used on the latest Virtex-II Pro X

FPGAs to assist in the overall control or various other areas. With this single

improvement in FPGA size, the vector size stored on the FPGA and number of parallel

compares could at least be tripled if the rest of the design remains intact. This estimation

is based on an earlier design that had twice the current vector size stored and double the

number of compares, and the design was only over-mapped by only 4-5,000 slices.

Simulation times improved almost 40% when twice the current number of compares and

vector storage was implemented.

Another benefit in being able to store more if not the entire vector on the FPGA

and possibly the matrix is that the memory bus would only be needed at the beginning of

execution to load all of the information onto the FPGA. As mentioned in the previous

chapter, the I/O communication cost of the memory bus is potentially consuming 30 to

97% of execution time. Having onboard RAM or cache on the pilchard board, or another

similar type board would create the same improvements in eliminating as much of the

memory bus dependency as possible. Having onboard RAM would likely be very large

 82

in comparison to the FPGA’s RAM (32 – 128 Mb) and could quite possibly store all

necessary matrix and vector data.

If upgrading the Pilchard System is not an option, at the very least more than one

Pilchard System could be placed on a computer with a faster bus speed so more FPGA

resources are available to improve overall performance (again assuming the Pilchard

Board could operate on a faster bus). If the Pilchard System was no longer usable the

design, excluding the Pcore interface, could be fitted onto another system where more

FPGA resources are available. The Pcore interface is specific to the Pilchard System;

therefore, a new interface would have to be developed for any new system the design is

placed on. While hardware improvements are not always easy to accommodate due to

economics, design improvements can still be made.

A final hardware improvement would be for the Pilchard Board to be on a bus

utilizing some sort of DMA Controller. Currently the Pilchard must compete for the

memory bus like every other process running on the main computer. This can create

unknown and unpredictable data transfer times, not to mention increased communication

costs. If a DMA was used, the controller could gain access of the bus and be able to send

dedicated block transfers of data to the FPGA without so much interruption, again further

reducing I/O costs.

6.2 FPGA Architecture Improvement

An architectural improvement in the design or layout of processes on the FPGA

would be to add the capability of allowing multiple configurations based on the structure

of the sparse matrix. This analysis and design would require pre-processing which could

be done on the FPGA or software side and would likely require a fair amount of research

 83

into how this could be efficiently implemented, but having the ability to cater to how the

FPGA solves a structured matrix would be beneficial to overall performance provided

that the preprocessing step did not outweigh the improvement. Sometimes sparse matrix

sparse vector multiplications are run multiple times for example in executing some

iterative solvers. If the FPGA could adapt by monitoring the Ψ, after the first run, the

design could adjust by possibly utilizing more MACs if the Ψ value was large (0.6 to 1.0

possibly). This would be assuming more MAC units could fit on the FPGA.

6.3 Algorithmic Improvements

In the creation and design of the sparse matrix sparse vector multiplication,

several important areas have opened up to improve efficiency and overall performance by

reducing the amount of inactivity during waiting, improving data accuracy, and not

wasting clock cycles handling unnecessary information. These algorithmic

improvements include only grabbing vector values as needed and then storing them if

needed again, loading up the next compare results while waiting on an answer from the

multiply accumulator, adding full IEEE 754 support for floating point numbers, keeping

track of multiple partial sums simultaneously, and reducing the number of pipeline stages

in the floating point units.

An algorithm that only requested and stored vector values as needed could

possibly be implemented over the existing model with only incurring the penalty of one

extra sparse code clock cycle per REPORTx state encountered. This extra clock cycle

would be needed to encode a request to the C program to send a vector value or values

with the matched matrix values. To handle this on the FPGA side, each vector slot would

have a status bit of whether it had the value available for a particular address or not. The

 84

check for the existing vector value could be done in the same processes as the current

compare processes if the overall speed is not slowed down, or it could be handled in

separate processes. The only difficulty in handling this approach would be keeping track

of matrix and vector values when streaming them into the multipliers. All that should be

necessary is to predetermine an algorithm that would handle expected ordering of the

values sent on the FPGA side and implemented by the C program. The improvements

seen by this scheme would be every time a startup cost is incurred of reloading the

vector. The best-case scenario for the improvement would be that 2 out of every 3 clock

cycles during a vector load would be saved per vector value not ever needed. As is

typical, the more dense the matrix and vector, the less of an improvement that will be

observed; however this improvement while not helping the worst-case scenario, would

help the best-case scenario of an extremely sparse matrix and vector. The cost of sending

the vector value with the matrix values is no different than preloading it. Again, this

method would reduce costly I/O as has been shown to be a large problem.

Another improvement to the algorithm of the system would be improving the

overall system efficiency while waiting for an answer from the FPGA code. Currently

while the FPGA code is determining a partial sum after an over flag has gone high, the C

program waits for the answer, which could take about 1 to 1.5 microseconds (according

to simulation times) if waiting on a partial sum after a set of compare matches. During

this time the FPGA could send in the next row’s matrix addresses to begin the next round

of compares. If the partial sum were to be found during this time, the FPGA could

simply wait until after the address data has been streamed in for comparing. A special

case to take care of here is if there were no matches to be calculated into the current

 85

partial sum, it is possible the partial sum could already be ready; therefore, in this case

the C program should just wait on the partial sum. This improvement could help both the

best and worst-case scenarios.

Adding full IEEE 754 support into the floating-point units would be beneficial in

that the usefulness of this design for scientific use would be more practical. While

improving the floating-point units, they could both be analyzed to see if any of the

existing pipeline stages could be consolidated. Typically the more pipeline stages, the

faster the component, but if the speed can be maintained while reducing pipeline stages,

the overall latency when waiting for a result is reduced. In particular, consolidating the

adder pipeline would shave clock cycles off finding the partial sum as that is a bottleneck

in the overall design due to the adder having to wait on itself for 13 clock cycles for a

result if the last two pieces of data to be summed are not available at the same time.

The last algorithmic improvement involves the continued improvement over the

adder bottleneck. As the number of results run low for the adder to put together for a

partial sum, the adder may only have a couple of additions in the pipeline while another

piece of data waits on results. The adder is in use, but the pipeline is becoming a

hindrance instead of a benefit. To help mask this problem, giving the multiply

accumulator the ability to handle multiple partial sums would help immensely. Creating

this improvement would automatically improve some other areas too. To handle multiple

partial sums simultaneously, the overall system would need to just send in rows of

information and not have to wait for an answer like mentioned above. For the FPGA to

notify the C program that an answer is ready, it can do this by using a reserved bit of the

output vector during the REPORTx stage. Also, the remaining 3 bits could be used to

 86

signal that up to 8 answers are available; therefore, up to 8 partial sums could be the limit

supported (000 would stand for 1, since the answer flag must be high to signal that any

results are available). This improvement would definitely require further analysis as

supporting 8 partial sums could overload the existing single adder requiring the addition

of one or more addition units. The downside to this approach is determining how an

adder knows which set of data that is currently being considered for addition goes to

which partial sum. A buffer that mirrors the data buffer would likely be used that stands

for the partial sum that data corresponds to. Implementing this could be very complex

yet very beneficial.

6.4 Future Applications

In addition to improvements that could be made on the existing system, the

overall approach could be applied to new problems or altered for different applications.

Some of these different applications would be applying the design to sparse matrix sparse

matrix multiplication problems, altering the design to only handle compares, or reading in

multiple rows of a matrix instead of multiple elements from one row. Altering the design

to handle only comparisons could have a unique impact on the overall problem.

Essentially, the only involvement of the FPGA would be to read in vector and matrix

addresses, compare them, and send out the results in some encoded fashion. No multiply

accumulation would be handled on the FPGA. While this greatly simplifies the amount

of work done on the FPGA it also further complicates the work of the C program.

Unfortunately for the C program, it must compete with an operating system and possibly

other programs. The FPGA only has to worry about itself once it has the data necessary

 87

to process. As has been observed the overhead of transferring and partial summing all of

the floating-point data is costly.

Another application of this design would be to transfer addresses of the matrix

two to multiple rows at a time. This would require the ability to handle partial sums. The

performance results could have some intriguing affects when compared to the original

algorithm. A problem with this method; however, is if one row is ready for a new vector

to be loaded while other rows are not ready.

A final and more practical application would involve the exploration of applying

this design to the calculation of sparse matrix sparse matrix multiplication. The basis for

sparse matrix sparse matrix multiplication is essentially sparse matrix sparse vector

multiplication repeated for each vector of the second matrix. This application could be

divided on multiple computers using the Pilchard System over a network. The load could

be distributed by one row of the second matrix per computer or it could be broken down

further into each computer gets a portion of a vector per row of the second matrix.

There are numerous possibilities to improve upon the existing design and to apply

it new areas in computing for improved performance results.

6.5 Conclusion

In evaluating the entire design process, design, and results a lot has been learned

about sparse matrix sparse vector multiplication on parallel and reconfigurable

computing. When evaluating results from this problem various different characteristics

of the sparse matrix and vector affect the outcome. When viewing results, the number of

nonzeros must always be taken into consideration as well when comparing to other

 88

results. The potential influence Ψ has on performance with how it measures the number

of compares and hits regarding performance time are important too.

The importance of being able to perform post-synthesis and post-layout simulations

was reinforced too. When attempting to troubleshoot problems that did not appear in

simulation, determining what exactly is going wrong in the chip is extremely difficult and

it is hard to know if processes sharing data over different clock rates are synchronizing

correctly. A lot of time spent troubleshooting errors could conceivably have been saved

if this capability was available.

Even though FPGA performance results were slower than the stand-alone computer’s

performance by 50-60 times, it is worth continued research in this area for several

reasons. First not much research as been conducted or at least published regarding sparse

matrix sparse vector multiplication using FPGA’s, and this one approach certainly

doesn’t cover all of the possibilities of implementations; however, it does take a

performance minded approach and discusses several possibilities for improvements. Due

to the largest bottleneck being the heavy performance cost paid for memory bus

communication and contention as well as memory constraints, the design could actually

be extremely competitive if not faster to the stand-alone computer’s performance. As

was mentioned in the previous chapter, simulation times were extremely close to that of

the actual performance times on the stand-alone computer’s results. Add in more FPGA

room and the potential performance improvement is quite optimistic. Exploring these

external limitations to the design’s performance is a must. In addition to external

limitations, there are also design improvements that can still be made as mentioned

earlier in the chapter.

 89

In summary, being a pioneer in this particular application of the sparse matrix sparse

vector multiplication, much has been learned but plenty of research remains in exploring

this topic. Its importance is felt in the scientific computing community and could

therefore take advantage of performance improvements resulting from continued research

in this field.

 90

References

 91

References

1. The Message Passing Interface Standard (2004). http://www-
unix.mcs.anl.gov/mpi/mpich/

2. Parallel Virtual Machine (2004). http://www.csm.ornl.gov/pvm/pvm_home.html
3. Institute for Electrical and Electronics Engineers. IEEE 754 Standard for Binary

Floating-Point Arithmetic, 1985.
4. K.H. Tsoi. Pilchard User Reference (V0.1), Department of Computer Science

and Engineering, The Chinese University of Hong Kong, Shatin, NT Hong Kong,
January 2002.

5. K. A. Gallivan. Set 2 – Sparse Matrix Basics. School of Computational Science
and Information Technology, Florida State University,2004.
http://www.csit.fsu.edu/~gallivan/courses/NLA2/set2.pdf

6. K. L. Wong. Iterative Solvers for System of Linear Equations. Joint Institute for
Computational Science. 1997.

7. D. W. Bouldin. Lecture Notes: Overview, ECE 551, Electrical and Computer
Engineering Department, University of Tennessee, 2002.

8. N. Shirazi, A. Walters, and P. Athanas. Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing Machines. EEE Symposium on
FPGAs for Custom Computing Machines, Napa, California, Apr 1995.

9. G. Lienhart, A. Kugel, and R. Männer. Using Floating-Point Arithmetic on
FPGAs to Accelerate Scientific N-Body Simulations. Proceedings, IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 182–
191, Napa, CA, Apr. 2002.

10. H. ElGindy, Y. Shue. On Sparse Matrix-Vector Multiplication with FPGA-Based
System. Proceedings of the 10 th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'02), p.273, September 22-
24, 2002 .

11. Netlib Repository. The University of Tennessee, Knoxville and Oak Ridge
National Laboratories, www.netlib.org.

12. G. Wellein, G. Hager, A. Basermann, and H. Fehske. Fast sparse matrix-vector
multiplication for TeraFlop/s computers. In High Performance Computing for
Computational Science - VECPAR 2002, Lecture Notes in Computer Science,
pages 287-301. Springer, 2003.

13. W. Gropp, D. Kaushik, D. Keyes, and B. Smith. Improving the performance of
sparse matrix-vector multiplication by blocking. Technical report, MCS Division,
Argonne National Laboratory. www-fp.mcs.anl.gov/petsc-
fun3d/Talks/multivec_siam00_1.pdf.

14. R. Geusand and S. Röllin. Towards a fast parallel sparse matrix-vector
multiplication. Proceedings of the International Conference on Parallel
Computing (ParCo), pages 308.315. Imperial College Press, 1999.

15. F. Khoury. Efficient Parallel Triangular System Solvers for Preconditioning
Large Sparse Linear Systems. Honour’s Thesis, School of Mathematics,
University of New South Wales. http://www.ac3.edu.au/edu/papers/Khoury-
thesis/thesis.html,1994.

 92

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.csit.fsu.edu/~gallivan/courses/NLA2/set2.pdf
http://portal.acm.org/citation.cfm?id=795962&dl=GUIDE&coll=GUIDE&CFID=20454657&CFTOKEN=75450705
http://portal.acm.org/citation.cfm?id=795962&dl=GUIDE&coll=GUIDE&CFID=20454657&CFTOKEN=75450705
http://portal.acm.org/citation.cfm?id=795962&dl=GUIDE&coll=GUIDE&CFID=20454657&CFTOKEN=75450705
http://portal.acm.org/citation.cfm?id=795962&dl=GUIDE&coll=GUIDE&CFID=20454657&CFTOKEN=75450705
http://www.netlib.org/
http://www.ac3.edu.au/edu/papers/Khoury-thesis/thesis.html
http://www.ac3.edu.au/edu/papers/Khoury-thesis/thesis.html

16. Xilinx, www.xilinx.com.
17. D. E. Culler, J. P. Singh, and A. Goopta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufman Publishers, Inc., San Francisco:
1999.

18. Dell Computer Corporation, www.dell.com.

 93

http://www.xilinx.com/

Appendices

 94

Appendix A – Dataset Statistics

 95

Characteristic Data 1 Data 2 Data 3
CPU time 10 36 50
FPGA time 548 1770 2300
Hits 18 170 320
Compares 62 1455 1852
Ψ 0.3 0.12 0.17
Nonzeros 18 858 1020
Vector Loads 1 4 6
Actual MFLOPS CPU 3.600 9.444 12.800
Actual MFLOPS FPGA 0.066 0.192 0.278
Theoretical MFLOPS CPU 933 933 933
Theoretical MFLOPS FPGA 150 150 150
Percent of MFLOPS CPU 0.30% 0.79% 1.07%
Percent of MFLOPS FPGA 0.04% 0.13% 0.19%
FPGA Compares 576 27456 32640

Characteristic Data 4a Data 4b Data 4c
CPU time 37 38 38
FPGA time 2353 2354 2357
Hits 24 48 72
Compares 1512 1488 1464
Ψ .016 .032 .049
Nonzeros 1344 1344 1344
Vector Loads 1 1 1
Actual MFLOPS CPU 1.297 2.526 3.789
Actual MFLOPS FPGA 0.020 0.041 0.061
Theoretical MFLOPS CPU 933 933 933
Theoretical MFLOPS FPGA 150 150 150
Percent of MFLOPS CPU 0.14% 0.27% 0.41%
Percent of MFLOPS FPGA 0.01% 0.03% 0.04%
FPGA Compares 43008 43008 43008

Characteristic Data 4d Data 5
CPU time 35 28
FPGA time 2353 1703
Hits 96 96
Compares 1440 1080
Ψ .067 .089
Nonzeros 1344 984
Vector Loads 1 1
Actual MFLOPS CPU 5.486 6.857
Actual MFLOPS FPGA 0.082 0.113
Theoretical MFLOPS CPU 933 933
Theoretical MFLOPS FPGA 150 150
Percent of MFLOPS CPU 0.59% 0.73%
Percent of MFLOPS FPGA 0.05% 0.08%
FPGA Compares 43008 31488

 96

Appendix B – Sparse Matrix Sparse Vector Multiplication C Code

 97

#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>

long ltime;
float ltime2;
struct timeval t_start, t_finish;

/*Pointer indexing for a 1-d array
 p[5] = *(p+5) */

/*Remember to p = i; first if int *p,i[10]; earlier*/

/*Pointer indexing for a 10 by 10 int array
 the 0,4 element of array a may be referenced by
 a[0][4] or *((int *)a+4)
 element 1,2
 a[1][2] or *((int *)a+12)
 in general
 a[j][k] = *((base type *)a+(j*row length)+k)*/

int main(int argc, char *argv[])
{
 FILE *mdatfp, *mrowfp, *vecfp;
 unsigned long int *c, *r, *va, *ya, a, matsize=0, matrsize=0,
vecsize=0;
 double *v, *x, *y, d;
 int i,j,k;

 if (argc != 4) {
 printf("mv_fpgaz matrixfile matrixrowfile vectorfile\n");
 exit(1);
 }

 if((mdatfp = fopen(argv[1], "r")) == NULL) {
 printf(" cannot open file 1.\n");
 exit(1);
 }

 if((mrowfp = fopen(argv[2], "r")) == NULL) {
 printf(" cannot open file 1.\n");
 exit(1);
 }

 if((vecfp = fopen(argv[3], "r")) == NULL) {
 printf(" cannot open file 1.\n");
 exit(1);
 }

 while(fscanf(mdatfp, "%u%le ", &a,&d)==2)
 {
 matsize++;
 }

 98

 while(fscanf(mrowfp, "%u", &a)==1)
 {
 matrsize++;
 }

 while(fscanf(vecfp, "%u%le ", &a,&d)==2)
 {
 vecsize++;
 }
 rewind(mdatfp);
 rewind(mrowfp);
 rewind(vecfp);

 c = (unsigned long int *)malloc(matsize * sizeof(unsigned long int)
);
 v = (double *)malloc(matsize * sizeof(double));
 r = (unsigned long int *)malloc(matrsize * sizeof(unsigned long int)
);
 x = (double *)malloc(vecsize * sizeof(double));
 va = (unsigned long int *)malloc(vecsize * sizeof(unsigned long int)
);
 y = (double *)malloc(matrsize * sizeof(double));
 ya = (unsigned long int *)malloc(matrsize * sizeof(unsigned long int)
);

 i=0;
 while(fscanf(mdatfp, "%u%le ", (c+i),(v+i))==2)i++;

 i=0;
 while(fscanf(mrowfp, "%u ",(r+i))==1)i++;

 i=0;
 while(fscanf(vecfp, "%u%le ", (va+i),(x+i))==2)i++;

 fclose(mdatfp);
 fclose(mrowfp);
 fclose(vecfp);

 gettimeofday(&t_start,NULL);

for (i = 0; i < matrsize-1; i++)
{
 *(y+i) = 0.0;
 k=0;
 for (j = *(r+i); j<*(r+i+1); j++)
 {

 if(*(c+j) < *(va+k))continue;
 else if(*(c+j) == *(va+k))
 {
 *(y+i) = *(y+i) + *(v+j) * *(x+ k);
 k++;
 }
 else
 {

 99

 if(k<=vecsize)
 {
 for(k=k++;k<=vecsize-1;k++)
 {
 if(*(c+j) < *(va+k))break;
 else if(*(c+j) == *(va+k))
 {
 *(y+i) = *(y+i) + *(v+j) * *(x+ k);
 break;
 }
 else
 {
 if(k<=vecsize)continue;
 else break;
 }
 }
 }
 else break;
 if(k<=vecsize)
 {
 if(*(c+j) < *(va+k))continue;
 else if(*(c+j) == *(va+k))continue;
 else break;
 }
 else break;
 }
 }

}

 gettimeofday(&t_finish,NULL);
 ltime = (t_finish.tv_sec-t_start.tv_sec) * 1000000 +
(t_finish.tv_usec-t_start.tv_usec);
 ltime2 = (float) ltime / 1;
 printf("CPU : calculation completed in %f usec\n",ltime2);

for(i=0;i<matrsize-1;i++)
{
 printf("--> %f\n",*(y+i));
}
return 0;
}

 100

Appendix C – FPGA Host C Code

 101

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include "iflib.h"
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>

long ltime;
float ltime2;
struct timeval t_start, t_finish;

/*Pointer indexing for a 1-d array
 p[5] = *(p+5) */

/*Remember to p = i; first if int *p,i[10]; earlier*/

/*Pointer indexing for a 10 by 10 int array
 the 0,4 element of array a may be referenced by
 a[0][4] or *((int *)a+4)
 element 1,2
 a[1][2] or *((int *)a+12)
 in general
 a[j][k] = *((base type *)a+(j*row length)+k)*/

int main(int argc, char *argv[])
{
 unsigned long long int *c, *va, *ya, a1,*r1,*r2,matsize=0,
matrsize=0, vecsize=0, zeros;
 unsigned long long int *ansptr,temp,*size2fpga;
 double *v, *x, *y, *d;
 FILE *mdatfp, *mrowfp, *vecfp;
 int64 data, addr,input,input2,init;
 int i,fd,sw,t;
 char *memp;
 int stoppoint,q,firsttime;
 double *z,ps,*partialsum,lastsent,ps2,ps3;
 char ch[2], status[65], match, over, ansf,crrnt;

 int
stppt,strtm,A,rowcnt,numrows,strtpt,n,done,check,newvecflag2,g,p,sent,r
,w;

 if (argc != 4) {
 printf("mv_fpgaz matrixfile matrixrowfile vectorfile\n");
 exit(1);
 }

 if((mdatfp = fopen(argv[1], "r")) == NULL) {
 printf(" cannot open file 1.\n");
 exit(1);
 }

 102

 if((mrowfp = fopen(argv[2], "r")) == NULL) {
 printf(" cannot open file 1.\n");
 exit(1);
 }

 if((vecfp = fopen(argv[3], "r")) == NULL) {
 printf(" cannot open file 1.\n");
 exit(1);
 }

 while(fscanf(mdatfp, "%u%le ", &a1,&d)==2)
 {
 matsize++;
 }

 while(fscanf(mrowfp, "%u ", &a1)==1)
 {
 matrsize++;
 }

 while(fscanf(vecfp, "%u%le ", &a1,&d)==2)
 {
 vecsize++;
 }
 rewind(mdatfp);
 rewind(mrowfp);
 rewind(vecfp);

 /*Matrix Column Address*/
 c = (unsigned long long int *)malloc(matsize * sizeof(unsigned long
long int));
 /*Matrix Value*/
 v = (double *)malloc(matsize * sizeof(double));
 /*Matrix Row Pointer 1 & 2 */
 r1 = (unsigned long long int *)malloc(matrsize * sizeof(unsigned long
long int));
 r2 = (unsigned long long int *)malloc(matrsize * sizeof(unsigned long
long int));
 /*Vector Value*/
 x = (double *)malloc(vecsize * sizeof(double));
 /*Vector Address*/
 va = (unsigned long long int *)malloc(vecsize * sizeof(unsigned long
long int));
 /*Resultant Vector*/
 y = (double *)malloc(matrsize * sizeof(double));
 /*Resultant Vector Address*/
 ya = (unsigned long long int *)malloc(matrsize * sizeof(unsigned long
long int));
 partialsum = (double *)malloc(1 * sizeof(double));

 i=0;
 while(fscanf(mdatfp, "%u%le ", (c+i),(v+i))==2)i++;

 i=0;

 103

 while(fscanf(mrowfp, "%u ", (r1+i))==1)i++;

 i=0;
 while(fscanf(vecfp, "%u%le ", (va +i),(x+i))==2)i++;

 for(w=0; w<matrsize; w++)
 {
 *(r2+w) = *(r1+w);
 /**(y+w) = 0e0;
 printf("y %d init to %le\n",w,*(y+w));*/
 }

 /*printf("%u and %e for %d reads\n", addr, data,x);*/

 fclose(mdatfp);
 fclose(mrowfp);
 fclose(vecfp);

 fd = open(DEVICE, O_RDWR);
 memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PRIVATE, fd, 0);
 if (memp == MAP_FAILED) {
 perror(DEVICE);
 exit(1);
 }

 sw = 0;
 t=0;
 stoppoint = 31-3;

 q=0;
 /*gettimeofday(&t_start,NULL);*/

 z = &data;
 ansptr = &input;
 partialsum = &input2;
 size2fpga = &init;

 stppt = 0;
 A = 0;
 strtm = 0;
 rowcnt = 0;
 numrows = matrsize - 2;

 temp = 0e0;
 /*zeros =
00;*/
 zeros = 0x0000000000000000;
 status[64] = '\0';
 ch[0] = '0';
 ch[1] = '\0';
 match = '0';
 over = '0';
 strtpt = 0;
 strtm = 0;

 104

 n = 63;
 done = 0;
 check = 0;
 crrnt = '0';
 newvecflag2 = 0;
 g=8;
 r=0;
 lastsent=0e0;
 sent=0;
 p=0;
 ps=0e0;
 ps2=0e0;
 ps3=0e0;
 firsttime = 0;
 *size2fpga = matrsize - 2;
/*Note: The case statements will fall through to each one checking
 sw. If a break is the last statement in a case, then it breaks
 out of the switch without falling through the rest of the
cases*/
 gettimeofday(&t_start,NULL);
while(1)
{
 switch(sw)
 {
 case 0:
 /*printf("# of rows = %08x,%08x\n",init.w[1],init.w[0]);*/
 write64(init, memp+(0x0000<<3));
 write64(init, memp+(0x0000<<3));
 case 1:
 /*Loop will send 64 vector addresses and values*/
 /*It remembers where to continue for next time*/
 for(t=t;t<=stoppoint;t=t+4)
 {
 if(t <= vecsize-1-3)
 {
 /**k = *(va + t);*/
 /*data.w[0] = *(va + t + 1);*/
 addr.w[1] = *(va + t);
 addr.w[0] = *(va + t + 1);
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = *(va + t + 2);
 addr.w[0] = *(va + t + 3);
 write64(addr, memp+(0x0000<<3));
 *z = *(x + t);
 write64(data, memp+(0x0000<<3));
 *z = *(x + t + 1);
 write64(data, memp+(0x0000<<3));
 *z = *(x + t + 2);
 write64(data, memp+(0x0000<<3));
 *z = *(x + t + 3);
 write64(data, memp+(0x0000<<3));
 }
 else if(t == vecsize-1-2)
 {
 addr.w[1] = *(va + t);

 105

 addr.w[0] = *(va + t + 1);
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = *(va + t + 2);
 addr.w[0] = 0x00000000;
 write64(addr, memp+(0x0000<<3));
 *z = *(x + t);
 write64(data, memp+(0x0000<<3));
 *z = *(x + t + 1);
 write64(data, memp+(0x0000<<3));
 *z = *(x + t + 2);
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 }
 else if(t == vecsize-1-1)
 {
 addr.w[1] = *(va + t);
 addr.w[0] = *(va + t + 1);
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = 0x00000000;
 addr.w[0] = 0x00000000;
 write64(addr, memp+(0x0000<<3));
 *z = *(x + t);
 write64(data, memp+(0x0000<<3));
 *z = *(x + t + 1);
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 }
 else if(t == vecsize-1)
 {
 addr.w[1] = *(va + t);
 addr.w[0] = 0x00000000;
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = 0x00000000;
 addr.w[0] = 0x00000000;
 write64(addr, memp+(0x0000<<3));
 *z = *(x + t);
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 }
 else
 {
 addr.w[1] = 0x00000000;
 addr.w[0] = 0x00000000;
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = 0x00000000;
 addr.w[0] = 0x00000000;

 106

 write64(addr, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 }
 }
 stoppoint = t + 28;
 /*go to processing stage*/
 sw = 2;
 case 2:
 /*Reset all handshaking locations*/
 addr.w[1] = 0xFFFFFFFF;
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0002<<3)); /*set report location*/
 write64(addr, memp+(0x0003<<3)); /*set answer location */

 for(q=0;q<=52;q=q+4)
 {
 if(*(r1+A)+strtm+q < *(r2+A+1)-3)
 {
 addr.w[1] = *(c + (*(r1+A)+q+strtm));
 addr.w[0] = *(c + (*(r1+A)+q + 1+strtm));
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = *(c + (*(r1+A)+q + 2+strtm));
 addr.w[0] = *(c + (*(r1+A)+q + 3+strtm));
 write64(addr, memp+(0x0000<<3));
 }
 else if(*(r1+A)+strtm+q == *(r2+A+1)-3)
 {
 addr.w[1] = *(c + (*(r1+A)+q+strtm));
 addr.w[0] = *(c + (*(r1+A)+q + 1+strtm));
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = *(c + (*(r1+A)+q + 2+strtm));
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0000<<3));
 }
 else if(*(r1+A)+strtm+q == *(r2+A+1)-2)
 {
 addr.w[1] = *(c + (*(r1+A)+q+strtm));
 addr.w[0] = *(c + (*(r1+A)+q + 1+strtm));
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = 0xFFFFFFFF;
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0000<<3));
 }
 else if(*(r1+A)+strtm+q == *(r2+A+1)-1)
 {
 addr.w[1] = *(c + (*(r1+A)+q+strtm));
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0000<<3));

 107

 addr.w[1] = 0xFFFFFFFF;
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0000<<3));
 }
 else
 {
 addr.w[1] = 0xFFFFFFFF;
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = 0xFFFFFFFF;
 addr.w[0] = 0xFFFFFFFF;
 write64(addr, memp+(0x0000<<3));
 }
 }
 /*if (rowcnt == numrows)
 {
 /*Notify FPGA on last row!
 addr.w[1] = 0x00000000;
 addr.w[0] = 0x00000000;
 write64(addr, memp+(0x0000<<3));
 addr.w[1] = 0x00000000;
 addr.w[0] = 0x00000000;
 printf("%08x --> %08x\n",addr.w[1],addr.w[0]);
 write64(addr, memp+(0x0000<<3));
 }*/
 /*Now send start signal*/

 sw = 3;
 /*go to report stage to receive feedback*/
 /*break;*/
 case 3:
 for(i=0;i<100;i++);
 read64(&input, memp+(0x0002<<3));
 while(input.w[1]==0xFFFFFFFF && input.w[0]==0xFFFFFFFF)
 {
 read64(&input, memp+(0x0002<<3));
 }
 addr.w[1] = 0xFFFFFFFF;
 addr.w[0] = 0xFFFFFFFF;
 write64(addr,memp+(0x0002<<3));

 /*temp = *ansptr;*/
 for(i=63; i>=0; i--) {
 temp = *ansptr;
 temp = (temp >> i) % 2;
 sprintf(ch,"%ld",temp);
 status[63-i] = ch[0];
 }
 status[64] = '\0';
 match = status[0];
 over = status[1];

 strtpt = *(r1+A) + strtm;
 strtm = strtm + 56;

 108

 stppt = 0;
 if (over == '1')
 {
 n = 63; /*range 8 to 63*/
 done = 0;
 stppt = 0;
 while (done == 0)
 {
 crrnt = status[n];
 if (status[2]=='1')
 {
 stppt = 63;
 check = strtpt + 56;
 if (check > matsize-1)
 {
 *(r1+A) = matsize;
 }
 else
 {
 *(r1+A) = check;
 }
 done = 1;
 }
 else if(crrnt == '1' && match =='1')
 {
 stppt = n;
 status[n]='0';
 check = strtpt - 1 - (63 - n) + 56;
 if (check > matsize-1)
 {
 *(r1+A) = matsize;
 }
 else
 {
 *(r1+A) = check;
 }
 done = 1;
 }
 else if(crrnt == '1' && match =='0')
 {
 stppt = n;
 status[n] = '0';
 check = strtpt - 1 - (63 - n) + 56;
 if (check > matsize-1)
 {
 *(r1+A) = matsize;
 }
 else
 {
 *(r1+A) = check;
 }
 done = 1;
 }
 n = n - 1;
 }

 109

 strtm = 0;
 if (rowcnt == numrows)
 {
 A = 0;
 rowcnt = 0;
 newvecflag2 = 1;
 firsttime = 1;
 }
 else
 {
 A++;
 rowcnt++;
 }
 }

 /*grab individual bits to see where to go*/
 if (match == '1')
 { /*Send matched data*/
 sw = 4;
 }
 else if(over == '1')
 { /*Get answer*/
 sw = 5;
 }
 else
 { /*Go back to processing*/
 sw = 2;
 }
 break;
 case 4:
 /*Loop back through previous 56 submissions to send data*/
 /*if(over == 1 || ansf == 1)
 {
 sw = 5;
 }*/
 match = '0';
 sent = 0;
 lastsent = 0e0;
 r = 0;
 for(g=8; g<=63; g++)
 {
 if(status[g]=='1')
 {
 *z = *(v+(strtpt + r));
 write64(data, memp+(0x0000<<3));
 lastsent = *z;
 sent = sent + 1;
 }
 if(g==stppt)break;
 else r++;
 }
 if((sent%2)==1)
 {
 *z = lastsent;

 110

 write64(data, memp+(0x0000<<3));
 /**z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));*/

 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 }
 else
 {
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 *z = 0x0000000000000000;
 write64(data, memp+(0x0000<<3));
 }
 if (over == '1')sw=5;
 else sw=2;

 /*NOW send start signal*/

 break;
 case 5:
 /*grab answer*/
 read64(&input2, memp+(0x0003<<3));
 while(input2.w[1]==0xFFFFFFFF && input2.w[0]==0xFFFFFFFF)
 {
 read64(&input2, memp+(0x0003<<3));
 }
 if (A==0 && firsttime==1)p=numrows;
 else if (A==0 && firsttime==0)p=0;
 else p=A-1;

 *(y+p) += *partialsum;

 if (newvecflag2 == 1)
 {
 if(t>=vecsize)sw = 6;
 else sw = 1;
 newvecflag2 = 0;
 }
 else sw = 2;
 over = '0';
 break;
 case 6:
 gettimeofday(&t_finish,NULL);

 for(i=0; i<=matrsize-2; i++)
 {
 printf("---> %le\n",*(y+i));
 }
 ltime = (t_finish.tv_sec-t_start.tv_sec) * 1000000 +
(t_finish.tv_usec-t_start.tv_usec);
 ltime2 = (float) ltime / 1;

 111

 printf("CPU : calculation completed in %f usec\n",ltime2);
 munmap(memp, MTRRZ);
 close(fd);
 exit(1);
 default:
 }
}

 return 0;
}

 112

Appendix D – Pilchard.vhd

 113

library ieee;
use ieee.std_logic_1164.all;

entity pilchard is
port (
 PADS_exchecker_reset: in std_logic;
 PADS_dimm_ck: in std_logic;
 PADS_dimm_cke: in std_logic_vector(1 downto 0);
 PADS_dimm_ras: in std_logic;
 PADS_dimm_cas: in std_logic;
 PADS_dimm_we: in std_logic;
 PADS_dimm_s: std_logic_vector(3 downto 0);
 PADS_dimm_a: in std_logic_vector(13 downto 0);
 PADS_dimm_ba: in std_logic_vector(1 downto 0);
 PADS_dimm_rege: in std_logic;
 PADS_dimm_d: inout std_logic_vector(63 downto 0);
 PADS_dimm_cb: inout std_logic_vector(7 downto 0);
 PADS_dimm_dqmb: in std_logic_vector(7 downto 0);
 PADS_dimm_scl: in std_logic;
 PADS_dimm_sda: inout std_logic;
 PADS_dimm_sa: in std_logic_vector(2 downto 0);
 PADS_dimm_wp: in std_logic;
 PADS_io_conn: inout std_logic_vector(27 downto 0));
end pilchard;

architecture syn of pilchard is

 component INV
 port (
 O: out std_logic;
 I: in std_logic);
 end component;

 component BUF
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component BUFG
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component CLKDLLHF is
 port (
 CLKIN: in std_logic;
 CLKFB: in std_logic;
 RST: in std_logic;
 CLK0: out std_logic;
 CLK180: out std_logic;
 CLKDV: out std_logic;
 LOCKED: out std_logic);
 end component;

 114

 component FDC is
 port (
 C: in std_logic;
 CLR: in std_logic;
 D: in std_logic;
 Q: out std_logic);
 end component;

 component IBUF
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component IBUFG
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component IOB_FDC is
 port (
 C: in std_logic;
 CLR: in std_logic;
 D: in std_logic;
 Q: out std_logic);
 end component;

 component IOBUF
 port (
 I: in std_logic;
 O: out std_logic;
 T: in std_logic;
 IO: inout std_logic);
 end component;

 component OBUF
 port (
 I: in std_logic;
 O: out std_logic);
 end component;

 component STARTUP_VIRTEX
 port (
 GSR: in std_logic;
 GTS: in std_logic;
 CLK: in std_logic);
 end component;

 component pcore
 port (
 clk: in std_logic;
 clkdiv: in std_logic;
 rst: in std_logic;

 115

 read: in std_logic;
 write: in std_logic;
 addr: in std_logic_vector(13 downto 0);
 din: in std_logic_vector(63 downto 0);
 dout: out std_logic_vector(63 downto 0);
 dmask: in std_logic_vector(63 downto 0);
 extin: in std_logic_vector(25 downto 0);
 extout: out std_logic_vector(25 downto 0);
 extctrl: out std_logic_vector(25 downto 0));
 end component;

 signal clkdllhf_clk0: std_logic;
 signal clkdllhf_clkdiv: std_logic;
 signal dimm_ck_bufg: std_logic;
 signal dimm_s_ibuf: std_logic;
 signal dimm_ras_ibuf: std_logic;
 signal dimm_cas_ibuf: std_logic;
 signal dimm_we_ibuf: std_logic;
 signal dimm_s_ibuf_d: std_logic;
 signal dimm_ras_ibuf_d: std_logic;
 signal dimm_cas_ibuf_d: std_logic;
 signal dimm_we_ibuf_d: std_logic;
 signal dimm_d_iobuf_i: std_logic_vector(63 downto 0);
 signal dimm_d_iobuf_o: std_logic_vector(63 downto 0);
 signal dimm_d_iobuf_t: std_logic_vector(63 downto 0);
 signal dimm_a_ibuf: std_logic_vector(14 downto 0);
 signal dimm_dqmb_ibuf: std_logic_vector(7 downto 0);
 signal io_conn_iobuf_i: std_logic_vector(27 downto 0);
 signal io_conn_iobuf_o: std_logic_vector(27 downto 0);
 signal io_conn_iobuf_t: std_logic_vector(27 downto 0);

 signal s,ras,cas,we : std_logic;

 signal VDD: std_logic;
 signal GND: std_logic;

 signal CLK: std_logic;
 signal CLKDIV: std_logic;
 signal RESET: std_logic;
 signal READ: std_logic;
 signal WRITE: std_logic;
 signal READ_p: std_logic;
 signal WRITE_p: std_logic;
 signal READ_n: std_logic;
 signal READ_buf: std_logic;
 signal WRITE_buf: std_logic;
 signal READ_d: std_logic;
 signal WRITE_d: std_logic;
 signal READ_d_n: std_logic;
 signal READ_d_n_buf: std_logic;

 signal pcore_addr_raw: std_logic_vector(13 downto 0);
 signal pcore_addr: std_logic_vector(13 downto 0);
 signal pcore_din: std_logic_vector(63 downto 0);
 signal pcore_dout: std_logic_vector(63 downto 0);

 116

 signal pcore_dmask: std_logic_vector(63 downto 0);
 signal pcore_extin: std_logic_vector(25 downto 0);
 signal pcore_extout: std_logic_vector(25 downto 0);
 signal pcore_extctrl: std_logic_vector(25 downto 0);
 signal pcore_dqmb: std_logic_vector(7 downto 0);

-- CLKDIV frequency control, default is 2
-- uncomment the following lines so as to redefined the clock rate
-- given by clkdiv
-- attribute CLKDV_DIVIDE: string;
-- attribute CLKDV_DIVIDE of U_clkdllhf: label is "4";

begin

 VDD <= '1';
 GND <= '0';

 U_ck_bufg: IBUFG port map (
 I => PADS_dimm_ck,
 O => dimm_ck_bufg);

 U_reset_ibuf: IBUF port map (
 I => PADS_exchecker_reset,
 O => RESET);

 U_clkdllhf: CLKDLLHF port map (
 CLKIN => dimm_ck_bufg,
 CLKFB => CLK,
 RST => RESET,
 CLK0 => clkdllhf_clk0,
 CLK180 => open,
 CLKDV => clkdllhf_clkdiv,
 LOCKED => open);

 U_clkdllhf_clk0_bufg: BUFG port map (
 I => clkdllhf_clk0,
 O => CLK);

 U_clkdllhf_clkdiv_bufg: BUFG port map (
 I => clkdllhf_clkdiv,
 O => CLKDIV);

 U_startup: STARTUP_VIRTEX port map (
 GSR => RESET,
 GTS => GND,
 CLK => CLK);

 U_dimm_s_ibuf: IBUF port map (
 I => PADS_dimm_s(0),
 O => dimm_s_ibuf);

 U_dimm_ras_ibuf: IBUF port map (
 I => PADS_dimm_ras,
 O => dimm_ras_ibuf);

 117

 U_dimm_cas_ibuf: IBUF port map (
 I => PADS_dimm_cas,
 O => dimm_cas_ibuf);

 U_dimm_we_ibuf: IBUF port map (
 I => PADS_dimm_we,
 O => dimm_we_ibuf);

 G_dimm_d: for i in integer range 0 to 63 generate

 U_dimm_d_iobuf: IOBUF port map (
 I => dimm_d_iobuf_i(i),
 O => dimm_d_iobuf_o(i),
 T => dimm_d_iobuf_t(i),
 IO => PADS_dimm_d(i));

 U_dimm_d_iobuf_o: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => dimm_d_iobuf_o(i),
 Q => pcore_din(i));

 U_dimm_d_iobuf_i: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => pcore_dout(i),
 Q => dimm_d_iobuf_i(i));

 U_dimm_d_iobuf_t: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => READ_d_n_buf,
 Q => dimm_d_iobuf_t(i));

 end generate;

 G_dimm_a: for i in integer range 0 to 13 generate

 U_dimm_a_ibuf: IBUF port map (
 I => PADS_dimm_a(i),
 O => dimm_a_ibuf(i));

 U_dimm_a_ibuf_o: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => dimm_a_ibuf(i),
 Q => pcore_addr_raw(i));

 end generate;

 pcore_addr(3 downto 0) <= pcore_addr_raw(3 downto 0);
 addr_correct: for i in integer range 4 to 7 generate
 ADDR_INV: INV port map (
 O => pcore_addr(i),

 118

 I => pcore_addr_raw(i));
 end generate;
 pcore_addr(13 downto 8) <= pcore_addr_raw(13 downto 8);

 G_dimm_dqmb: for i in integer range 0 to 7 generate

 U_dimm_dqmb_ibuf: IBUF port map (
 I => PADS_dimm_dqmb(i),
 O => dimm_dqmb_ibuf(i));

 U_dimm_dqmb_ibuf_o: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => dimm_dqmb_ibuf(i),
 Q => pcore_dqmb(i));

 end generate;

 pcore_dmask(7 downto 0) <= (others => (not pcore_dqmb(0)));
 pcore_dmask(15 downto 8) <= (others => (not pcore_dqmb(1)));
 pcore_dmask(23 downto 16) <= (others => (not pcore_dqmb(2)));
 pcore_dmask(31 downto 24) <= (others => (not pcore_dqmb(3)));
 pcore_dmask(39 downto 32) <= (others => (not pcore_dqmb(4)));
 pcore_dmask(47 downto 40) <= (others => (not pcore_dqmb(5)));
 pcore_dmask(55 downto 48) <= (others => (not pcore_dqmb(6)));
 pcore_dmask(63 downto 56) <= (others => (not pcore_dqmb(7)));

 G_io_conn: for i in integer range 2 to 27 generate

 U_io_conn_iobuf: IOBUF port map (
 I => io_conn_iobuf_i(i),
 O => io_conn_iobuf_o(i),
 T => io_conn_iobuf_t(i),
 IO => PADS_io_conn(i));

 U_io_conn_iobuf_o: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => io_conn_iobuf_o(i),
 Q => pcore_extin(i - 2));

 U_io_conn_iobuf_i: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => pcore_extout(i - 2),
 Q => io_conn_iobuf_i(i));

 U_io_conn_iobuf_t: IOB_FDC port map (
 C => CLK,
 CLR => RESET,
 D => pcore_extctrl(i - 2),
 Q => io_conn_iobuf_t(i));

 end generate;

 119

 U_io_conn_0_iobuf: IOBUF port map (
 I => dimm_ck_bufg,
 O => open,
 T => GND,
 IO => PADS_io_conn(0));

 U_io_conn_1_iobuf: IOBUF port map (
 I => GND,
 O => open,
 T => VDD,
 IO => PADS_io_conn(1));

 READ_p <=
 (not dimm_s_ibuf) and
 (dimm_ras_ibuf) and
 (not dimm_cas_ibuf) and
 (dimm_we_ibuf);

 U_read: FDC port map (
 C => CLK,
 CLR => RESET,
 D => READ_p,
 Q => READ);

 U_buf_read: BUF port map (
 I => READ,
 O => READ_buf);

 U_read_d: FDC port map (
 C => CLK,
 CLR => RESET,
 D => READ,
 Q => READ_d);

 WRITE_p <=
 (not dimm_s_ibuf) and
 (dimm_ras_ibuf) and
 (not dimm_cas_ibuf) and
 (not dimm_we_ibuf);

 U_write: FDC port map (
 C => CLK,
 CLR => RESET,
 D => WRITE_p,
 Q => WRITE);

 U_buf_write: BUF port map (
 I => WRITE,
 O => WRITE_buf);

 U_write_d: FDC port map (
 C => CLK,
 CLR => RESET,
 D => WRITE,
 Q => WRITE_d);

 120

 READ_n <= not READ;

 U_read_d_n: FDC port map (
 C => CLK,
 CLR => RESET,
 D => READ_n,
 Q => READ_d_n);

 U_buf_read_d_n: BUF port map (
 I => READ_d_n,
 O => READ_d_n_buf);

 -- User logic should be placed inside pcore
 U_pcore: pcore port map (
 clk => CLK,
 clkdiv => CLKDIV,
 rst => RESET,
 read => READ,
 write => WRITE,
 addr => pcore_addr,
 din => pcore_din,
 dout => pcore_dout,
 dmask => pcore_dmask,
 extin => pcore_extin,
 extout => pcore_extout,
 extctrl => pcore_extctrl
);

end syn;

 121

Appendix E – Pcore.vhd

 122

-- Pcore Wrapper
-- Author: Kirk A Baugher

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity pcore is
port (
 clk: in std_logic;
 clkdiv: in std_logic;
 rst: in std_logic;
 read: in std_logic;
 write: in std_logic;
 addr: in std_logic_vector(13 downto 0);
 din: in std_logic_vector(63 downto 0);
 dout: out std_logic_vector(63 downto 0);
 dmask: in std_logic_vector(63 downto 0);
 extin: in std_logic_vector(25 downto 0);
 extout: out std_logic_vector(25 downto 0);
 extctrl: out std_logic_vector(25 downto 0));
end pcore;

architecture syn of pcore is
component asyncfifo
 port (
 din: IN std_logic_VECTOR(127 downto 0);
 wr_en: IN std_logic;
 wr_clk: IN std_logic;
 rd_en: IN std_logic;
 rd_clk: IN std_logic;
 ainit: IN std_logic;
 dout: OUT std_logic_VECTOR(127 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic;
 rd_ack: OUT std_logic;
 rd_err: OUT std_logic;
 wr_ack: OUT std_logic;
 wr_err: OUT std_logic);
END component;

component sparsemvmult
PORT(
 CLK :IN STD_LOGIC;
 RESET : IN STD_LOGIC;
 din_rdy : IN STD_LOGIC;
 INP : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
 ADDR : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
 REPORTFLAG : OUT STD_LOGIC;
 ANS_FLAG_OUT : OUT STD_LOGIC;
 OUTPUT : OUT STD_LOGIC_VECTOR(63 DOWNTO 0));
END component;

component outram

 123

 port (
 addra: IN std_logic_VECTOR(1 downto 0);
 addrb: IN std_logic_VECTOR(1 downto 0);
 clka: IN std_logic;
 clkb: IN std_logic;
 dina: IN std_logic_VECTOR(63 downto 0);
 dinb: IN std_logic_VECTOR(63 downto 0);
 douta: OUT std_logic_VECTOR(63 downto 0);
 doutb: OUT std_logic_VECTOR(63 downto 0);
 wea: IN std_logic;
 web: IN std_logic);
END component;

signal wr_en, wr_ack, wr_err, rd_en, rd_ack, rd_err : std_logic;
signal full, empty, din_rdy, tic,finish,ready,read2,read3,read4 :
std_logic;
signal FIFO_in, FIFO_out, out2parith :std_logic_vector(127 downto
0);
signal parithout,temp :std_logic_vector(63 downto 0);

signal wea,web,ndb,rfdb,rdyb,tac : std_logic;
signal REPORTFLAG,ANS_FLAG_OUT : std_logic;
signal dina,dinb,douta,doutb : std_logic_vector(63 downto 0);
signal addrb : std_logic_vector(1 downto 0);
begin

fifo0: asyncfifo port map (
 din =>FIFO_in,
 wr_en =>wr_en,
 wr_clk =>clk,
 rd_en =>rd_en,
 rd_clk =>clkdiv,
 ainit =>rst,
 dout =>FIFO_out,
 full =>full,
 empty =>empty,
 rd_ack =>rd_ack,
 rd_err =>rd_err,
 wr_ack =>wr_ack,
 wr_err =>wr_err
);

smsv : sparsemvmult port map(
 CLK => clkdiv,
 RESET => rst,
 din_rdy => din_rdy,
 INP => out2parith,
 ADDR => addrb,
 REPORTFLAG => REPORTFLAG,
 ANS_FLAG_OUT => ANS_FLAG_OUT,
 OUTPUT => parithout
);

outram0 : outram port map(
 addra => addr(1 downto 0),

 124

 addrb => addrb,
 clka => clk,
 clkb => clkdiv,
 dina => din,
 dinb => parithout,
 douta => douta,
 doutb => doutb,
 wea => write,
 web => finish
);

finish <= (REPORTFLAG OR ANS_FLAG_OUT);

process(clk,rst)
variable tmpx : std_logic_vector(63 downto 0);
begin
if rst='1' then
 tmpx := (OTHERS=>'1');
 wr_en <= '0';
 tic <= '0';
 FIFO_in <= (OTHERS=>'1');
elsif clk'event and clk='1' then
 if write='1' and addr(1)='0' then
 if tic = '0' then
 tmpx := din;
 tic <= '1';
 wr_en <= '0';
 else
 FIFO_in <= tmpx & din;
 wr_en <= '1';
 tic <= '0';
 end if;
 else
 wr_en <= '0';
 tic <= tic;
 tmpx := tmpx;
 end if;
end if;
end process;

process(clkdiv,rst)
begin
if rst='1' then
 rd_en <= '0';
elsif clkdiv'event and clkdiv='1' then
 if empty = '0' then
 rd_en <= '1';
 else
 rd_en <= '0';
 end if;
end if;
end process;

process(clkdiv,rst)
begin

 125

if rst='1' then
 out2parith <= (OTHERS=>'1');
 din_rdy <= '0';
elsif clkdiv'event and clkdiv='1' then
 if rd_err = '0' and rd_ack = '1' then
 out2parith <= FIFO_out;
 din_rdy <= '1';
 else
 out2parith <= (OTHERS=>'1');
 din_rdy <= '0';
 end if;
end if;
end process;

dout <= doutb;

end syn;

 126

Appendix F – Sparsemvmult.vhd

 127

-- Sparse Matrix Sparse Vector Multiplier
-- < sparsemvmult.vhd >
-- 4/19/2004
-- Kirk A Baugher
-- kbaugher.edu
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
use IEEE.std_logic_unsigned.all;

ENTITY sparsemvmult IS
PORT(
 CLK :IN STD_LOGIC;
 RESET : IN STD_LOGIC;
 din_rdy : IN STD_LOGIC;
 INP : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
 ADDR : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
 REPORTFLAG : OUT STD_LOGIC;
 ANS_FLAG_OUT : OUT STD_LOGIC;
 OUTPUT : OUT STD_LOGIC_VECTOR(63 DOWNTO 0));
END sparsemvmult;

ARCHITECTURE behavior OF sparsemvmult IS
SIGNAL ANS_FLAG,overflag,New_vectorflag : STD_LOGIC;
SIGNAL ANSWER : STD_LOGIC_VECTOR(63 DOWNTO 0);
TYPE STATE_TYPE IS (ADDRESS, DATA,
PROCESSING,INITIALIZE,REPORTw,REPORTx,SEND,MACN);
SIGNAL STATE,STATEX,STATE_DEL : STATE_TYPE;
TYPE elmnt_addr IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL ea : elmnt_addr;
--TYPE elmnt_data IS ARRAY (0 TO 63) OF STD_LOGIC_VECTOR(63 DOWNTO 0);
--SIGNAL ed : elmnt_data;
SIGNAL j,gnd_bit : STD_LOGIC;
SIGNAL i : INTEGER RANGE 0 TO 63;
TYPE MACbuffer IS ARRAY (0 TO 63) OF STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL buff,accbuff : MACbuffer;
SIGNAL count1,count2 : INTEGER RANGE 0 TO 31;
SIGNAL OUTPUT1,OUTPUT2,OUTPUT3,OUTPUT4: STD_LOGIC_VECTOR(13 DOWNTO 0);
SIGNAL GND,rowcnt,rowcnt_less1,cntr : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL Acount,Acount1 : INTEGER RANGE 0 TO 13;
SIGNAL Mult_in1A,Mult_in1B : STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL Mult_in2A,Mult_in2B : STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL over,stall,matchflag,one,din_rdy2 : STD_LOGIC;
SIGNAL over11,over12,over13,over14,over1 : STD_LOGIC;
SIGNAL match11,match12,match13,match14,match1,match1x : STD_LOGIC;
SIGNAL OUTPUT11,OUTPUT12,OUTPUT13,OUTPUT14 : STD_LOGIC;
--SIGNAL Dataout11,Dataout12,Dataout13,Dataout14,Dataout1 :
STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL over21,over22,over23,over24,over2 : STD_LOGIC;
SIGNAL match21,match22,match23,match24,match2,match2x : STD_LOGIC;
SIGNAL OUTPUT21,OUTPUT22,OUTPUT23,OUTPUT24 : STD_LOGIC;
--SIGNAL Dataout21,Dataout22,Dataout23,Dataout24,Dataout2 :
STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL over31,over32,over33,over34,over3 : STD_LOGIC;
SIGNAL match31,match32,match33,match34,match3,match3x : STD_LOGIC;

 128

SIGNAL OUTPUT31,OUTPUT32,OUTPUT33,OUTPUT34 : STD_LOGIC;
--SIGNAL Dataout31,Dataout32,Dataout33,Dataout34,Dataout3 :
STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL over41,over42,over43,over44,over4 : STD_LOGIC;
SIGNAL match41,match42,match43,match44,match44x,match4,match4x :
STD_LOGIC;
SIGNAL OUTPUT41,OUTPUT42,OUTPUT43,OUTPUT44 : STD_LOGIC;
--SIGNAL Dataout41,Dataout42,Dataout43,Dataout44,Dataout4 :
STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL spot : INTEGER RANGE 0 TO 55;
SIGNAL addra1,addrb1,addra2,addrb2 : STD_LOGIC_VECTOR(5 DOWNTO
0);
SIGNAL addra1x,addrb1x,addra2x,addrb2x : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL addra1z,addrb1z,addra2z,addrb2z : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL addra11,addrb11,addra21,addrb21 : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL addra12,addrb12,addra22,addrb22 : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL addra13,addrb13,addra23,addrb23 : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL addra14,addrb14,addra24,addrb24 : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL dina1,dinb1,dina2,dinb2 : STD_LOGIC_VECTOR(63
DOWNTO 0);
SIGNAL douta1,doutb1,douta2,doutb2 : STD_LOGIC_VECTOR(63 DOWNTO
0);
SIGNAL wea1,web1,wea2,web2 : STD_LOGIC;
SIGNAL ia1,ia2,ia3,ia4 : STD_LOGIC_VECTOR(5 DOWNTO
0);

signal mout1,mout2,Aa,Xa,Ab,Xb,mout1a,mout2a :
STD_LOGIC_VECTOR(63 DOWNTO 0);
signal wr_enx : std_logic_vector(1 to 4);
signal rd_en1,rd_ack1,rd_err1 : std_logic;
signal wr_en1 : std_logic;
signal rd_en2,rd_ack2,rd_err2 : std_logic;
signal wr_en2 : std_logic;
signal rd_en3,rd_ack3,rd_err3 : std_logic;
signal wr_en3 : std_logic;
signal rd_en4,rd_ack4,rd_err4 : std_logic;
signal wr_en4 : std_logic;
TYPE quadBufferin IS ARRAY (1 TO 4) OF std_logic_vector(63 downto 0);
signal buffin : quadBufferin;
signal dout1,dout2,dout3,dout4 : std_logic_vector(63 downto
0);
signal empty1,empty2,empty3,empty4 : std_logic;
signal full1,full2,full3,full4 : std_logic;
signal sm1,sm2,fm1a,fm2a : std_logic;
signal ptr1,ptr2,ptr3,ptr4 : integer range 1 to 4;
signal sm1a,sm2a,sm1b,sm2b : std_logic;
signal side1,side1a,side1b : std_logic;

 129

signal side2,side2a,side2b : std_logic;

signal c,d,c1,c2,d1,Ain1,Ain2,aout : std_logic_vector(63 downto
0);
signal rd_en,wr_enbuff : std_logic;
signal sa,rd_err : std_logic;
signal rd_ack : std_logic;
signal ready : std_logic;
signal fa,full_out : std_logic;
signal empty_out : std_logic;
signal dinbuff : std_logic_vector(63 downto 0);
signal dout_out : std_logic_vector(63 downto 0);
signal overflow_val,overflow_val2 : std_logic_vector(63 downto 0);
signal overflow,overflow2 : std_logic;
signal fm1,fm2,num_inputs : std_logic;
signal instatus,inputstatus : integer range 0 to 9;
signal size : integer range 0 to 64;
signal pending : integer range 0 to 13;
signal pendingm1,pendingm2 : integer range 0 to 9;
signal buffreset : std_logic;

--signal
rea1,rea2,rea3,rea4,rea5,rea6,rea7,rea8,rea9,reb1,reb2,reb3,reb4,reb5,r
eb6,reb7,reb8,reb9 : std_logic;

COMPONENT dpfpmult
port (CLK : in std_logic;
 A : in std_logic_vector(63 downto 0);
 B : in std_logic_vector(63 downto 0);
 OUTx : out std_logic_vector(63 downto 0);
 start: in std_logic;
 finish: out std_logic
);
end COMPONENT;

COMPONENT dpfpadd
port (CLK : in std_logic;
 Ain : in std_logic_vector(63 downto 0);
 Bin : in std_logic_vector(63 downto 0);
 OUTx : out std_logic_vector(63 downto 0);
 start: in std_logic;
 finish: out std_logic
);
end COMPONENT;

component syncfifo
 port (
 clk: IN std_logic;
 sinit: IN std_logic;
 din: IN std_logic_VECTOR(63 downto 0);

 130

 wr_en: IN std_logic;
 rd_en: IN std_logic;
 dout: OUT std_logic_VECTOR(63 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic;
 rd_ack: OUT std_logic;
 rd_err: OUT std_logic);
end component;

component dpram64_64
 port (
 addra: IN std_logic_VECTOR(5 downto 0);
 addrb: IN std_logic_VECTOR(5 downto 0);
 clka: IN std_logic;
 clkb: IN std_logic;
 dina: IN std_logic_VECTOR(63 downto 0);
 dinb: IN std_logic_VECTOR(63 downto 0);
 douta: OUT std_logic_VECTOR(63 downto 0);
 doutb: OUT std_logic_VECTOR(63 downto 0);
 wea: IN std_logic;
 web: IN std_logic);
END component;

BEGIN
GND<=(OTHERS=>'0');
gnd_bit<='0';
one <= '1';

ram1 : dpram64_64 port map(
 addra => addra1,
 addrb => addrb1,
 clka => clk,
 clkb => clk,
 dina => dina1,
 dinb => dinb1,
 douta => douta1,
 doutb => doutb1,
 wea => wea1,
 web => web1
);

ram2 : dpram64_64 port map(
 addra => addra2,
 addrb => addrb2,
 clka => clk,
 clkb => clk,
 dina => dina2,
 dinb => dinb2,
 douta => douta2,
 doutb => doutb2,
 wea => wea2,
 web => web2
);

fpmult1 : dpfpmult port map(

 131

 CLK=>CLK,
 A=>Mult_in1A,
 B=>Mult_in1B,
 OUTx=>mout1,
 start=>sm1,
 finish=>fm1
);

fpmult2 : dpfpmult port map(
 CLK=>CLK,
 A=>Mult_in2A,
 B=>Mult_in2B,
 OUTx=>mout2,
 start=>sm2,
 finish=>fm2
);

fpadd : dpfpadd port map(
 CLK=>CLK,
 Ain=>Ain1,
 Bin=>Ain2,
 OUTx=>aout,
 start=>sa,
 finish=>fa);

buf:syncfifo port map (
 clk => clk,
 din => dinbuff,
 wr_en => wr_enbuff,
 rd_en => rd_en,
 sinit => buffreset,
 dout => dout_out,
 full => full_out,
 empty => empty_out,
 rd_ack => rd_ack,
 rd_err => rd_err
);
buf1:syncfifo port map (
 clk => clk,
 din => buffin(1),
 wr_en => wr_enx(1),
 rd_en => rd_en1,
 sinit => buffreset,
 dout => dout1,
 full => full1,
 empty => empty1,
 rd_ack => rd_ack1,
 rd_err => rd_err1
);
buf2:syncfifo port map (
 clk => clk,
 din => buffin(2),
 wr_en => wr_enx(2),
 rd_en => rd_en2,
 sinit => buffreset,

 132

 dout => dout2,
 full => full2,
 empty => empty2,
 rd_ack => rd_ack2,
 rd_err => rd_err2
);
buf3:syncfifo port map (
 clk => clk,
 din => buffin(3),
 wr_en => wr_enx(3),
 rd_en => rd_en3,
 sinit => buffreset,
 dout => dout3,
 full => full3,
 empty => empty3,
 rd_ack => rd_ack3,
 rd_err => rd_err3
);
buf4:syncfifo port map (
 clk => clk,
 din => buffin(4),
 wr_en => wr_enx(4),
 rd_en => rd_en4,
 sinit => buffreset,
 dout => dout4,
 full => full4,
 empty => empty4,
 rd_ack => rd_ack4,
 rd_err => rd_err4
);

--buffreset <= reset OR ANS_FLAG;
--mout1 <= mout1a when rea9='0' else (OTHERS=>'0');
--mout2 <= mout2a when reb9='0' else (OTHERS=>'0');
--fm1 <= fm1a when rea9='0' else '0';
--fm2 <= fm2a when reb9='0' else '0';

MAIN: PROCESS (CLK,RESET)
VARIABLE w : INTEGER RANGE 0 TO 3;
VARIABLE over,reportflagx : std_logic;
BEGIN
IF RESET='1' THEN
 STATE<=INITIALIZE;
 STATEX<=INITIALIZE;
 ANS_FLAG_OUT <= '0';
 w:=0;
 i<=0;
 j<='0';
 Acount<=13;
 --overflag <= '0';
 over := '0';
 reportflagx := '0';
 ADDR <= "10";
 --match := '0';
 OUTPUT<=(OTHERS=>'0');

 133

 ea(0)<=(OTHERS=>'0');
 ea(1)<=(OTHERS=>'0');
 ea(2)<=(OTHERS=>'0');
 ea(3)<=(OTHERS=>'0');
 ea(4)<=(OTHERS=>'0');
 ea(5)<=(OTHERS=>'0');
 ea(6)<=(OTHERS=>'0');
 ea(7)<=(OTHERS=>'0');
 ea(8)<=(OTHERS=>'0');
 ea(9)<=(OTHERS=>'0');
 ea(10)<=(OTHERS=>'0');
 ea(11)<=(OTHERS=>'0');
 ea(12)<=(OTHERS=>'0');
 ea(13)<=(OTHERS=>'0');
 ea(14)<=(OTHERS=>'0');
 ea(15)<=(OTHERS=>'0');
 ea(16)<=(OTHERS=>'0');
 ea(17)<=(OTHERS=>'0');
 ea(18)<=(OTHERS=>'0');
 ea(19)<=(OTHERS=>'0');
 ea(20)<=(OTHERS=>'0');
 ea(21)<=(OTHERS=>'0');
 ea(22)<=(OTHERS=>'0');
 ea(23)<=(OTHERS=>'0');
 ea(24)<=(OTHERS=>'0');
 ea(25)<=(OTHERS=>'0');
 ea(26)<=(OTHERS=>'0');
 ea(27)<=(OTHERS=>'0');
 ea(28)<=(OTHERS=>'0');
 ea(29)<=(OTHERS=>'0');
 ea(30)<=(OTHERS=>'0');
 ea(31)<=(OTHERS=>'0');
 ia1 <= "000000";
 ia2 <= "000001";
 ia3 <= "000010";
 ia4 <= "000011";
 wea1 <= '0';
 web1 <= '0';
 wea2 <= '0';
 web2 <= '0';
 dina1<=(OTHERS=>'0');
 dinb1<=(OTHERS=>'0');
 dina2<=(OTHERS=>'0');
 dinb2<=(OTHERS=>'0');
 addra1z <= (OTHERS=>'0');
 addrb1z <= (OTHERS=>'0');
 addra2z <= (OTHERS=>'0');
 addrb2z <= (OTHERS=>'0');
 rowcnt <= (OTHERS=>'0');
 rowcnt_less1 <= (OTHERS=>'0');
 ELSIF CLK'EVENT AND CLK='1' THEN
 CASE STATE IS
 WHEN INITIALIZE =>
 IF din_rdy = '1' THEN
 rowcnt <= INP(31 DOWNTO 0);

 134

 rowcnt_less1 <= INP(63 DOWNTO 32);
 STATE <= ADDRESS;
 END IF;
 OUTPUT <= (OTHERS=>'1');
 reportflagx := gnd_bit;
 ANS_FLAG_OUT<='0';
 wea1 <= '0';
 web1 <= '0';
 wea2 <= '0';
 web2 <= '0';
 WHEN ADDRESS =>
 --If these 128 bit not equal to's are too slow for 66 or 50
MHz, they can be checked at
 -- 133 or 100 MHz, 64-bits at a time at Pcore and Pcore
could send a 1-bit flag here
 -- notifying the code if the input is invalid or not
 --IF INP
/="11
11" THEN
 IF din_rdy = '1' THEN
 ea(i)<=INP(127 DOWNTO 96);
 ea(i+1)<=INP(95 DOWNTO 64);
 ea(i+2)<=INP(63 DOWNTO 32);
 ea(i+3)<=INP(31 DOWNTO 0);
 STATE<=DATA;
 END IF;
 OUTPUT <= (OTHERS=>'1');
 reportflagx := gnd_bit;
 ANS_FLAG_OUT<='0';
 wea1 <= '0';
 web1 <= '0';
 wea2 <= '0';
 web2 <= '0';
 WHEN DATA =>
 --IF INP
/="11
11" THEN
 IF din_rdy = '1' THEN
 IF j='0' THEN
 dina1<=INP(127 DOWNTO 64);
 dinb1<=INP(63 DOWNTO 0);
 dina2<=INP(127 DOWNTO 64);
 dinb2<=INP(63 DOWNTO 0);
 wea1 <= '1';
 web1 <= '1';
 wea2 <= '1';
 web2 <= '1';
 addra1z <= ia1;
 addrb1z <= ia2;
 addra2z <= ia1;
 addrb2z <= ia2;
 j<='1';
 ELSE
 dina1<=INP(127 DOWNTO 64);
 dinb1<=INP(63 DOWNTO 0);

 135

 dina2<=INP(127 DOWNTO 64);
 dinb2<=INP(63 DOWNTO 0);
 wea1 <= '1';
 web1 <= '1';
 wea2 <= '1';
 web2 <= '1';
 addra1z <= ia3;
 addrb1z <= ia4;
 addra2z <= ia3;
 addrb2z <= ia4;
 j<='0';
 IF i<28 THEN
 STATE<=ADDRESS;
 i<=i+4;
 ia1 <= ia1 + "000100";
 ia2 <= ia2 + "000100";
 ia3 <= ia3 + "000100";
 ia4 <= ia4 + "000100";
 ELSE
 STATE<=PROCESSING;
 i<=0;
 ia1 <= "000000";
 ia2 <= "000001";
 ia3 <= "000010";
 ia4 <= "000011";
 END IF;
 END IF;
 END IF;
 OUTPUT <= (OTHERS=>'1');
 reportflagx := gnd_bit;
 WHEN PROCESSING =>
 --Don't decrement the counter if the input is invalid!!
 --Reading in addresses for comparators here
 wea1 <= '0';
 web1 <= '0';
 wea2 <= '0';
 web2 <= '0';
 IF din_rdy='1' THEN
 ADDR <= "10";
 IF Acount = 0 THEN
 Acount<=13;
 STATE<=REPORTw;
 ELSE
 Acount<=Acount-1;
 -- OUTPUT<=(OTHERS=>'0');
 END IF;
 OUTPUT <= (OTHERS=>'1');
 END IF;
 ANS_FLAG_OUT<='0';
 reportflagx := gnd_bit;
 WHEN REPORTw =>
 STATE <= REPORTx;
 reportflagx := gnd_bit;
 WHEN REPORTx =>
 reportflagx := one;

 136

 --match := match1 OR match2 OR match3 OR match4;
 --over := over1 OR over2 OR over3 OR over4;
 OUTPUT(63)<=matchflag;
 OUTPUT(62)<=overflag;
 OUTPUT(61)<=match44x; --notifies C code if last bit of status
is a match

 --this is important so if the overflag goes
high the
 --C code will know that the last bit was a
match and not
 --the over bit address
 OUTPUT(60)<='0'; --Reserved for future use
 OUTPUT(59)<=ANS_FLAG; --Not curently in use but will be when
multiple answers
 --are supported
 --Bits 58 to 56 are reserved for future use
 --OUTPUT(58 DOWNTO 56)<=ANS_SIZE;
 --These results will be reserved for later use for when the
sparse code can
 --keep track of multiple answers so these bits can signify
up to 7
 --answers available
 OUTPUT(58 DOWNTO 56)<="000";
 OUTPUT(55) <= OUTPUT1(13);
 OUTPUT(54) <= OUTPUT2(13);
 OUTPUT(53) <= OUTPUT3(13);
 OUTPUT(52) <= OUTPUT4(13);
 OUTPUT(51) <= OUTPUT1(12);
 OUTPUT(50) <= OUTPUT2(12);
 OUTPUT(49) <= OUTPUT3(12);
 OUTPUT(48) <= OUTPUT4(12);
 OUTPUT(47) <= OUTPUT1(11);
 OUTPUT(46) <= OUTPUT2(11);
 OUTPUT(45) <= OUTPUT3(11);
 OUTPUT(44) <= OUTPUT4(11);
 OUTPUT(43) <= OUTPUT1(10);
 OUTPUT(42) <= OUTPUT2(10);
 OUTPUT(41) <= OUTPUT3(10);
 OUTPUT(40) <= OUTPUT4(10);
 OUTPUT(39) <= OUTPUT1(9);
 OUTPUT(38) <= OUTPUT2(9);
 OUTPUT(37) <= OUTPUT3(9);
 OUTPUT(36) <= OUTPUT4(9);
 OUTPUT(35) <= OUTPUT1(8);
 OUTPUT(34) <= OUTPUT2(8);
 OUTPUT(33) <= OUTPUT3(8);
 OUTPUT(32) <= OUTPUT4(8);
 OUTPUT(31) <= OUTPUT1(7);
 OUTPUT(30) <= OUTPUT2(7);
 OUTPUT(29) <= OUTPUT3(7);
 OUTPUT(28) <= OUTPUT4(7);
 OUTPUT(27) <= OUTPUT1(6);
 OUTPUT(26) <= OUTPUT2(6);
 OUTPUT(25) <= OUTPUT3(6);

 137

 OUTPUT(24) <= OUTPUT4(6);
 OUTPUT(23) <= OUTPUT1(5);
 OUTPUT(22) <= OUTPUT2(5);
 OUTPUT(21) <= OUTPUT3(5);
 OUTPUT(20) <= OUTPUT4(5);
 OUTPUT(19) <= OUTPUT1(4);
 OUTPUT(18) <= OUTPUT2(4);
 OUTPUT(17) <= OUTPUT3(4);
 OUTPUT(16) <= OUTPUT4(4);
 OUTPUT(15) <= OUTPUT1(3);
 OUTPUT(14) <= OUTPUT2(3);
 OUTPUT(13) <= OUTPUT3(3);
 OUTPUT(12) <= OUTPUT4(3);
 OUTPUT(11) <= OUTPUT1(2);
 OUTPUT(10) <= OUTPUT2(2);
 OUTPUT(9) <= OUTPUT3(2);
 OUTPUT(8) <= OUTPUT4(2);
 OUTPUT(7) <= OUTPUT1(1);
 OUTPUT(6) <= OUTPUT2(1);
 OUTPUT(5) <= OUTPUT3(1);
 OUTPUT(4) <= OUTPUT4(1);
 OUTPUT(3) <= OUTPUT1(0);
 OUTPUT(2) <= OUTPUT2(0);
 OUTPUT(1) <= OUTPUT3(0);
 OUTPUT(0) <= OUTPUT4(0);
 IF overflag = '1' THEN
 OUTPUT(spot) <= '1';
 END IF;
 IF matchflag ='1' THEN
 STATE <= MACN;
 ELSE
 IF overflag = '1' THEN
 --go here regardless of ANS_FLAG state
 STATE <= SEND;
 ELSE --should never have ans_flag = '1' before over
flag !!
 STATE <= PROCESSING;
 END IF;
 END IF;
 -- END IF;
 --overflag <= over;
 --New_vectorflag <= New_vector;
 WHEN SEND =>
 reportflagx := gnd_bit;
 IF ANS_FLAG = '1' THEN
 ANS_FLAG_OUT <= ANS_FLAG;
 OUTPUT <= ANSWER;
 ADDR <= "11";
 IF New_vectorflag = '0' THEN
 STATE <= PROCESSING;
 --overflag <= '0';
 --New_vectorflag <= '0';
 ELSE
 STATE <= ADDRESS;
 --overflag <= '0';

 138

 --New_vectorflag <= '0';
 END IF;
 ELSE
 --wait until an answer is found
 ANS_FLAG_OUT <= ANS_FLAG;
 END IF;
 WHEN MACN =>
 IF din_rdy='1' AND
INP="00
00" THEN
 --C code done sending inputs
 --IF overflag = '1' or New_vector = '1' THEN
 IF overflag = '1' THEN
 STATE <= SEND;
 ELSE
 STATE <= PROCESSING;
 END IF;
 ELSE
 --do nothing here, other processes are handling things
 END IF;
 reportflagx := gnd_bit;
 OUTPUT <= (OTHERS=>'1');
 WHEN OTHERS =>
 END CASE;
 END IF;
 reportflag <= reportflagx;
END PROCESS MAIN;

PROCESS(CLK,RESET)
BEGIN
IF RESET = '1' THEN
 cntr <= (OTHERS=>'0');
 New_vectorflag <= '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE = REPORTx AND overflag = '1' THEN
 IF cntr = rowcnt THEN
 cntr <= (OTHERS=>'0');
 New_vectorflag <= '1';
 ELSE
 cntr <= cntr + '1';
 END IF;
 ELSIF STATE = SEND AND ANS_FLAG = '1' AND New_vectorflag = '1'
THEN
 New_vectorflag <= '0';
 END IF;
END IF;
END PROCESS;

addra1 <= addra1z when STATE = DATA OR STATE=ADDRESS OR STATE_DEL =
DATA else addra1x;
addrb1 <= addrb1z when STATE = DATA OR STATE=ADDRESS OR STATE_DEL =
DATA else addrb1x;
addra2 <= addra2z when STATE = DATA OR STATE=ADDRESS OR STATE_DEL =
DATA else addra2x;

 139

addrb2 <= addrb2z when STATE = DATA OR STATE=ADDRESS OR STATE_DEL =
DATA else addrb2x;

DELAY_PROC : PROCESS(CLK,RESET)
BEGIN
IF RESET = '1' THEN
 Acount1<=0;
 din_rdy2 <= '0';
 STATE_DEL <= ADDRESS;
ELSIF CLK'EVENT AND CLK='1' THEN
 Acount1<=Acount;
 din_rdy2 <= din_rdy;
 STATE_DEL <= STATE;
 --Acount2<=Acount1;
 --overa <= over1 or over2 or over3 or over4;
END IF;
END PROCESS DELAY_PROC;

PROCESS(CLK,RESET)
BEGIN
IF RESET='1' THEN
 overflag <= '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 IF din_rdy2 = '1' AND STATE_DEL = PROCESSING then
 --IF ANS_FLAG = '1' THEN
 -- overflag <= '0'; --reset it for next time
 IF over44 = '1' THEN
 overflag <= '1';
 --ELSIF Acount1 = 0 AND match44='1' THEN
 -- overflag <= '1';
 ELSE
 overflag <= overflag;
 END IF;
 ELSIF ANS_FLAG = '1' AND STATE = SEND THEN
 overflag <= '0';
 END IF;
END IF;
END PROCESS;

MATCH_PROC : PROCESS(CLK,RESET)
BEGIN
IF RESET='1' THEN
 matchflag <= '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 IF din_rdy2 = '1' AND STATE_DEL = PROCESSING THEN
 IF (match11 OR match12 OR match13 OR match14)= '1' THEN
 matchflag <= '1';
 ELSIF (match21 OR match22 OR match23 OR match24)= '1' THEN
 matchflag <= '1';
 ELSIF (match31 OR match32 OR match33 OR match34)= '1' THEN
 matchflag <= '1';
 ELSIF (match41 OR match42 OR match43 OR match44)= '1' THEN
 matchflag <= '1';
 ELSE
 matchflag <= matchflag;

 140

 END IF;
 ELSIF STATE_DEL = MACN THEN
 matchflag <= '0';
 END IF;
END IF;
END PROCESS MATCH_PROC;

OVER_ADJ : PROCESS(CLK)
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 IF STATE_DEL = PROCESSING AND din_rdy2='1' THEN
 IF overflag = '0' THEN
 IF over44 = '1' AND (match41 OR match42 OR match43 OR
match44)='0' THEN
 spot <= (4*Acount1);
 ELSE
 END IF;
 ELSE
 spot <= spot;
 END IF;
 END IF;
END IF;
END PROCESS OVER_ADJ;

COMPARATOR11: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 addra11 <= "000000";
 OUTPUT11<='0';
 over11<='0';
 match11<='0';
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 addra11 <= "000000";
 OUTPUT11<='0';
 over11<='0';
 match11<='0';
 --ELSE
 ELSIF INP(127 DOWNTO 96) = ea(0) THEN
 addra11 <= "000000";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(1) THEN
 addra11 <= "000001";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(2) THEN
 addra11 <= "000010";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(3) THEN
 addra11 <= "000011";

 141

 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(4) THEN
 addra11 <= "000100";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(5) THEN
 addra11 <= "000101";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(6) THEN
 addra11 <= "000110";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
 ELSIF INP(127 DOWNTO 96) = ea(7) THEN
 addra11 <= "000111";
 over11<='0';
 match11<='1';
 OUTPUT11<='1';
-- ELSIF INP(127 DOWNTO 96) > ea(63) THEN
-- over11<='1';
-- match11<='0';
-- OUTPUT11<='0';
 ELSE
 addra11 <= "000000";
 match11<='0';
 over11<='0';
 OUTPUT11<='0';
 END IF;
END IF;
END PROCESS COMPARATOR11;

COMPARATOR12: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT12<='0';
 over12<='0';
 match12<='0';
 addra12 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT12<='0';
 over12<='0';
 match12<='0';
 addra12 <= "000000";
 --ELSE
 ELSIF INP(127 DOWNTO 96) = ea(8) THEN
 addra12 <= "001000";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';

 142

 ELSIF INP(127 DOWNTO 96) = ea(9) THEN
 addra12 <= "001001";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
 ELSIF INP(127 DOWNTO 96) = ea(10) THEN
 addra12 <= "001010";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
 ELSIF INP(127 DOWNTO 96) = ea(11) THEN
 addra12 <= "001011";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
 ELSIF INP(127 DOWNTO 96) = ea(12) THEN
 addra12 <= "001100";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
 ELSIF INP(127 DOWNTO 96) = ea(13) THEN
 addra12 <= "001101";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
 ELSIF INP(127 DOWNTO 96) = ea(14) THEN
 addra12 <= "001110";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
 ELSIF INP(127 DOWNTO 96) = ea(15) THEN
 addra12 <= "001111";
 over12<='0';
 match12<='1';
 OUTPUT12<='1';
-- ELSIF INP(127 DOWNTO 96) > ea(63) THEN
-- over12<='1';
-- match12<='0';
-- OUTPUT12<='0';
 ELSE
 match12<='0';
 over12<='0';
 addra12 <= "000000";
 OUTPUT12<='0';
 END IF;
END IF;
END PROCESS COMPARATOR12;

COMPARATOR13: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT13<='0';
 over13<='0';
 match13<='0';
 addra13 <= "000000";

 143

ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT13<='0';
 over13<='0';
 match13<='0';
 addra13 <= "000000";
 --ELSE
 ELSIF INP(127 DOWNTO 96) = ea(16) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010000";
 ELSIF INP(127 DOWNTO 96) = ea(17) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010001";
 ELSIF INP(127 DOWNTO 96) = ea(18) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010010";
 ELSIF INP(127 DOWNTO 96) = ea(19) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010011";
 ELSIF INP(127 DOWNTO 96) = ea(20) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010100";
 ELSIF INP(127 DOWNTO 96) = ea(21) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010101";
 ELSIF INP(127 DOWNTO 96) = ea(22) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010110";
 ELSIF INP(127 DOWNTO 96) = ea(23) THEN
 over13<='0';
 match13<='1';
 OUTPUT13<='1';
 addra13 <= "010111";
-- ELSIF INP(127 DOWNTO 96) > ea(63) THEN
-- over13<='1';
-- match13<='0';
-- OUTPUT13<='0';
 ELSE
 match13<='0';
 over13<='0';
 addra13 <= "000000";

 144

 OUTPUT13<='0';
 END IF;
END IF;
END PROCESS COMPARATOR13;

COMPARATOR14: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 addra14 <= "000000";
 OUTPUT14<='0';
 over14<='0';
 match14<='0';
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT14<='0';
 over14<='0';
 match14<='0';
 addra14 <= "000000";
 --ELSE
 ELSIF INP(127 DOWNTO 96) = ea(24) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011000";
 ELSIF INP(127 DOWNTO 96) = ea(25) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011001";
 ELSIF INP(127 DOWNTO 96) = ea(26) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011010";
 ELSIF INP(127 DOWNTO 96) = ea(27) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011011";
 ELSIF INP(127 DOWNTO 96) = ea(28) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011100";
 ELSIF INP(127 DOWNTO 96) = ea(29) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011101";
 ELSIF INP(127 DOWNTO 96) = ea(30) THEN
 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011110";
 ELSIF INP(127 DOWNTO 96) = ea(31) THEN

 145

 over14<='0';
 match14<='1';
 OUTPUT14<='1';
 addra14 <= "011111";
 ELSIF INP(127 DOWNTO 96) > ea(31) THEN
 --over14<='1';
 match14<='0';
 OUTPUT14<='0';
 ELSE
 match14<='0';
 over14<='0';
 addra14 <= "000000";
 OUTPUT14<='0';
 END IF;
END IF;
END PROCESS COMPARATOR14;

MUXER1: PROCESS(CLK, RESET)
variable match1a : std_logic;
BEGIN
IF RESET='1' THEN
 --over1 <= '0';
 match1x <= '0';
 addra1x <= (OTHERS=>'0');
 OUTPUT1 <= (OTHERS=>'0');
 match1a := '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 --over1<=over11 OR over12 OR over13 OR over14;
 match1a:=match11 OR match12 OR match13 OR match14;
 match1x<=match1a;
 OUTPUT1(Acount1) <= OUTPUT11 OR OUTPUT12 OR OUTPUT13 OR OUTPUT14;
 IF match11 = '1' THEN
 addra1x <= addra11;
 ELSIF match12 = '1' THEN
 addra1x <= addra12;
 ELSIF match13 = '1' THEN
 addra1x <= addra13;
 ELSIF match14 = '1' THEN
 addra1x <= addra14;
 ELSE
 addra1x <= (OTHERS=>'0');
 END IF;
END IF;
END PROCESS MUXER1;

COMPARATOR21: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT21<='0';
 over21<='0';
 match21<='0';
 addrb11 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT21<='0';

 146

 over21<='0';
 match21<='0';
 addrb11 <= "000000";
 --ELSE
 ELSIF INP(95 DOWNTO 64) = ea(0) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000000";
 ELSIF INP(95 DOWNTO 64) = ea(1) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000001";
 ELSIF INP(95 DOWNTO 64) = ea(2) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000010";
 ELSIF INP(95 DOWNTO 64) = ea(3) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000011";
 ELSIF INP(95 DOWNTO 64) = ea(4) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000100";
 ELSIF INP(95 DOWNTO 64) = ea(5) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000101";
 ELSIF INP(95 DOWNTO 64) = ea(6) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000110";
 ELSIF INP(95 DOWNTO 64) = ea(7) THEN
 over21<='0';
 match21<='1';
 OUTPUT21<='1';
 addrb11 <= "000111";
-- ELSIF INP(95 DOWNTO 64) > ea(63) THEN
-- over21<='1';
-- match21<='0';
-- OUTPUT21<='0';
 ELSE
 match21<='0';
 over21<='0';
 addrb11 <= "000000";
 OUTPUT21<='0';
 END IF;
END IF;

 147

END PROCESS COMPARATOR21;

COMPARATOR22: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT22<='0';
 over22<='0';
 match22<='0';
 addrb12 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT22<='0';
 over22<='0';
 match22<='0';
 addrb12 <= "000000";
 --ELSE
 ELSIF INP(95 DOWNTO 64) = ea(8) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001000";
 ELSIF INP(95 DOWNTO 64) = ea(9) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001001";
 ELSIF INP(95 DOWNTO 64) = ea(10) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001010";
 ELSIF INP(95 DOWNTO 64) = ea(11) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001011";
 ELSIF INP(95 DOWNTO 64) = ea(12) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001100";
 ELSIF INP(95 DOWNTO 64) = ea(13) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001101";
 ELSIF INP(95 DOWNTO 64) = ea(14) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';
 addrb12 <= "001110";
 ELSIF INP(95 DOWNTO 64) = ea(15) THEN
 over22<='0';
 match22<='1';
 OUTPUT22<='1';

 148

 addrb12 <= "001111";
-- ELSIF INP(95 DOWNTO 64) > ea(63) THEN
-- over22<='1';
-- match22<='0';
-- OUTPUT22<='0';
 ELSE
 match22<='0';
 over22<='0';
 addrb12 <= "000000";
 OUTPUT22<='0';
 END IF;
END IF;
END PROCESS COMPARATOR22;

COMPARATOR23: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT23<='0';
 over23<='0';
 match23<='0';
 addrb13 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT23<='0';
 over23<='0';
 match23<='0';
 addrb13 <= "000000";
 --ELSE
 ELSIF INP(95 DOWNTO 64) = ea(16) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010000";
 ELSIF INP(95 DOWNTO 64) = ea(17) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010001";
 ELSIF INP(95 DOWNTO 64) = ea(18) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010010";
 ELSIF INP(95 DOWNTO 64) = ea(19) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010011";
 ELSIF INP(95 DOWNTO 64) = ea(20) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010100";
 ELSIF INP(95 DOWNTO 64) = ea(21) THEN
 over23<='0';

 149

 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010101";
 ELSIF INP(95 DOWNTO 64) = ea(22) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010110";
 ELSIF INP(95 DOWNTO 64) = ea(23) THEN
 over23<='0';
 match23<='1';
 OUTPUT23<='1';
 addrb13 <= "010111";
-- ELSIF INP(95 DOWNTO 64) > ea(63) THEN
-- over23<='1';
-- match23<='0';
-- OUTPUT23<='0';
 ELSE
 match23<='0';
 over23<='0';
 addrb13 <= "000000";
 OUTPUT23<='0';
 END IF;
END IF;
END PROCESS COMPARATOR23;

COMPARATOR24: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT24<='0';
 over24<='0';
 match24<='0';
 addrb14 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT24<='0';
 over24<='0';
 match24<='0';
 addrb14 <= "000000";
 --ELSE
 ELSIF INP(95 DOWNTO 64) = ea(24) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011000";
 ELSIF INP(95 DOWNTO 64) = ea(25) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011001";
 ELSIF INP(95 DOWNTO 64) = ea(26) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011010";

 150

 ELSIF INP(95 DOWNTO 64) = ea(27) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011011";
 ELSIF INP(95 DOWNTO 64) = ea(28) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011100";
 ELSIF INP(95 DOWNTO 64) = ea(29) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011101";
 ELSIF INP(95 DOWNTO 64) = ea(30) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011110";
 ELSIF INP(95 DOWNTO 64) = ea(31) THEN
 over24<='0';
 match24<='1';
 OUTPUT24<='1';
 addrb14 <= "011111";
 ELSIF INP(95 DOWNTO 64) > ea(31) THEN
 --over24<='1';
 match24<='0';
 OUTPUT24<='0';
 ELSE
 match24<='0';
 over24<='0';
 addrb14 <= "000000";
 OUTPUT24<='0';
 END IF;
END IF;
END PROCESS COMPARATOR24;

MUXER2: PROCESS(CLK,RESET)
variable match2a : std_logic;
BEGIN
IF RESET='1' THEN
 --over2 <= '0';
 match2x <= '0';
 addrb1x <= (OTHERS=>'0');
 OUTPUT2 <= (OTHERS=>'0');
 match2a := '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 --over2<=over21 OR over22 OR over23 OR over24;
 match2a:=match21 OR match22 OR match23 OR match24;
 match2x<=match2a;
 OUTPUT2(Acount1) <= OUTPUT21 OR OUTPUT22 OR OUTPUT23 OR OUTPUT24;
 IF match21 = '1' THEN
 addrb1x <= addrb11;
 ELSIF match22 = '1' THEN

 151

 addrb1x <= addrb12;
 ELSIF match23 = '1' THEN
 addrb1x <= addrb13;
 ELSIF match24 = '1' THEN
 addrb1x <= addrb14;
 ELSE
 addrb1x <= (OTHERS=>'0');
 END IF;
END IF;
END PROCESS MUXER2;

COMPARATOR31: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT31<='0';
 over31<='0';
 match31<='0';
 addra21 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT31<='0';
 over31<='0';
 match31<='0';
 addra21 <= "000000";
 --ELSE
 ELSIF INP(63 DOWNTO 32) = ea(0) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000000";
 ELSIF INP(63 DOWNTO 32) = ea(1) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000001";
 ELSIF INP(63 DOWNTO 32) = ea(2) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000010";
 ELSIF INP(63 DOWNTO 32) = ea(3) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000011";
 ELSIF INP(63 DOWNTO 32) = ea(4) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000100";
 ELSIF INP(63 DOWNTO 32) = ea(5) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000101";

 152

 ELSIF INP(63 DOWNTO 32) = ea(6) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000110";
 ELSIF INP(63 DOWNTO 32) = ea(7) THEN
 over31<='0';
 match31<='1';
 OUTPUT31<='1';
 addra21 <= "000111";
-- ELSIF INP(63 DOWNTO 32) > ea(63) THEN
-- over31<='1';
-- match31<='0';
-- OUTPUT31<='0';
 ELSE
 match31<='0';
 over31<='0';
 addra21 <= "000000";
 OUTPUT31<='0';
 END IF;
END IF;
END PROCESS COMPARATOR31;

COMPARATOR32: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT32<='0';
 over32<='0';
 match32<='0';
 addra22 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT32<='0';
 over32<='0';
 match32<='0';
 addra22 <= "000000";
 --ELSE
 ELSIF INP(63 DOWNTO 32) = ea(8) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001000";
 ELSIF INP(63 DOWNTO 32) = ea(9) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001001";
 ELSIF INP(63 DOWNTO 32) = ea(10) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001010";
 ELSIF INP(63 DOWNTO 32) = ea(11) THEN
 over32<='0';
 match32<='1';

 153

 OUTPUT32<='1';
 addra22 <= "001011";
 ELSIF INP(63 DOWNTO 32) = ea(12) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001100";
 ELSIF INP(63 DOWNTO 32) = ea(13) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001101";
 ELSIF INP(63 DOWNTO 32) = ea(14) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001110";
 ELSIF INP(63 DOWNTO 32) = ea(15) THEN
 over32<='0';
 match32<='1';
 OUTPUT32<='1';
 addra22 <= "001111";
-- ELSIF INP(63 DOWNTO 32) > ea(63) THEN
-- over32<='1';
-- match32<='0';
-- OUTPUT32<='0';
 ELSE
 match32<='0';
 over32<='0';
 addra22 <= "000000";
 OUTPUT32<='0';
 END IF;
END IF;
END PROCESS COMPARATOR32;

COMPARATOR33: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT33<='0';
 over33<='0';
 match33<='0';
 addra23 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT33<='0';
 over33<='0';
 match33<='0';
 addra23 <= "000000";
 --ELSE
 ELSIF INP(63 DOWNTO 32) = ea(16) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010000";
 ELSIF INP(63 DOWNTO 32) = ea(17) THEN

 154

 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010001";
 ELSIF INP(63 DOWNTO 32) = ea(18) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010010";
 ELSIF INP(63 DOWNTO 32) = ea(19) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010011";
 ELSIF INP(63 DOWNTO 32) = ea(20) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010100";
 ELSIF INP(63 DOWNTO 32) = ea(21) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010101";
 ELSIF INP(63 DOWNTO 32) = ea(22) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010110";
 ELSIF INP(63 DOWNTO 32) = ea(23) THEN
 over33<='0';
 match33<='1';
 OUTPUT33<='1';
 addra23 <= "010111";
-- ELSIF INP(63 DOWNTO 32) > ea(63) THEN
-- over33<='1';
-- match33<='0';
-- OUTPUT33<='0';
 ELSE
 match33<='0';
 over33<='0';
 addra23 <= "000000";
 OUTPUT33<='0';
 END IF;
END IF;
END PROCESS COMPARATOR33;

COMPARATOR34: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT34<='0';
 over34<='0';
 match34<='0';
 addra24 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN

 155

 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT34<='0';
 over34<='0';
 match34<='0';
 addra24 <= "000000";
 --ELSE
 ELSIF INP(63 DOWNTO 32) = ea(24) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011000";
 ELSIF INP(63 DOWNTO 32) = ea(25) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011001";
 ELSIF INP(63 DOWNTO 32) = ea(26) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011010";
 ELSIF INP(63 DOWNTO 32) = ea(27) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011011";
 ELSIF INP(63 DOWNTO 32) = ea(28) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011100";
 ELSIF INP(63 DOWNTO 32) = ea(29) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011101";
 ELSIF INP(63 DOWNTO 32) = ea(30) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011110";
 ELSIF INP(63 DOWNTO 32) = ea(31) THEN
 over34<='0';
 match34<='1';
 OUTPUT34<='1';
 addra24 <= "011111";
 ELSIF INP(63 DOWNTO 32) > ea(31) THEN
 --over34<='1';
 match34<='0';
 OUTPUT34<='0';
 ELSE
 match34<='0';
 over34<='0';
 addra24 <= "000000";
 OUTPUT34<='0';

 156

 END IF;
END IF;
END PROCESS COMPARATOR34;

MUXER3: PROCESS(CLK,RESET)
variable match3a : std_logic;
BEGIN
IF RESET='1' THEN
 --over3 <= '0';
 match3x <= '0';
 addra2x <= (OTHERS=>'0');
 OUTPUT3 <= (OTHERS=>'0');
 match3a := '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 --over3<=over31 OR over32 OR over33 OR over34;
 match3a:=match31 OR match32 OR match33 OR match34;
 match3x<=match3a;
 OUTPUT3(Acount1) <= OUTPUT31 OR OUTPUT32 OR OUTPUT33 OR OUTPUT34;
 IF match31 = '1' THEN
 addra2x <= addra21;
 ELSIF match32 = '1' THEN
 addra2x <= addra22;
 ELSIF match33 = '1' THEN
 addra2x <= addra23;
 ELSIF match34 = '1' THEN
 addra2x <= addra24;
 ELSE
 addra2x <= (OTHERS=>'0');
 END IF;
END IF;
END PROCESS MUXER3;

COMPARATOR41: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT41<='0';
 over41<='0';
 match41<='0';
 addrb21 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT41<='0';
 over41<='0';
 match41<='0';
 addrb21 <= "000000";
 --ELSE
 ELSIF INP(31 DOWNTO 0) = ea(0) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000000";
 ELSIF INP(31 DOWNTO 0) = ea(1) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';

 157

 addrb21 <= "000001";
 ELSIF INP(31 DOWNTO 0) = ea(2) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000010";
 ELSIF INP(31 DOWNTO 0) = ea(3) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000011";
 ELSIF INP(31 DOWNTO 0) = ea(4) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000100";
 ELSIF INP(31 DOWNTO 0) = ea(5) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000101";
 ELSIF INP(31 DOWNTO 0) = ea(6) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000110";
 ELSIF INP(31 DOWNTO 0) = ea(7) THEN
 over41<='0';
 match41<='1';
 OUTPUT41<='1';
 addrb21 <= "000111";
-- ELSIF INP(31 DOWNTO 0) > ea(63) THEN
-- over41<='1';
-- match41<='0';
-- OUTPUT41<='0';
 ELSE
 match41<='0';
 over41<='0';
 addrb21 <= "000000";
 OUTPUT41<='0';
 END IF;
END IF;
END PROCESS COMPARATOR41;

COMPARATOR42: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT42<='0';
 over42<='0';
 match42<='0';
 addrb22 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT42<='0';
 over42<='0';

 158

 match42<='0';
 addrb22 <= "000000";
 --ELSE
 ELSIF INP(31 DOWNTO 0) = ea(8) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001000";
 ELSIF INP(31 DOWNTO 0) = ea(9) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001001";
 ELSIF INP(31 DOWNTO 0) = ea(10) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001010";
 ELSIF INP(31 DOWNTO 0) = ea(11) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001011";
 ELSIF INP(31 DOWNTO 0) = ea(12) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001100";
 ELSIF INP(31 DOWNTO 0) = ea(13) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001101";
 ELSIF INP(31 DOWNTO 0) = ea(14) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001110";
 ELSIF INP(31 DOWNTO 0) = ea(15) THEN
 over42<='0';
 match42<='1';
 OUTPUT42<='1';
 addrb22 <= "001111";
-- ELSIF INP(31 DOWNTO 0) > ea(63) THEN
-- over42<='1';
-- match42<='0';
-- OUTPUT42<='0';
 ELSE
 match42<='0';
 over42<='0';
 addrb22 <= "000000";
 OUTPUT42<='0';
 END IF;
END IF;
END PROCESS COMPARATOR42;

 159

COMPARATOR43: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT43<='0';
 over43<='0';
 match43<='0';
 addrb23 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT43<='0';
 over43<='0';
 match43<='0';
 addrb23 <= "000000";
 --ELSE
 ELSIF INP(31 DOWNTO 0) = ea(16) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010000";
 ELSIF INP(31 DOWNTO 0) = ea(17) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010001";
 ELSIF INP(31 DOWNTO 0) = ea(18) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010010";
 ELSIF INP(31 DOWNTO 0) = ea(19) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010011";
 ELSIF INP(31 DOWNTO 0) = ea(20) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010100";
 ELSIF INP(31 DOWNTO 0) = ea(21) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010101";
 ELSIF INP(31 DOWNTO 0) = ea(22) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010110";
 ELSIF INP(31 DOWNTO 0) = ea(23) THEN
 over43<='0';
 match43<='1';
 OUTPUT43<='1';
 addrb23 <= "010111";

 160

-- ELSIF INP(31 DOWNTO 0) > ea(63) THEN
-- over43<='1';
-- match43<='0';
-- OUTPUT43<='0';
 ELSE
 match43<='0';
 over43<='0';
 addrb23 <= "000000";
 OUTPUT43<='0';
 END IF;
END IF;
END PROCESS COMPARATOR43;

COMPARATOR44: PROCESS(CLK, STATE, RESET)
BEGIN
IF RESET = '1' THEN
 OUTPUT44<='0';
 over44<='0';
 match44<='0';
 addrb24 <= "000000";
ELSIF CLK'EVENT AND CLK='1' THEN
 IF STATE /= PROCESSING or din_rdy='0' THEN
 OUTPUT44<='0';
 over44<='0';
 match44<='0';
 addrb24 <= "000000";
 --ELSE
 ELSIF INP(31 DOWNTO 0) = ea(24) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011000";
 ELSIF INP(31 DOWNTO 0) = ea(25) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011001";
 ELSIF INP(31 DOWNTO 0) = ea(26) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011010";
 ELSIF INP(31 DOWNTO 0) = ea(27) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011011";
 ELSIF INP(31 DOWNTO 0) = ea(28) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011100";
 ELSIF INP(31 DOWNTO 0) = ea(29) THEN
 over44<='0';
 match44<='1';

 161

 OUTPUT44<='1';
 addrb24 <= "011101";
 ELSIF INP(31 DOWNTO 0) = ea(30) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011110";
 ELSIF INP(31 DOWNTO 0) = ea(31) THEN
 over44<='0';
 match44<='1';
 OUTPUT44<='1';
 addrb24 <= "011111";
 ELSIF INP(31 DOWNTO 0) > ea(31) THEN
 over44<='1';
 match44<='0';
 OUTPUT44<='0';
 ELSE
 match44<='0';
 over44<='0';
 addrb24 <= "000000";
 OUTPUT44<='0';
 END IF;
END IF;
END PROCESS COMPARATOR44;

MUXER4: PROCESS(CLK,RESET)
variable match4a : std_logic;
BEGIN
IF RESET='1' THEN
 over4 <= '0';
 match4x <= '0';
 addrb2x <= (OTHERS=>'0');
 OUTPUT4 <= (OTHERS=>'0');
 match4a := '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 --over4<=over41 OR over42 OR over43 OR over44;
 over4<=over44;
 match4a:=match41 OR match42 OR match43 OR match44;
 match4x<=match4a;
 OUTPUT4(Acount1) <= OUTPUT41 OR OUTPUT42 OR OUTPUT43 OR OUTPUT44;
 IF match41 = '1' THEN
 addrb2x <= addrb21;
 ELSIF match42 = '1' THEN
 addrb2x <= addrb22;
 ELSIF match43 = '1' THEN
 addrb2x <= addrb23;
 ELSIF match44 = '1' THEN
 addrb2x <= addrb24;
 ELSE
 addrb2x <= (OTHERS=>'0');
 END IF;
END IF;
END PROCESS MUXER4;

LAST_CMP_MTCH : PROCESS(CLK,RESET)

 162

BEGIN
IF RESET = '1' THEN
 match44x <= '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 IF Acount1 = 0 THEN
 match44x <= match44;
 ELSE
 match44x <= '0';
 END IF;
END IF;
END PROCESS LAST_CMP_MTCH;

STATE_DELAY : PROCESS(CLK,RESET)
BEGIN
IF RESET = '1' THEN
 match1 <= '0';
 match2 <= '0';
 match3 <= '0';
 match4 <= '0';
ELSIF CLK'EVENT AND CLK='1' THEN
 match1 <= match1x;
 match2 <= match2x;
 match3 <= match3x;
 match4 <= match4x;
END IF;
END PROCESS STATE_DELAY;

process(clk,reset)
begin
 if reset = '1' then
 wr_enx <= (OTHERS=>'0');
 buffin(1) <= (OTHERS=>'0');
 buffin(2) <= (OTHERS=>'0');
 buffin(3) <= (OTHERS=>'0');
 buffin(4) <= (OTHERS=>'0');
 elsif clk'event and clk='1' then
 if match1 = '1' then
 wr_enx(ptr1) <= '1';
 buffin(ptr1) <= douta1;
 if match2 = '1' then
 wr_enx(ptr2) <= '1';
 buffin(ptr2) <= doutb1;
 if match3 = '1' then
 wr_enx(ptr3) <= '1';
 buffin(ptr3) <= douta2;
 if match4 = '1' then
 --4 matches
 wr_enx(ptr4) <='1';
 buffin(ptr4) <= doutb2;

 163

 else
 --3 matches
 wr_enx(ptr4) <= '0';
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 else
 if match4 = '1' then
 --3 matches
 wr_enx(ptr3) <= '1';
 buffin(ptr3)<=doutb2;
 buffin(ptr4) <= (OTHERS=>'0');
 wr_enx(ptr4) <= '0';
 else
 --2 matches
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr3)<=(OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 end if;
 else
 if match3 = '1' then
 wr_enx(ptr2) <= '1';
 buffin(ptr2) <= douta2;
 if match4 = '1' then
 --3 matches
 wr_enx(ptr3) <='1';
 wr_enx(ptr4) <= '0';
 buffin(ptr3) <= doutb2;
 buffin(ptr4) <= (OTHERS=>'0');
 else
 --2 matches
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 else
 if match4 = '1' then
 --2 matches
 wr_enx(ptr2) <= '1';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr2)<=doutb2;
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 else
 --1 match
 wr_enx(ptr2) <= '0';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr2)<=(OTHERS=>'0');
 buffin(ptr3)<=(OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;

 164

 end if;
 end if;
 else
 if match2 = '1' then
 wr_enx(ptr1) <= '1';
 buffin(ptr1) <= doutb1;
 if match3 = '1' then
 wr_enx(ptr2) <= '1';
 buffin(ptr2) <= douta2;
 if match4 = '1' then
 --3 matches
 wr_enx(ptr3) <= '1';
 wr_enx(ptr4) <= '0';
 buffin(ptr3) <= doutb2;
 buffin(ptr4) <= (OTHERS=>'0');
 else
 --2 matches
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 else
 if match4 = '1' then
 --2 matches
 wr_enx(ptr2) <= '1';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr2) <= doutb2;
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 else
 --1 match
 wr_enx(ptr2) <= '0';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr2) <= (OTHERS=>'0');
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 end if;
 else
 if match3 = '1' then
 wr_enx(ptr1) <= '1';
 buffin(ptr1) <= douta2;
 if match4 = '1' then
 --2 matches
 wr_enx(ptr2) <= '1';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr2) <= doutb2;
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 else
 --1 match

 165

 wr_enx(ptr2) <= '0';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr2) <= (OTHERS=>'0');
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 else
 if match4 = '1' then
 --1 match
 wr_enx(ptr1) <= '1';
 wr_enx(ptr2) <= '0';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr1) <= doutb2;
 buffin(ptr2) <= (OTHERS=>'0');
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 else
 --0 matches
 wr_enx(ptr1) <= '0';
 wr_enx(ptr2) <= '0';
 wr_enx(ptr3) <= '0';
 wr_enx(ptr4) <= '0';
 buffin(ptr1) <= (OTHERS=>'0');
 buffin(ptr2) <= (OTHERS=>'0');
 buffin(ptr3) <= (OTHERS=>'0');
 buffin(ptr4) <= (OTHERS=>'0');
 end if;
 end if;
 end if;
 end if;
 end if;
end process;

process(clk,reset)
variable g,h,j,f : std_logic;
begin
 if reset = '1' then
 ptr1 <= 1;
 elsif clk'event and clk='1' then
 --mx1a := match1 NOR match2 NOR match3;
 --mx1b := match1 NOR match2 NOR match4;
 --mx1c := match1 NOR match3 NOR match4;
 --mx1d := match2 NOR match3 NOR match4;

 --match1 AND match2
 --match1 AND match3
 --match1 AND match4
 --match2 AND match3
 --match2 AND match4
 --match3 AND match4

 --match1 AND match2 AND match3;

 166

 --match1 AND match2 AND match4;
 --match1 AND match3 AND match4;
 --match2 AND match3 AND match4;

 --j := g NOR h;
 --j := NOR(g,h);
 --j := NOR3(g,h,f);
 --j := g NOR h NOR f;
 if STATE_DEL = REPORTx then
 ptr1 <= 1;
 elsif (match1 AND match2 AND match3 AND match4)='1' then
 --4 match
 --do nothing
 ptr1 <= ptr1;
 elsif ((match1 AND match2 AND match3)OR(match1 AND match2
AND match4)OR(match1 AND match3 AND match4)OR(match2 AND match3 AND
match4))='1' then
 --3 match
 if ptr1 = 2 then
 ptr1 <= 1;
 elsif ptr1 = 3 then
 ptr1 <= 2;
 elsif ptr1 = 4 then
 ptr1 <= 3;
 else
 ptr1 <= 4;
 end if;
 elsif ((match1 AND match2)OR(match1 AND match3)OR(match1
AND match4)OR(match2 AND match3)OR(match2 AND match4)OR(match3 AND
match4))='1' then
 --2 match
 if ptr1 = 3 then
 ptr1 <= 1;
 elsif ptr1 = 4 then
 ptr1 <= 2;
 elsif ptr1 = 2 then
 ptr1 <= 4;
 else
 ptr1 <= 3;
 end if;
 elsif (match1 OR match2 OR match3 OR match4)='0' then
 --0 matches do nothing
 else
 --1 match
 if ptr1 = 4 then
 ptr1 <= 1;
 elsif ptr1 = 3 then
 ptr1 <= 4;
 elsif ptr1 = 2 then
 ptr1 <= 3;
 else
 ptr1 <= 2;
 end if;
 end if;
 end if;

 167

end process;
process(clk,reset)
begin
 if reset = '1' then
 ptr2 <= 2;
 elsif clk'event and clk='1' then
 if STATE_DEL = REPORTx then
 ptr2 <= 2;
 elsif (match1 AND match2 AND match3 AND match4)='1' then
 --4 match
 --do nothing
 ptr2 <= ptr2;
 elsif ((match1 AND match2 AND match3)OR(match1 AND match2
AND match4)OR(match1 AND match3 AND match4)OR(match2 AND match3 AND
match4))='1' then
 --3 match
 if ptr2 = 2 then
 ptr2 <= 1;
 elsif ptr2 = 3 then
 ptr2 <= 2;
 elsif ptr2 = 4 then
 ptr2 <= 3;
 else
 ptr2 <= 4;
 end if;
 elsif ((match1 AND match2)OR(match1 AND match3)OR(match1
AND match4)OR(match2 AND match3)OR(match2 AND match4)OR(match3 AND
match4))='1' then
 --2 match
 if ptr2 = 3 then
 ptr2 <= 1;
 elsif ptr2 = 4 then
 ptr2 <= 2;
 elsif ptr2 = 1 then
 ptr2 <= 3;
 else
 ptr2 <= 4;
 end if;
 elsif (match1 OR match2 OR match3 OR match4)='0' then
 --0 matches do nothing
 else
 --1 match
 if ptr2 = 4 then
 ptr2 <= 1;
 elsif ptr2 = 3 then
 ptr2 <= 4;
 elsif ptr2 = 2 then
 ptr2 <= 3;
 else
 ptr2 <= 2;
 end if;
 end if;
 end if;
end process;
process(clk,reset)

 168

begin
 if reset = '1' then
 ptr3 <= 3;
 elsif clk'event and clk='1' then
 if STATE_DEL = REPORTx then
 ptr3 <= 3;
 elsif (match1 AND match2 AND match3 AND match4)='1' then
 --4 match
 --do nothing
 ptr3 <= ptr3;
 elsif ((match1 AND match2 AND match3)OR(match1 AND match2
AND match4)OR(match1 AND match3 AND match4)OR(match2 AND match3 AND
match4))='1' then
 --3 match
 if ptr3 = 2 then
 ptr3 <= 1;
 elsif ptr3 = 3 then
 ptr3 <= 2;
 elsif ptr3 = 4 then
 ptr3 <= 3;
 else
 ptr3 <= 4;
 end if;
 elsif ((match1 AND match2)OR(match1 AND match3)OR(match1
AND match4)OR(match2 AND match3)OR(match2 AND match4)OR(match3 AND
match4))='1' then
 --2 match
 if ptr3 = 3 then
 ptr3 <= 1;
 elsif ptr3 = 2 then
 ptr3 <= 4;
 elsif ptr3 = 1 then
 ptr3 <= 3;
 else
 ptr3 <= 2;
 end if;
 elsif (match1 OR match2 OR match3 OR match4)='0' then
 --0 matches do nothing
 else
 --1 match
 if ptr3 = 4 then
 ptr3 <= 1;
 elsif ptr3 = 3 then
 ptr3 <= 4;
 elsif ptr3 = 2 then
 ptr3 <= 3;
 else
 ptr3 <= 2;
 end if;
 end if;
 end if;
end process;
process(clk,reset)
begin
 if reset = '1' then

 169

 ptr4 <= 4;
 elsif clk'event and clk='1' then
 if STATE_DEL = REPORTx then
 ptr4 <= 4;
 elsif (match1 AND match2 AND match3 AND match4)='1' then
 --4 match
 --do nothing
 ptr4 <= ptr4;
 elsif ((match1 AND match2 AND match3)OR(match1 AND match2
AND match4)OR(match1 AND match3 AND match4)OR(match2 AND match3 AND
match4))='1' then
 --3 match
 if ptr4 = 2 then
 ptr4 <= 1;
 elsif ptr4 = 3 then
 ptr4 <= 2;
 elsif ptr4 = 4 then
 ptr4 <= 3;
 else
 ptr4 <= 4;
 end if;
 elsif ((match1 AND match2)OR(match1 AND match3)OR(match1
AND match4)OR(match2 AND match3)OR(match2 AND match4)OR(match3 AND
match4))='1' then
 --2 match
 if ptr4 = 3 then
 ptr4 <= 1;
 elsif ptr4 = 2 then
 ptr4 <= 4;
 elsif ptr4 = 1 then
 ptr4 <= 3;
 else
 ptr4 <= 2;
 end if;
 elsif (match1 OR match2 OR match3 OR match4)='0' then
 --0 matches do nothing
 else
 --1 match
 if ptr4 = 4 then
 ptr4 <= 1;
 elsif ptr4 = 3 then
 ptr4 <= 4;
 elsif ptr4 = 2 then
 ptr4 <= 3;
 else
 ptr4 <= 2;
 end if;
 end if;
 end if;
end process;

process(clk,reset)
begin
 if reset = '1' then
 sm1a <= '0';

 170

 sm1b <= '0';
 --sm1 <= '0';
 side1 <= '0';
 side1a <= '0';
 side1b <= '0';
 Aa <= (OTHERS=>'0');
 Ab <= (OTHERS=>'0');
 Mult_in1A <= (OTHERS=>'0');
 rd_en1<='0';
 rd_en3<='0';
 elsif clk'event and clk='1' then
 if STATE = REPORTx THEN
 side1 <= '0';
 elsif din_rdy='1' and STATE_DEL=MACN AND
INP/="000
000" then
 if side1 = '0' then
 if empty1='0' then
 sm1a <= '1';
 rd_en1 <= '1';
 rd_en3 <= '0';
 Aa <= INP(127 DOWNTO 64);
 side1 <= '1';
 elsif empty3='0' then
 sm1a <= '1';
 rd_en1 <= '0';
 rd_en3 <= '1';
 Aa <= INP(127 DOWNTO 64);
 side1 <= '0';
 else
 sm1a <= '0';
 rd_en1 <= '0';
 rd_en3 <= '0';
 Aa <= (OTHERS=>'0');
 side1 <= '0';
 end if;
 else
 if empty3='0' then
 sm1a <= '1';
 rd_en1 <= '0';
 rd_en3 <= '1';
 Aa <= INP(127 DOWNTO 64);
 side1 <= '0';
 elsif empty1='0' then
 sm1a <= '1';
 rd_en1 <= '1';
 rd_en3 <= '0';
 Aa <= INP(127 DOWNTO 64);
 side1 <= '0';
 else
 sm1a <= '0';
 rd_en1 <= '0';
 rd_en3 <= '0';
 Aa <= (OTHERS=>'0');
 side1 <= '0';

 171

 end if;
 end if;
 else
 sm1a <= '0';
 rd_en1 <= '0';
 rd_en3 <= '0';
 end if;
 sm1b <= sm1a;
 --sm1 <= sm1b;
 ----sm1 <= sm1a;
 Ab <= Aa;
 --Mult_in1A <= Ab;
 Mult_in1A <= Aa;
 side1a <= side1;
 side1b <= side1a;
 end if;
end process;
sm1 <= '0' when (rd_err1 OR rd_err3) = '1' else sm1b;
sm2 <= '0' when (rd_err2 OR rd_err4) = '1' else sm2b;
--Mult_in1B <= dout1 when side1a='0' else dout3;
--Mult_in2B <= dout2 when side2a='0' else dout4;
Mult_in1B <= dout1 when side1b='0' else dout3;
Mult_in2B <= dout2 when side2b='0' else dout4;
process(clk,reset)
begin
 if reset = '1' then
 sm2a <= '0';
 sm2b <= '0';
 --sm2 <= '0';
 side2 <= '0';
 side2a <= '0';
 side2b <= '0';
 xa <= (OTHERS=>'0');
 Xb <= (OTHERS=>'0');
 Mult_in2A <= (OTHERS=>'0');
 rd_en2<='0';
 rd_en4<='0';
 elsif clk'event and clk='1' then
 if STATE = PROCESSING THEN
 side2 <= '0';
 elsif din_rdy='1' and STATE_DEL=MACN AND
INP/="000
000" then
 if side2 = '0' then
 if empty2='0' then
 sm2a <= '1';
 rd_en2 <= '1';
 rd_en4 <= '0';
 xa <= INP(63 DOWNTO 0);
 side2 <= '1';
 elsif empty4='0' then
 sm2a <= '1';
 rd_en2 <= '0';
 rd_en4 <= '1';
 xa <= INP(63 DOWNTO 0);

 172

 side2 <= '0';
 else
 sm2a <= '0';
 rd_en2 <= '0';
 rd_en4 <= '0';
 xa <= (OTHERS=>'0');
 side2 <= '0';
 end if;
 else
 if empty4='0' then
 sm2a <= '1';
 rd_en2 <= '0';
 rd_en4 <= '1';
 xa <= INP(63 DOWNTO 0);
 side2 <= '0';
 elsif empty2='0' then
 sm2a <= '1';
 rd_en2 <= '1';
 rd_en4 <= '0';
 xa <= INP(63 DOWNTO 0);
 side2 <= '0';
 else
 sm2a <= '0';
 rd_en2 <= '0';
 rd_en4 <= '0';
 xa <= (OTHERS=>'0');
 side2 <= '0';
 end if;
 end if;
 else
 sm2a <= '0';
 rd_en2 <= '0';
 rd_en4 <= '0';
 end if;
 sm2b <= sm2a;
 --sm2 <= sm2b;
 ----sm2 <= sm2a;
 Xb <= xa;
 --Mult_in2A <= Xb;
 Mult_in2A <=xa;
 side2a <= side2;
 side2b <= side2a;
 end if;
end process;

process(clk,reset)
begin
 if reset = '1' then
 instatus <= 6;

 173

 num_inputs <= '0';
 rd_en <= '0';
 C1 <= (OTHERS=>'0');
 D1 <= (OTHERS=>'0');
 C2 <= (OTHERS=>'0');
 elsif clk'event and clk='1' then
 if num_inputs = '0' then
 if(fm1 = '1' and fm2 = '1') then
 C1 <= mout1;
 D1 <= mout2;
 instatus <= 0;
 num_inputs <= '0';
 rd_en <= '0';
 elsif(fm1 = '1' or fm2 = '1') then
 if fm1 = '1' then
 if fa = '1' then
 C1 <= mout1;
 D1 <= aout;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif empty_out = '0' and NOT(rd_en
= '1' and size = 1) then
 rd_en <= '1';
 instatus <= 1;
 C1 <= mout1;
 num_inputs <= '0';
 else
 C2 <= mout1;
 instatus <= 2;
 num_inputs <= '1';
 rd_en <= '0';
 end if;
 else
 if fa = '1' then
 C1 <= mout2;
 D1 <= aout;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif empty_out = '0' and NOT(rd_en
= '1' and size = 1) then
 rd_en <= '1';
 instatus <= 1;
 C1 <= mout2;
 num_inputs <= '0';
 else
 C2 <= mout2;
 instatus <= 2;
 num_inputs <= '1';
 rd_en <= '0';
 end if;
 end if;
 --empty_out = '1' is delayed

 174

 elsif fa = '1' and ((rd_en = '1' and size = 1)
or empty_out = '1') then
 --why go to num_inputs='1'when there's
nothing in the buffer
 --maybe go and wait for 2 clocks, not no
add result emerges
 --then write to the buffer
 C2 <= aout;
 instatus <= 2;
 num_inputs <= '1';
 rd_en <= '0';
 elsif fa = '1' and empty_out = '0' then
 rd_en <= '1';
 instatus <= 1;
 C1 <= aout;
 num_inputs <= '0';
 elsif fa = '0' and empty_out = '0' and rd_en =
'0' and size = 1 then
 rd_en <= '1';
 num_inputs <= '1';
 instatus <= 3;
 elsif fa = '0' and empty_out = '0' and
NOT(rd_en = '1' and size = 1) and pending = 0 then
 rd_en <= '0';
 num_inputs <= '0';
 instatus <= 6;
 C1 <= (OTHERS=>'0');
 D1 <= (OTHERS=>'0');
 C2 <= (OTHERS=>'0');
 elsif fa = '0' and empty_out = '0' and
NOT(rd_en = '1' and size = 1) then
 rd_en <= '1';
 num_inputs <= '1';
 instatus <= 3;
 else
 C1 <= (OTHERS=>'0');
 D1 <= (OTHERS=>'0');
 C2 <= (OTHERS=>'0');
 rd_en <= '0';
 instatus <= 6;
 num_inputs <= '0';
 end if;
 else
 if ans_flag = '1' then
 C1 <= (OTHERS=>'0');
 C2 <= (OTHERS=>'0');
 D1 <= (OTHERS=>'0');
 rd_en <= '0';
 num_inputs <= '0';
 instatus <= 0;
 elsif instatus = 2 then
 if fm1 = '1' then
 C1 <= C2;
 D1 <= mout1;
 rd_en <= '0';

 175

 instatus <= 0;
 num_inputs <= '0';
 elsif fm2 = '1' then
 C1 <= C2;
 D1 <= mout2;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif fa = '1' then
 C1 <= C2;
 D1 <= aout;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 --couid probably check for rd_en & size
as a NOT in the next elsif
 elsif fa = '0' and ((rd_en = '1' and size
= 1) or empty_out = '1') then
 rd_en <= '0';
 C2 <= C2;
 instatus <= 5;
 num_inputs <= '1';
 elsif fa = '0' and empty_out = '0' then
 C1 <= C2;
 rd_en <= '1';
 instatus <= 1;
 num_inputs <= '0';
 end if;
 elsif instatus = 3 then
 if fm1 = '1' then
 C1 <= mout1;
 rd_en <= '0';
 instatus <= 7;
 num_inputs <= '0';
 elsif fm2 = '1' then
 C1 <= mout2;
 rd_en <= '0';
 instatus <= 7;
 num_inputs <= '0';
 elsif fa = '1' then
 --C1 <=
conv_integer(unsigned(dout_out(31 downto 0)));
 C1 <= aout;
 rd_en <= '0';
 instatus <= 7;
 num_inputs <= '0';
 --couid probably check for rd_en & size
as a NOT in the next elsif
 elsif fa = '0' and ((rd_en = '1' and size
= 1) or empty_out = '1') then
 --this stage is dangerous, why it
hasn't screwed anything up yet
 -- I don't know, it's hit 8 times.
Redirect to instatus 5 and

 176

 -- have the buffer read back in the
data.
 --rd_en <= '0';
 --C2 <= C2;
 --instatus <= instatus;
 num_inputs <= '1';
 rd_en <= '0';
 instatus <= 9;
 elsif fa = '0' and empty_out = '0' then
 --C2 <=
conv_integer(unsigned(dout_out(31 downto 0)));
 rd_en <= '1';
 --instatus <= 8;
 num_inputs <= '1';
 instatus <= 4;
 end if;
 elsif instatus = 4 then
 --C1 <= C2;
 C1 <= dout_out;
 instatus <= 7;
 num_inputs <= '0';
 rd_en <= '0';
 elsif instatus = 5 then
 if fm1 = '1' then
 C1 <= C2;
 D1 <= mout1;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif fm2 = '1' then
 C1 <= C2;
 D1 <= mout2;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif fa = '1' then
 C1 <= C2;
 D1 <= aout;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif rd_ack = '1' then
 --rewrite back into buffer
 C2 <= (OTHERS=>'0');
 rd_en <= '0';
 num_inputs <= '0';
 C1 <= (OTHERS=>'0');
 D1 <= (OTHERS=>'0');
 instatus <= 6;
 else
 --write C2 to buffer and clear it
 C2 <= (OTHERS=>'0');
 rd_en <= '0';
 num_inputs <= '0';
 C1 <= (OTHERS=>'0');

 177

 D1 <= (OTHERS=>'0');
 instatus <= 6;
 end if;
 elsif instatus = 9 then
 if fm1 = '1' then
 C1 <= mout1;
 D1 <= dout_out;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif fm2 = '1' then
 C1 <= mout2;
 D1 <= dout_out;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 elsif fa = '1' then
 C1 <= dout_out;
 D1 <= aout;
 rd_en <= '0';
 instatus <= 0;
 num_inputs <= '0';
 else
 instatus <= 0;
 num_inputs <= '0';
 rd_en <= '0';
 C1 <= (OTHERS=>'0');
 D1 <= (OTHERS=>'0');
 end if;
 else
 rd_en <= '0';
 C2 <= C2;
 instatus <= instatus;
 num_inputs <= '1';
 end if;
 end if;
 --end if;
 end if;
end process;

process(clk,reset)
begin
 if reset = '1' then
 inputstatus <= 0;
 C <= (OTHERS=>'0');
 D <= (OTHERS=>'0');
 elsif clk'event and clk='1' then
 if instatus = 0 then
 C <= C1;
 D <= D1;
 inputstatus <= 1;
 elsif instatus = 1 then
 C <= C1;
 --D <= conv_integer(unsigned(dout_out(31 downto 0)));

 178

 D <= (OTHERS=>'0');
 inputstatus <= 2;
 elsif instatus = 7 then
 C <= C1;
 D <= dout_out;
 inputstatus <= 1;
 else
 D <= (OTHERS=>'0');
 C <= (OTHERS=>'0');
 inputstatus <= 3;
 end if;
 end if;
end process;

process(clk,reset)
begin
 if reset = '1' then
 sa <= '0';
 Ain1 <= (OTHERS=>'0');
 Ain2 <= (OTHERS=>'0');
 elsif clk'event and clk='1' then
 if inputstatus = 1 then
 IF C =
"00" and
D = "00"
THEN
 sa <= '0';
 ELSE
 sa <= '1';
 Ain1 <= C;
 Ain2 <= D;
 END IF;
 elsif inputstatus = 2 then
 sa <= '1';
 Ain1 <= C;
 Ain2 <= dout_out;
 else
 Ain1 <= (OTHERS=>'0');
 Ain2 <= (OTHERS=>'0');
 sa <= '0';
 end if;
 end if;
end process;

process(clk,reset)
--variable overflow_val : std_logic_vector(63 downto 0);
--variable overflow : std_logic;
begin
 if reset = '1' then
 wr_enbuff <= '0';
 overflow <= '0';
 overflow_val <= (OTHERS=>'0');
 overflow2 <= '0';
 overflow_val2 <= (OTHERS=>'0');
 dinbuff <= (OTHERS=>'0');

 179

 elsif clk'event and clk='1' then
 IF (instatus = 4 and fm1='1' and fm2='1' and fa='1') THEN
 wr_enbuff <= '1';
 dinbuff <= aout;
 overflow <= '1';
 overflow_val <= mout1;
 overflow2 <= '1';
 overflow_val2 <= mout2;
 ELSIF (instatus = 4 and (fm1='0' and fm2='0') and fa='1')
OR ((fm1='1' and fm2='1')and fa='1' and num_inputs='0')then
 wr_enbuff <= '1';
 dinbuff <= aout;
 ELSIF (instatus = 4 and (fm1='1' and fm2='1')) then
 wr_enbuff <= '1';
 dinbuff <= mout1;
 if overflow = '0' then
 overflow <= '1';
 overflow_val <= mout2;
 else
 overflow2 <= '1';
 overflow_val2 <= mout2;
 end if;
 ELSIF (instatus = 4 and (fm1='1' or fm2='1')) then
 if fm1 = '1' then
 dinbuff <= mout1;
 else
 dinbuff <= mout2;
 end if;
 wr_enbuff <= '1';
 ELSIF ((fm1='1' and fm2='1')and fa='1' and
num_inputs='1')then
 wr_enbuff <= '1';
 dinbuff <= aout;
 --and temporarily store mout2 until it can be put
into the buffer
 if overflow = '0' then
 overflow <= '1';
 overflow_val <= mout2;
 else
 overflow2 <= '1';
 overflow_val2 <= mout2;
 end if;
 ELSIF ((fm1='1' and fm2='1')and fa='0' and
num_inputs='1')then
 wr_enbuff <= '1';
 dinbuff <= mout2;
 ELSIF ((fm1='1' or fm2='1')and fa='1' and
num_inputs='1')then
 wr_enbuff <= '1';
 dinbuff <= aout;
 elsif (instatus = 5 and rd_ack = '1') then
 wr_enbuff <= '1';
 dinbuff <= dout_out;
 ELSIF (instatus = 5 and fa = '0' and fm1='0' and fm2='0'
and ANS_FLAG='0') then

 180

 wr_enbuff <= '1';
 dinbuff <= C2;
 ELSIF (instatus = 9 and fa = '0' and fm1='0' and fm2='0')
then
 wr_enbuff <= '1';
 dinbuff <= dout_out;
 ELSIF overflow = '1' THEN
 wr_enbuff <= '1';
 dinbuff <= overflow_val;
 overflow <= '0';
 ELSIF overflow2 = '1' THEN
 wr_enbuff <= '1';
 dinbuff <= overflow_val2;
 overflow2 <= '0';
 else
 wr_enbuff <= '0';
 dinbuff <= (OTHERS=>'0');
 end if;

 end if;
end process;

--keeps a detailed account of the size of the buffer
process(clk,reset,buffreset)
begin
 if reset = '1' or buffreset = '1' then
 size <= 0;
 elsif clk'event and clk='1' then
 if wr_enbuff = '1' and rd_en = '1' then
 size <= size;
 elsif wr_enbuff = '1' and rd_en = '0' then
 if size = 64 then
 size <= size;
 else
 size <= size + 1;
 end if;
 elsif wr_enbuff = '0' and rd_en = '1' then
 if size = 0 then
 size<=0;
 else
 size <= size - 1;
 end if;
 else
 size <= size;
 end if;
 end if;
end process;

process(clk,reset,buffreset)
begin
 if reset = '1' or buffreset = '1' then
 pendingm1 <= 0;
 elsif clk'event and clk = '1' then
 if sm1 = '1' and fm1 = '1' then
 pendingm1 <= pendingm1;

 181

 elsif sm1 = '1' and fm1 = '0' then
 if pendingm1 = 12 then
 --pending <= 0;
 else
 pendingm1 <= pendingm1 + 1;
 end if;
 elsif sm1 = '0' and fm1 = '1' then
 if pendingm1 = 0 then
 --pendingm1 <= 12;
 else
 pendingm1 <= pendingm1 - 1;
 end if;
 else
 pendingm1 <= pendingm1;
 end if;
 end if;
end process;

process(clk,reset,buffreset)
begin
 if reset = '1' or buffreset = '1' then
 pending <= 0;
 elsif clk'event and clk = '1' then
 if sa = '1' and fa = '1' then
 pending <= pending;
 elsif sa = '1' and fa = '0' then
 if pending = 13 then
 --pending <= 0;
 else
 pending <= pending + 1;
 end if;
 elsif sa = '0' and fa = '1' then
 if pending = 0 then
 --pending <= 12;
 else
 pending <= pending - 1;
 end if;
 else
 pending <= pending;
 end if;
 end if;
end process;

process(clk,reset)
begin
 if reset = '1' then
 ANS_FLAG <= '0';
 ANSWER <= (OTHERS=>'0');
 elsif clk'event and clk='1' then
 --if empty1='1' and empty2='1' and empty3='1' and
empty4='1' and pendingm1=0 and pendingm2=0 and pending=1 and
overflag='1' and empty_out='1' and fa='1' and sa='0' and instatus /=9
and num_inputs='0'and wr_enbuff='0' then
 if empty1='1' and empty2='1' and empty3='1' and empty4='1'
and pendingm1=0 and pending=1 and overflag='1' and empty_out='1' and

 182

fa='1' and sa='0' and instatus /=9 and instatus /=0 and inputstatus /=1
and num_inputs='0'and wr_enbuff='0' and STATE_DEL=SEND then
 ANS_FLAG <= '1';
 ANSWER <= aout;
 --elsif empty1='1' and empty2='1' and empty3='1' and
empty4='1' and pendingm1=0 and pendingm2=0 and pending=0 and
overflag='1' and empty_out='1' and fa='0' and sa='0' and inputstatus=3
and instatus=6 and wr_enbuff='0' and num_inputs='0' and STATE_DEL=SEND
then
 elsif empty1='1' and empty2='1' and empty3='1' and
empty4='1' and pendingm1=0 and pending=0 and overflag='1' and
empty_out='1' and fa='0' and sa='0' and inputstatus=3 and instatus=6
and wr_enbuff='0' and num_inputs='0' and STATE_DEL=SEND then
 ANS_FLAG <= '1';
 ANSWER <= (OTHERS=>'0');
 --elsif empty1='1' and empty2='1' and empty3='1' and
empty4='1' and pendingm1=0 and pendingm2=0 and pending=0 and
overflag='1' and empty_out='1' and fa='0' and sa='0' and instatus=5 and
wr_enbuff='0' then
 elsif empty1='1' and empty2='1' and empty3='1' and
empty4='1' and pendingm1=0 and pending=0 and overflag='1' and
empty_out='1' and fa='0' and sa='0' and instatus=5 and wr_enbuff='0'
and STATE_DEL=SEND then
 ANS_FLAG <= '1';
 ANSWER <= C2;
 elsif empty1='1' and empty2='1' and empty3='1' and
empty4='1' and pendingm1=0 and pending=0 and overflag='1' and
empty_out='1' and fa='0' and sa='0' and instatus=9 and wr_enbuff='0'
and STATE_DEL=SEND then
 ANS_FLAG <= '1';
 ANSWER <= dout_out;
 elsif STATE = PROCESSING OR STATE = ADDRESS then
 ANS_FLAG <= '0';
 ANSWER <= (OTHERS=>'0');
 end if;
 end if;
end process;

process(clk, reset)
begin
 if reset = '1' then
 buffreset <= '0';
 elsif clk'event and clk='1' then
 if ANS_FLAG = '1' then
 buffreset <= '1';
 else
 buffreset <= '0';
 end if;
 end if;
end process;
END behavior;

 183

Appendix G – DPFPMult.vhd

 184

-- Double Precision Floating Point Multiplier
-- < dpfpmult.vhd >
-- 4/18/2004
-- kbaugher@utk.edu
-- Author: Kirk A Baugher
--

--Library XilinxCoreLib;
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity dpfpmult is
port (CLK : in std_logic;
 A : in std_logic_vector(63 downto 0);
 B : in std_logic_vector(63 downto 0);
 OUTx : out std_logic_vector(63 downto 0);
 start: in std_logic;
 finish: out std_logic
);
end dpfpmult;

architecture RTL of dpfpmult is

signal MA, MB : std_logic_vector(52 downto 0);
signal EA, EB : std_logic_vector(10 downto 0);
signal Sans,s1,s2,s3,s4,s5,s6,s7,s8,s9 : std_logic;
signal step1, step2,step3,step4,step5,step6,step7,step8 : std_logic;

signal Q : std_logic_vector(105 downto 0);

signal eaddans : std_logic_vector(11 downto 0);
signal exp_result : std_logic_vector(12 downto 0);
signal answer : std_logic_vector(63 downto 0);

signal exponent : std_logic_vector(10 downto 0);
signal exponent1 : std_logic_vector(11 downto 0);
signal mca1,mca2,mca3,mca4,mca5,mca6,mca7 : std_logic;
signal eca1,eca2,eca3,eca4 : std_logic;
signal mcb1,mcb2,mcb3,mcb4,mcb5,mcb6,mcb7 : std_logic;
signal ecb1,ecb2,ecb3,ecb4 : std_logic;
signal mc8,mc8a,mc8b,mc8c,mc8d: std_logic;
signal ec5,ec5a,ec5b,ec5c,ec5d: std_logic;

component mul53
 port (
 clk: IN std_logic;
 a: IN std_logic_VECTOR(52 downto 0);
 b: IN std_logic_VECTOR(52 downto 0);
 q: OUT std_logic_VECTOR(105 downto 0)
);
end component;

 185

component expadd11
 port (
 A: IN std_logic_VECTOR(10 downto 0);
 B: IN std_logic_VECTOR(10 downto 0);
 Q_C_OUT: OUT std_logic;
 Q: OUT std_logic_VECTOR(10 downto 0);
 CLK: IN std_logic);
END component;

component expbias11
 port (
 A: IN std_logic_VECTOR(11 downto 0);
 Q: OUT std_logic_VECTOR(12 downto 0);
 CLK: IN std_logic);
END component;

begin

MA(51 downto 0) <= A(51 downto 0);
MA(52) <= '1';
MB(51 downto 0) <= B(51 downto 0);
MB(52) <= '1';

EA <= A(62 downto 52);
EB <= B(62 downto 52);

Sans <= A(63) XOR B(63);

mul53_0 : mul53 port map (a => MA, b => MB, clk => CLK, q => Q);

expadd11_0 : expadd11 port map (A => EA, B => EB, Q => eaddans(10
downto 0), Q_C_OUT => eaddans(11), CLK => CLK);

expbias11_0 : expbias11 port map(A => eaddans, Q => exp_result, CLK =>
CLK);

------------< Floating-Point Multiplication Algorithm >---------

process (CLK)
begin
--some latch should be inserted here for delay 4 cycle
--wait until rising_edge(CLK);
IF (CLK = '1' and CLK'event) THEN
 S1 <= Sans;
 S2 <= S1;
 S3 <= S2;
 S4 <= S3 ;
 S5 <= S4;
 S6 <= S5;
 S7 <= S6;
 S8 <= S7;
 s9 <= s8;

 step1 <= start;
 step2 <= step1;

 186

 step3 <= step2;
 step4 <= step3;
 step5 <= step4;
 step6 <= step5;
 step7 <= step6;
 step8 <= step7;
 finish <= step8;
END IF;
end process;

process (CLK)
variable mca,mcb : std_logic_vector(51 downto 0);
variable eca,ecb : std_logic_vector(10 downto 0);
begin
--check for a zero value for an input and adjust the answer if
necessary at end
IF (CLK = '1' and CLK'event) THEN
 mca := A(51 DOWNTO 0);
 mcb := B(51 DOWNTO 0);
 eca := A(62 DOWNTO 52);
 ecb := B(62 DOWNTO 52);
 mca1 <= mca(51) OR mca(50) OR mca(49) OR mca(48) OR mca(47)OR
mca(46) OR
 mca(45) OR mca(44) OR mca(43);
 mcb1 <= mcb(51) OR mcb(50) OR mcb(49) OR mcb(48) OR mcb(47)OR
mcb(46) OR
 mcb(45) OR mcb(44) OR mcb(43);
 mca2 <= mca(42) OR mca(41) OR mca(40) OR mca(39) OR mca(38)OR
mca(37) OR
 mca(36) OR mca(35) OR mca(34);
 mcb2 <= mcb(42) OR mcb(41) OR mcb(40) OR mcb(39) OR mcb(38)OR
mcb(37) OR
 mcb(36) OR mcb(35) OR mcb(34);
 mca3 <= mca(33) OR mca(32) OR mca(31) OR mca(30) OR mca(29)OR
mca(28) OR
 mca(27) OR mca(26) OR mca(25);
 mcb3 <= mcb(33) OR mcb(32) OR mcb(31) OR mcb(30) OR mcb(29)OR
mcb(28) OR
 mcb(27) OR mcb(26) OR mcb(25);
 mca4 <= mca(24) OR mca(23) OR mca(22) OR mca(21) OR mca(20)OR
mca(19) OR
 mca(18) OR mca(17) OR mca(16);
 mcb4 <= mcb(24) OR mcb(23) OR mcb(22) OR mcb(21) OR mcb(20)OR
mcb(19) OR
 mcb(18) OR mcb(17) OR mcb(16);
 mca5 <= mca(15) OR mca(14) OR mca(13) OR mca(12) OR mca(11)OR
mca(10) OR
 mca(9) OR mca(8) OR mca(7);
 mcb5 <= mcb(15) OR mcb(14) OR mcb(13) OR mcb(12) OR mcb(11)OR
mcb(10) OR
 mcb(9) OR mcb(8) OR mcb(7);
 mca6 <= mca(6) OR mca(5) OR mca(4) OR mca(3) OR mca(2)OR mca(1)
OR
 mca(0);

 187

 mcb6 <= mcb(6) OR mcb(5) OR mcb(4) OR mcb(3) OR mcb(2)OR mcb(1)
OR
 mcb(0);

 mca7 <= mca1 OR mca2 OR mca3 OR mca4 OR mca5 OR mca6;
 mcb7 <= mcb1 OR mcb2 OR mcb3 OR mcb4 OR mcb5 OR mcb6;

 mc8 <= mca7 AND mcb7;
 mc8a <= mc8;
 mc8b <= mc8a;
 mc8c <= mc8b;
 mc8d <= mc8c;

 eca1 <= eca(10) OR eca(9) OR eca(8) OR eca(7);
 eca2 <= eca(6) OR eca(5) OR eca(4) OR eca(3);
 eca3 <= eca(2) OR eca(1) OR eca(0);

 eca4 <= eca1 OR eca2 OR eca3;

 ecb1 <= ecb(10) OR ecb(9) OR ecb(8) OR ecb(7);
 ecb2 <= ecb(6) OR ecb(5) OR ecb(4) OR ecb(3);
 ecb3 <= ecb(2) OR ecb(1) OR ecb(0);

 ecb4 <= ecb1 OR ecb2 OR ecb3;

 ec5 <= eca4 AND ecb4;
 ec5a <= ec5;
 ec5b <= ec5a;
 ec5c <= ec5b;
 ec5d <= ec5c;

END IF;
end process;

process (CLK)--7th step-- Check for exponent overflow
variable exponent1a : std_logic_vector(12 downto 0);
begin
--wait until rising_edge(CLK);
IF (CLK = '1' and CLK'event) THEN
 IF (exp_result(12) = '1' OR exp_result = "0111111111111") THEN
 exponent <= "11111111111"; --If overflow set to max value
of 254 (biased)
 ELSE
 exponent <= exp_result(10 downto 0);
 END IF;
END IF;
end process;

process (CLK,Q)
variable exponent1a : std_logic_vector(11 downto 0);
variable mantissa : std_logic_vector(53 downto 0);
variable exponent1x : std_logic_vector(10 downto 0);
begin --8th step--
--wait until rising_edge(CLK);

 188

IF (CLK = '1' and CLK'event) THEN
 exponent1a(10 downto 0) := exponent;
 exponent1a(11) := '0';
 mantissa := Q(105 downto 52);
 IF mantissa(53) = '1' THEN
 IF ec5d = '0' AND mc8d ='0' THEN
 exponent1a := "000000000000";
 mantissa :=
"00";
 --ELSIF ec5d = '0' THEN
 -- exponent1a := "000000000000";
 --ELSIF mc8d = '0' THEN
 -- mantissa :=
"00";
 ELSIF exponent1a < "11111111111" THEN
 exponent1a := exponent1a + "000000001";
 END IF;
 exponent1x := exponent1a(10 downto 0);
 answer <= S7 & exponent1x & mantissa(52 downto 1);
 ELSE
 IF ec5d = '0' AND mc8d ='0' THEN
 exponent1a := "000000000000";
 mantissa :=
"00";
 --ELSIF ec5d = '0' THEN
 -- exponent1a := "000000000000";
 --ELSIF mc8d = '0' THEN
 -- mantissa :=
"00";
 END IF;
 exponent1x := exponent1a(10 downto 0);
 answer <= S7 & exponent1x & mantissa(51 downto 0);
 END IF;
 OUTx <= answer;
END IF;
end process;

end RTL;

 189

Appendix H – DPFPAdd.vhd

 190

-- Double Precision Floating Point Adder
-- < dpfpadd.vhd >
-- 4/18/2004
-- kbaugher@utk.edu
--Author: Kirk A Baugher
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
USE IEEE.std_logic_unsigned.all;

ENTITY dpfpadd IS
PORT(
 CLK :IN STD_LOGIC;
 start :IN STD_LOGIC;
 Ain : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
 Bin : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
 OUTx : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
 finish :OUT STD_LOGIC);
END dpfpadd;
ARCHITECTURE behavior OF dpfpadd IS

SIGNAL ediff1,ediff2,ediffout,Aout,Bout : STD_LOGIC_VECTOR(11 DOWNTO
0);
SIGNAL expa,expb,exp1out,exp1out1,exp1out1a,exp1out1b:
STD_LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL manta,mantb,mantx1out,mant1out,mantx2out,mant1out1 :
STD_LOGIC_VECTOR(53 DOWNTO 0);
SIGNAL mantx2a,mant1out1a,mant1out1b :
STD_LOGIC_VECTOR(53 DOWNTO 0);
SIGNAL sa,sb,Sans1out,Sans1out1 : STD_LOGIC;

SIGNAL Sans1out1a,Sanswer1,Sans1out1b,Sanswerz1,change :
STD_LOGIC;

SIGNAL mant_result : STD_LOGIC_VECTOR(53 DOWNTO 0);
SIGNAL Sans2,Sans3,Sans4,Sans5,Sans6 : STD_LOGIC;
SIGNAL exp1a,exp1b,exp1c,exp1d,exp1e : STD_LOGIC_VECTOR(10 DOWNTO
0);
SIGNAL Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11,zeroflag1,zeroflag2 :
std_logic;
SIGNAL f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12 : STD_LOGIC;
SIGNAL SSx1,SSx2,SSx3,SSx4,SSx5,SSx6,SSx7,SSx8,SSxout,SSxout2 :
STD_LOGIC;

SIGNAL SSout,SStoCompl : STD_LOGIC;
SIGNAL expanswer1,expanswerz1 :
STD_LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL shift1,shiftout,shift,shift12,shiftn2 : STD_LOGIC_VECTOR(5
DOWNTO 0);
SIGNAL mantans3,mantz1 : STD_LOGIC_VECTOR(51
DOWNTO 0);
SIGNAL mantx2tomantadd : STD_LOGIC_VECTOR(54 DOWNTO
0);

 191

--Port A is input, Port B output
COMPONENT subexp1
 port (
 CLK: IN std_logic;
 A: IN std_logic_VECTOR(11 downto 0);
 B: IN std_logic_VECTOR(11 downto 0);
 Q: OUT std_logic_VECTOR(11 downto 0));
END COMPONENT;

--Port A is input, Port B output
COMPONENT mantadd5
 port (
 CLK: IN std_logic;
 A: IN std_logic_VECTOR(53 downto 0);
 B: IN std_logic_VECTOR(53 downto 0);
 Q: OUT std_logic_VECTOR(53 downto 0));
END COMPONENT;

--Port A is input, Port B output
COMPONENT twoscompl
 port (
 CLK: IN std_logic;
 BYPASS: IN std_logic;
 A: IN std_logic_VECTOR(53 downto 0);
 Q: OUT std_logic_VECTOR(54 downto 0));
END COMPONENT;

BEGIN
Aout <= '0' & Ain(62 DOWNTO 52);
Bout <= '0' & Bin(62 DOWNTO 52);
subexp12 : subexp1 port map (
 A=>Aout,
 B=>Bout,
 Q=>ediff1,
 CLK=>CLK);
subexp21 : subexp1 port map (
 A=>Bout,
 B=>Aout,
 Q=>ediff2,
 CLK=>CLK);
mantexe : mantadd5 port map (
 A=>mant1out1a,
 B=>mantx2out,
 Q=>mant_result,
 CLK=>CLK);

twos : twoscompl port map (
 A=>mantx2a,
 BYPASS=>SStoCompl,
 Q=>mantx2tomantadd,
 CLK=>CLK);

PROC1: PROCESS (CLK) --Occurs during expdiff

 192

BEGIN
IF CLK'EVENT AND CLK='1' THEN
 expa <= Ain(62 downto 52);
 manta <= "01" & Ain(51 downto 0);
 sa <= Ain(63);
 expb <= Bin(62 downto 52);
 mantb <= "01" & Bin(51 downto 0);
 sb <= Bin(63);
END IF;
END PROCESS PROC1;

PROC2: PROCESS (CLK) --depending on expdiff larger number goes to FP1
variable exp1, exp2 : std_logic_vector(10 downto 0);
variable mant1, mant2, mantx1 : std_logic_vector(53 downto 0);
variable ediff : std_logic_vector(11 downto 0);
variable Sans1,SS : std_logic;
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 IF ediff1(11) = '0' THEN
 exp1 := expa;
 mant1 := manta;
 Sans1 := sa;

 exp2 := expb;
 mant2 := mantb;
 ediff := ediff1;
 ELSE
 exp1 := expb;
 mant1 := mantb;
 Sans1 := sb;

 exp2 := expa;
 mant2 := manta;
 ediff := ediff2;
 END IF;

 SS := sa XOR sb;

 --Begin shifting lower number mantissa
 --IF (ediff(7) OR ediff(6) OR ediff(5)) = '1' THEN--for single-
precision
 IF (ediff(11) OR ediff(10) OR ediff(9) OR ediff(8) OR ediff(7) OR
ediff(6)) = '1' THEN --for DP
 mantx1 :=
"00";--change to 25
zeros for sp
 ELSE
 IF ediff(5) = '1' THEN --shift 32 zeros
 mantx1(20 downto 0) := mant2(52 downto 32);
 mantx1(52 downto 21) :=
"00000000000000000000000000000000";
 ELSE
 --For Single Precision

 193

 --IF ediff(4) = '1' THEN--shift 16 zeros
 -- mantx1(36 downto 0) := mant2(52 downto 16);
 -- mantx1(52 downto &d) := "0000000000000000";
 -- mantx1(37 downto &d) := "0000000000000000";
 --ELSE
 mantx1 := mant2;
 END IF;
 END IF;
 SSout <= SS;
 mantx1out <= mantx1;
 exp1out <= exp1;
 mant1out <= mant1;
 Sans1out <= Sans1;
 ediffout <= ediff;
END IF;
END PROCESS PROC2;

PROC3: PROCESS (CLK) --Finish shifting
variable mantx2 : std_logic_vector(53 downto
0);
variable ediffa : std_logic_vector(11 downto
0);
variable SSx : std_logic;
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 SSx := SSout;
 mantx2 := mantx1out;
 ediffa := ediffout;
 --Comment ediffa(4) out for single precision
 IF ediffa(4) = '1' THEN--shift 16 zeros
 mantx2(36 downto 0) := mantx2(52 downto 16);
 mantx2(52 downto 37) := "0000000000000000";
 ELSE
 mantx2 := mantx2;
 END IF;

 IF ediffa(3)='1' THEN--shift 8 zeros
 mantx2(44 downto 0) := mantx2(52 downto 8);
 mantx2(52 downto 45) := "00000000";
 ELSE
 mantx2 := mantx2;
 END IF;

 IF ediffa(2)='1' THEN--shift 4 zeros
 mantx2(48 downto 0) := mantx2(52 downto 4);
 mantx2(52 downto 49) := "0000";
 ELSE
 mantx2 := mantx2;
 END IF;

 IF ediffa(1)='1' THEN--shift 2 zeros
 mantx2(50 downto 0) := mantx2(52 downto 2);
 mantx2(52 downto 51) := "00";

 194

 ELSE
 mantx2 := mantx2;
 END IF;

 IF ediffa(0)='1' THEN--shift 1 zeros
 mantx2(51 downto 0) := mantx2(52 downto 1);
 mantx2(52) := '0';
 ELSE
 mantx2 := mantx2;
 END IF;

-- IF SSx = '1' THEN
-- mantx2 := NOT(mantx2) + 1;
-- ELSE
-- mantx2 := mantx2;
-- END IF;
 mantx2a <= mantx2;
 exp1out1 <= exp1out;
 mant1out1 <= mant1out;
 Sans1out1 <= Sans1out;
 SSxout <= SSx;
 SStoCompl <= NOT(SSx);
END IF;
END PROCESS PROC3;

 --this process occurs during the twos compliment
PROC2_3: PROCESS (CLK)
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 mantx2out<=mantx2tomantadd(53 DOWNTO 0);
 SSxout2<=SSxout;
 exp1out1b <= exp1out1;
 exp1out1a <= exp1out1b;
 mant1out1b <= mant1out1;
 mant1out1a <= mant1out1b;
 Sans1out1b <= Sans1out1;
 Sans1out1a <= Sans1out1b;
END IF;
END PROCESS PROC2_3;

PROC4: PROCESS (CLK) --mantissa normalization
variable mant_result1 : std_logic_vector(53 downto 0);
variable mantans1 : std_logic_vector(51 downto 0);
variable expanswer : std_logic_vector(10 downto 0);
variable Sanswer : std_logic;
--variable shift : std_logic_vector(5 downto 0);
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 mant_result1 := mant_result;
 expanswer := exp1e;
 Sanswer := Sans6;

 195

 change <= '1';
 IF mant_result1(53) = '1' THEN
 mantans1 := mant_result1(52 downto 1);
 shift <= "000000";
 --shiftn <= "000001";
 shiftn2 <= "000001";
 ELSIF mant_result1(52) = '1' THEN
 mantans1 := mant_result1(51 downto 0);
 shift <= "000000";
 --shiftn <= "000010";
 shiftn2 <= "000000";
 ELSIF mant_result1(51) = '1' THEN
 mantans1(51 downto 1) := mant_result1(50 downto 0);
 mantans1(0) := '0';
 shift <= "000001";
 --shiftn <= "000011";
 shiftn2 <= "000001";
 ELSIF mant_result1(50) = '1' THEN
 shift <= "000010";
 --shiftn <= "000100";
 shiftn2 <= "000010";
 mantans1(51 downto 2) := mant_result1(49 downto 0);
 mantans1(1 downto 0) := "00";
 ELSIF mant_result1(49) = '1' THEN
 shift <= "000011";
 --shiftn <= "000101";
 shiftn2 <= "000011";
 mantans1(51 downto 3) := mant_result1(48 downto 0);
 mantans1(2 downto 0) := "000";
 ELSIF mant_result1(48) = '1' THEN
 shift <= "000100";
 --shiftn <= "000110";
 shiftn2 <= "000100";
 mantans1(51 downto 4) := mant_result1(47 downto 0);
 mantans1(3 downto 0) := "0000";
 ELSIF mant_result1(47) = '1' THEN
 shift <= "000101";
 --shiftn <= "000111";
 shiftn2 <= "000101";
 mantans1(51 downto 5) := mant_result1(46 downto 0);
 mantans1(4 downto 0) := "00000";
 ELSIF mant_result1(46) = '1' THEN
 shift <= "000110";
 --shiftn <= "001000";
 shiftn2 <= "000110";
 mantans1(51 downto 6) := mant_result1(45 downto 0);
 mantans1(5 downto 0) := "000000";
 ELSIF mant_result1(45) = '1' THEN
 shift <= "000111";
 --shiftn <= "001001";
 shiftn2 <= "000111";
 mantans1(51 downto 7) := mant_result1(44 downto 0);
 mantans1(6 downto 0) := "0000000";
 ELSIF mant_result1(44) = '1' THEN
 shift <= "001000";

 196

 --shiftn <= "001010";
 shiftn2 <= "001000";
 mantans1(51 downto 8) := mant_result1(43 downto 0);
 mantans1(7 downto 0) := "00000000";
 ELSIF mant_result1(43) = '1' THEN
 shift <= "001001";
 --shiftn <= "001011";
 shiftn2 <= "001001";
 mantans1(51 downto 9) := mant_result1(42 downto 0);
 mantans1(8 downto 0) := "000000000";
 ELSIF mant_result1(42) = '1' THEN
 shift <= "001010";
 --shiftn <= "001100";
 shiftn2 <= "001010";
 mantans1(51 downto 10) := mant_result1(41 downto 0);
 mantans1(9 downto 0) := "0000000000";
 ELSIF mant_result1(41) = '1' THEN
 shift <= "001011";
 --shiftn <= "001101";
 shiftn2 <= "001011";
 mantans1(51 downto 11) := mant_result1(40 downto 0);
 mantans1(10 downto 0) := "00000000000";
 ELSIF mant_result1(40) = '1' THEN
 shift <= "001100";
 --shiftn <= "001110";
 shiftn2 <= "001100";
 mantans1(51 downto 12) := mant_result1(39 downto 0);
 mantans1(11 downto 0) := "000000000000";
 ELSIF mant_result1(39) = '1' THEN
 shift <= "001101";
 --shiftn <= "001111";
 shiftn2 <= "001101";
 mantans1(51 downto 13) := mant_result1(38 downto 0);
 mantans1(12 downto 0) := "0000000000000";
 ELSIF mant_result1(38) = '1' THEN
 shift <= "001110";
 --shiftn <= "010000";
 shiftn2 <= "001110";
 mantans1(51 downto 14) := mant_result1(37 downto 0);
 mantans1(13 downto 0) := "00000000000000";
 ELSIF mant_result1(37) = '1' THEN
 shift <= "001111";
 --shiftn <= "010001";
 shiftn2 <= "001111";
 mantans1(51 downto 15) := mant_result1(36 downto 0);
 mantans1(14 downto 0) := "000000000000000";
 ELSIF mant_result1(36) = '1' THEN
 shift <= "010000";
 --shiftn <= "010010";
 shiftn2 <= "010000";
 mantans1(51 downto 16) := mant_result1(35 downto 0);
 mantans1(15 downto 0) := "0000000000000000";
 ELSIF mant_result1(35) = '1' THEN
 shift <= "010001";
 --shiftn <= "010011";

 197

 shiftn2 <= "010001";
 mantans1(51 downto 17) := mant_result1(34 downto 0);
 mantans1(16 downto 0) := "00000000000000000";
 ELSIF mant_result1(34) = '1' THEN
 shift <= "010010";
 --shiftn <= "010100";
 shiftn2 <= "010010";
 mantans1(51 downto 18) := mant_result1(33 downto 0);
 mantans1(17 downto 0) := "000000000000000000";
 ELSIF mant_result1(33) = '1' THEN
 shift <= "010011";
 --shiftn <= "010101";
 shiftn2 <= "010011";
 mantans1(51 downto 19) := mant_result1(32 downto 0);
 mantans1(18 downto 0) := "0000000000000000000";
 ELSIF mant_result1(32) = '1' THEN
 shift <= "010100";
 --shiftn <= "010110";
 shiftn2 <= "010100";
 mantans1(51 downto 20) := mant_result1(31 downto 0);
 mantans1(19 downto 0) := "00000000000000000000";
 ELSIF mant_result1(31) = '1' THEN
 shift <= "010101";
 --shiftn <= "010111";
 shiftn2 <= "010101";
 mantans1(51 downto 21) := mant_result1(30 downto 0);
 mantans1(20 downto 0) := "000000000000000000000";
 ELSIF mant_result1(30) = '1' THEN
 shift <= "010110";
 --shiftn <= "011000";
 shiftn2 <= "010110";
 mantans1(51 downto 22) := mant_result1(29 downto 0);
 mantans1(21 downto 0) := "0000000000000000000000";
 ELSIF mant_result1(29) = '1' THEN
 shift <= "010111";
 --shiftn <= "011001";
 shiftn2 <= "010111";
 mantans1(51 downto 23) := mant_result1(28 downto 0);
 mantans1(22 downto 0) := "00000000000000000000000";
 ELSIF mant_result1(28) = '1' THEN
 shift <= "011000";
 --shiftn <= "011010";
 shiftn2 <= "011000";
 mantans1(51 downto 24) := mant_result1(27 downto 0);
 mantans1(23 downto 0) := "000000000000000000000000";
 ELSE
 mantans1 := mant_result1(51 DOWNTO 0);
 change<='0';
 shift <= "000000";
 --shiftn <= "000000";
 shiftn2 <= "000000";
 END IF;
 mantz1 <= mantans1;
 shiftout <=shift;
 expanswerz1<=expanswer;

 198

 Sanswerz1<=Sanswer;
END IF;
END PROCESS PROC4;

PROC4A: PROCESS (CLK) --mantissa normalization
variable mant_result1a : std_logic_vector(51 downto 0);--
was 53
variable mantans : std_logic_vector(51 downto 0);
variable expanswer : std_logic_vector(10 downto 0);
variable Sanswer : std_logic;
variable shiftc,shiftd2 : std_logic_vector(5 downto 0);
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 --shiftc := shiftout;
 shiftc := shift;
 --shiftd := shiftn;
 shiftd2 := shiftn2;
 mant_result1a := mantz1;
 expanswer := expanswerz1;
 Sanswer := Sanswerz1;
 IF change = '1' THEN
 mantans := mant_result1a;
 ELSIF mant_result1a(27) = '1' THEN
 shiftc := "011001";
 --shiftd := "011011";
 shiftd2 := "011001";
 mantans(51 downto 25) := mant_result1a(26 downto 0);
 mantans(24 downto 0) := "0000000000000000000000000";
 ELSIF mant_result1a(26) = '1' THEN
 shiftc := "011010";
 --shiftd := "011100";
 shiftd2 := "011010";
 mantans(51 downto 26) := mant_result1a(25 downto 0);
 mantans(25 downto 0) := "00000000000000000000000000";
 ELSIF mant_result1a(25) = '1' THEN
 shiftc := "011011";
 --shiftd := "011101";
 shiftd2 := "011011";
 mantans(51 downto 27) := mant_result1a(24 downto 0);
 mantans(26 downto 0) := "000000000000000000000000000";
 ELSIF mant_result1a(24) = '1' THEN
 shiftc := "011100";
 --shiftd := "011110";
 shiftd2 := "011100";
 mantans(51 downto 28) := mant_result1a(23 downto 0);
 mantans(27 downto 0) := "0000000000000000000000000000";
 ELSIF mant_result1a(23) = '1' THEN
 shiftc := "011101";
 --shiftd := "011111";
 shiftd2 := "011101";
 mantans(51 downto 29) := mant_result1a(22 downto 0);
 mantans(28 downto 0) := "00000000000000000000000000000";
 ELSIF mant_result1a(22) = '1' THEN
 shiftc := "011110";
 --shiftd := "100000";

 199

 shiftd2 := "011110";
 mantans(51 downto 30) := mant_result1a(21 downto 0);
 mantans(29 downto 0) := "000000000000000000000000000000";
 ELSIF mant_result1a(21) = '1' THEN
 shiftc := "011111";
 --shiftd := "100001";
 shiftd2 := "011111";
 mantans(51 downto 31) := mant_result1a(20 downto 0);
 mantans(30 downto 0) := "0000000000000000000000000000000";
 ELSIF mant_result1a(20) = '1' THEN
 shiftc := "100000";
 --shiftd := "100010";
 shiftd2 := "100000";
 mantans(51 downto 32) := mant_result1a(19 downto 0);
 mantans(31 downto 0) := "00000000000000000000000000000000";
 ELSIF mant_result1a(19) = '1' THEN
 shiftc := "100001";
 --shiftd := "100011";
 shiftd2 := "100001";
 mantans(51 downto 33) := mant_result1a(18 downto 0);
 mantans(32 downto 0) :=
"000000000000000000000000000000000";
 ELSIF mant_result1a(18) = '1' THEN
 shiftc := "100010";
 --shiftd := "100100";
 shiftd2 := "100010";
 mantans(51 downto 34) := mant_result1a(17 downto 0);
 mantans(33 downto 0) :=
"0000000000000000000000000000000000";
 ELSIF mant_result1a(17) = '1' THEN
 shiftc := "100011";
 --shiftd := "100101";
 shiftd2 := "100011";
 mantans(51 downto 35) := mant_result1a(16 downto 0);
 mantans(34 downto 0) :=
"00000000000000000000000000000000000";
 ELSIF mant_result1a(16) = '1' THEN
 shiftc := "100100";
 --shiftd := "100110";
 shiftd2 := "100100";
 mantans(51 downto 36) := mant_result1a(15 downto 0);
 mantans(35 downto 0) :=
"000000000000000000000000000000000000";
 ELSIF mant_result1a(15) = '1' THEN
 shiftc := "100101";
 --shiftd := "100111";
 shiftd2 := "100101";
 mantans(51 downto 37) := mant_result1a(14 downto 0);
 mantans(36 downto 0) :=
"0000000000000000000000000000000000000";
 ELSIF mant_result1a(14) = '1' THEN
 shiftc := "100110";
 --shiftd := "101000";
 shiftd2 := "100110";
 mantans(51 downto 38) := mant_result1a(13 downto 0);

 200

 mantans(37 downto 0) :=
"00000000000000000000000000000000000000";
 ELSIF mant_result1a(13) = '1' THEN
 shiftc := "100111";
 --shiftd := "101001";
 shiftd2 := "100111";
 mantans(51 downto 39) := mant_result1a(12 downto 0);
 mantans(38 downto 0) :=
"000000000000000000000000000000000000000";
 ELSIF mant_result1a(12) = '1' THEN
 shiftc := "101000";
 --shiftd := "101010";
 shiftd2 := "101000";
 mantans(51 downto 40) := mant_result1a(11 downto 0);
 mantans(39 downto 0) :=
"00";
 ELSIF mant_result1a(11) = '1' THEN
 shiftc := "101001";
 --shiftd := "101011";
 shiftd2 := "101001";
 mantans(51 downto 41) := mant_result1a(10 downto 0);
 mantans(40 downto 0) :=
"000";
 ELSIF mant_result1a(10) = '1' THEN
 shiftc := "101010";
 --shiftd := "101100";
 shiftd2 := "101010";
 mantans(51 downto 42) := mant_result1a(9 downto 0);
 mantans(41 downto 0) :=
"00";
 ELSIF mant_result1a(9) = '1' THEN
 shiftc := "101011";
 --shiftd := "101101";
 shiftd2 := "101011";
 mantans(51 downto 43) := mant_result1a(8 downto 0);
 mantans(42 downto 0) :=
"000";
 ELSIF mant_result1a(8) = '1' THEN
 shiftc := "101100";
 --shiftd := "101110";
 shiftd2 := "101100";
 mantans(51 downto 44) := mant_result1a(7 downto 0);
 mantans(43 downto 0) :=
"00";
 ELSIF mant_result1a(7) = '1' THEN
 shiftc := "101101";
 --shiftd := "101111";
 shiftd2 := "101101";
 mantans(51 downto 45) := mant_result1a(6 downto 0);
 mantans(44 downto 0) :=
"000";
 ELSIF mant_result1a(6) = '1' THEN
 shiftc := "101110";
 --shiftd := "110000";
 shiftd2 := "101110";

 201

 mantans(51 downto 46) := mant_result1a(5 downto 0);
 mantans(45 downto 0) :=
"00";
 ELSIF mant_result1a(5) = '1' THEN
 shiftc := "101111";
 --shiftd := "110001";
 shiftd2 := "101111";
 mantans(51 downto 47) := mant_result1a(4 downto 0);
 mantans(46 downto 0) :=
"000";
 ELSIF mant_result1a(4) = '1' THEN
 shiftc := "110000";
 --shiftd := "110010";
 shiftd2 := "110000";
 mantans(51 downto 48) := mant_result1a(3 downto 0);
 mantans(47 downto 0) :=
"00";
 ELSIF mant_result1a(3) = '1' THEN
 shiftc := "110001";
 --shiftd := "110011";
 shiftd2 := "110001";
 mantans(51 downto 49) := mant_result1a(2 downto 0);
 mantans(48 downto 0) :=
"000";
 ELSIF mant_result1a(2) = '1' THEN
 shiftc := "110010";
 --shiftd := "110100";
 shiftd2 := "110010";
 mantans(51 downto 50) := mant_result1a(1 downto 0);
 mantans(49 downto 0) :=
"00";
 ELSIF mant_result1a(1) = '1' THEN
 shiftc := "110011";
 shiftd2 := "110011";
 --shiftd := "110101";
 mantans(51) := mant_result1a(0);
 mantans(50 downto 0) :=
"000";
 ELSE
 shiftc := "000000";
 --shiftd := "000000";
 shiftd2 := "000000";
 mantans :=
"00";
 END IF;
-- OUTx <= Sanswer & expanswer & mantans;
 Sanswer1 <= Sanswer;
 expanswer1 <= expanswer;
 mantans3 <= mantans;
 shift1 <= shiftc;
 --shift11 <= shiftd;
 shift12 <= shiftd2;
END IF;
END PROCESS PROC4A;

 202

PROC4_B: PROCESS (CLK)--occurs during normalization
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 Sans2 <= Sans1out1a;
 Sans3 <= Sans2;
 Sans4 <= Sans3;
 Sans5 <= Sans4;
 Sans6 <= Sans5;

 SSx1 <= SSxout2;
 SSx2 <= SSx1;
 SSx3 <= SSx2;
 SSx4 <= SSx3;
 SSx5 <= SSx4;
 SSx6 <= SSx5;
 SSx7 <= SSx6;
 SSx8 <= SSx7;

 exp1a <= exp1out1a;
 exp1b <= exp1a;
 exp1c <= exp1b;

 exp1d <= exp1c;
 exp1e <= exp1d;
END IF;
END PROCESS PROC4_B;

PROCESS_EXP_ADJ: PROCESS (CLK)
variable expanswer2 : STD_LOGIC_VECTOR(10 DOWNTO 0);
variable mantans4 : STD_LOGIC_VECTOR(51 DOWNTO 0);
variable Sanswer2 : STD_LOGIC;
variable shift1x,shift12x : STD_LOGIC_VECTOR(5 DOWNTO 0);

BEGIN
IF CLK'EVENT AND CLK='1' THEN
 Sanswer2 := Sanswer1;
 expanswer2 := expanswer1;
 mantans4 := mantans3;
 shift1x := shift1;
 --shift11x := shift11;
 shift12x := shift12;
 IF Z11 = '1' THEN
 Sanswer2 := '0';
 expanswer2 := (OTHERS=>'0');
 mantans4 := (OTHERS=>'0');
 ELSIF (shift1x > "000000" AND SSx8 = '1') THEN
 expanswer2 := expanswer2 - shift1x;
 ELSIF (shift12x > "000000" AND SSx8 = '0') THEN
 expanswer2 := expanswer2 + shift12x;
 END IF;
 OUTx <= Sanswer2 & expanswer2 & mantans4;

 203

END IF;
END PROCESS PROCESS_EXP_ADJ;

PROCESS_FINISH: PROCESS (CLK)
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 f1 <= start;
 f2 <= f1;
 f3 <= f2;
 f4 <= f3;
 f5 <= f4;
 f6 <= f5;
 f7 <= f6;
 f8 <= f7;
 f9 <= f8;
 f10 <= f9;
 f11 <= f10;
 f12 <= f11;
 finish <= f12;
END IF;
END PROCESS PROCESS_FINISH;

Zerocheck1: PROCESS (CLK)
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 IF Ain =
"00" THEN
 zeroflag1 <= '1';
 ELSE
 zeroflag1 <= '0';
 END IF;
END IF;
END PROCESS Zerocheck1;

Zerocheck2: PROCESS (CLK)
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 IF Bin =
"00" THEN
 zeroflag2 <= '1';
 ELSE
 zeroflag2 <= '0';
 END IF;
END IF;
END PROCESS Zerocheck2;

Zeropass: PROCESS (CLK)
BEGIN
IF CLK'EVENT AND CLK='1' THEN
 Z1 <= zeroflag1 AND zeroflag2;
 Z2 <= Z1;
 Z3 <= Z2;
 Z4 <= Z3;

 204

 Z5 <= Z4;
 Z6 <= Z5;
 Z7 <= Z6;
 Z8 <= Z7;
 Z9 <= Z8;
 Z10 <= Z9;
 Z11 <= Z10;
END IF;
END PROCESS Zeropass;

END behavior;

 205

Vita

Kirk Andrew Baugher was born on January 2, 1980 in Enterprise, Alabama. Kirk

was raised in all across the country spending his childhood and adolescent life in

Alabama, Washington, Virginia, Tennessee, and Texas. He began attending college at

the University of Tennessee, Knoxville in the fall of 1998. During his undergraduate

term at the University of Tennessee, Kirk co-oped for one year with the Tennessee Valley

Authority and soon graduated with a Bachelor of Science degree in Computer

Engineering and a minor in Engineering Communication and Performance in 2003.

Immediately following the completion of his undergraduate degree, Kirk started his

graduate degree. One year later in 2004, Kirk graduated with a Master of Science in

Electrical Engineering.

Kirk will be starting his career as an engineer with Honeywell in Clearwater,

Florida.

 206

	Table of Contents
	Chapter Page
	List of Tables
	Table Page
	List of Figures
	Figure Page

	Chapter 1
	Introduction
	Chapter 2
	References
	Appendices
	Appendix F – Sparsemvmult.vhd

	Vita

