
To the Graduate Council:

I am submitting herewith a thesis written by Venkatesh Bhaskaran entitled
“Parameterized Implementation of K-means Clustering on Re-configurable
Systems”. I have examined the final paper copy of this thesis for form and
content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Electrical
Engineering.

 Dr. Gregory Peterson, Major Professor

We have read this thesis
and recommend its acceptance:

Dr. Donald W Bouldin, Professor

Dr. Hairong Qi, Professor

Dr. Chandra Tan, Professor

Accepted for the Council:

 Vice Provost and Dean of Graduate Studies

PARAMETERIZED IMPLEMENTATION OF K-MEANS

CLUSTERING ON RECONFIGURABLE SYSTEMS

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Venkatesh Bhaskaran

December 2003

DEDICATED

TO

AMMA & APPA

 ii

ACKNOWLEDGEMENTS

“Interdependence is certainly more valuable than independence”

 - Anonymous

This thesis is the result of two years of work whereby I was accompanied and

inspired by many people. I am glad to have this opportunity to express my

gratitude to all of them. First, I would like to thank my direct advisor Dr. Gregory

Peterson for giving me the opportunity to participate in his research group in the

year 2001 and advising me all through, from then on. He has played several

roles as a friend, advisor, listener, sympathizer etc. I owe him a great deal for all

the efforts he has taken in helping me take the right path.

I would also like to thank my co-advisor Dr. Donald W Bouldin for letting me use

his research laboratory and the latest and greatest design tools. His unmatchable

research experience and flawless attitude, as a professor needs a special

mention. I have been fortunate to take some of his classes and research leads.

Special thanks to Dr. Chandra Tan; without him, this thesis and the greatest

learning experience that I have had, would have stood, a dream. There has not

been a day that passed that he has not inspired me. His technical expertise, low-

profile down to earth kind of attitude has truly amazed me. I am so very grateful

to him for all the help and inspiration. We have had several debates,

 iii

conversations and discussions ranging from design fundamentals to problem

solving techniques to stock market and to life in Indonesia, India and so on.

Thank you Dr. Chandra.

Special thanks, to my co-advisor Dr. Hairong Qi for helping me understand some

of the concepts of hyper spectral imaging, dataset pre-analysis and other related

fundamentals. I truly cherish those discussions as a rewarding experience.

I couldn’t forget to thank my family, my mom and my dad, primarily. I should have

been truly blessed to have such amazing parents and take this opportunity to

express my thanks for the unconditional love and support they have given me.

They have stood by me during happy and hard times and I thank them once

again for that. Love to my little nieces and nephew, Arti, Amita, Sahana and

Sanjay. They are the cutest things in the world and it’s hard to forget all the funny

days of horseback riding with Arti and Amita or playing pickaboo with sahana

kutty and sanjay. My brother Mahesh and sister Preetha are my greatest assets

that have supported me constantly and have been instrumental in helping me

stay driven and focused. I take this opportunity to thank them for their

thoughtfulness towards me. I would also like to thank my sister-in-law Juana for

her encouragement, support and willingness to help. Special thanks, to my

brother-in-law Dr. Natesan Venkateswaran for reviewing my thesis material and

giving me valuable suggestions and feedback. I owe him a lot for helping me out

of several tough situations and decisions that I have had to make as a student.

 iv

Some of the first digital lessons I leant from him like the K-N and F-M partitioning

algorithms, was even before I started graduate school. I would say, my interest in

digital design started right at that point. Thank you ‘Jijaji’ for all your help. All in

all, without the support of my family, this work would have not been possible.

Last but not the very least, I feel honored to acknowledge my friends and co-

researchers, first, Fuat Karakaya, who let me use some of his scripts that helped

me avoid some laborious repetitive tasks conducting experiments. Several nights

in the lab we have spent hours analyzing and solving mysteries of the digital

world, not to forget some meaningful theological discussions. Thanks to other

research members, Phani Teja for providing me with the PCA code, Srikala for

proofreading this document, Ashwin, Sampath, Mahesh for some ‘kadi’ jokes in

the lab and to Mardav for accompanying me for coffee breaks. Special thanks to

the RecSports people Harold, Jim, Jeff, Brande, Jackie, Katy, Brett, Natalie,

Steve, Judd, Alicia, Sarah, Megan, Ben and all the others who have made a

difference in my life.

 v

ABTRACT

Processing power of pattern classification algorithms on conventional platforms

has not been able to keep up with exponentially growing datasets. However,

algorithms such as k-means clustering include significant potential parallelism

that could be exploited to enhance processing speed on conventional platforms.

A better and effective solution to speed-up the algorithm performance is the use

of a hardware assist since parallel kernels can be partitioned and concurrently

run on hardware as opposed to the sequential software flow. A parameterized

hardware implementation of k-means clustering is presented as a proof of

concept on the Pilchard Reconfigurable computing system. The hardware

implementation is shown to have speedups of about 500 over conventional

implementations on a general-purpose processor. A scalability analysis is done

to provide a future direction to take the current implementation of 3 classes and

scale it to over N classes.

 vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1

 1.1 DATA ANALYSIS ... 1

 1.1.1 HYPERSPECTRAL DATA ANALYSIS .. 2

 1.2 CLUSTERING TECHNIQUES .. 3

 1.2.1 K-MEANS CLUSTERING .. 4

 1.3 HARDWARE IMPLEMENTATION.. 6

 1.3.1 PILCHARD SYSTEM... 7

 1.4 SCOPE OF THE THESIS ... 8

2. RELATED WORK... 10

 2.1 K-MEANS CLUSTERING ON FPGA-BASED PLATFORMS.................... 10

 2.2 K-MEANS CLUSTERING ON OTHER PLATFORMS............................... 14

 2.3 CHAPTER SUMMARY ... 15

3. K-MEANS CLUSTERING ... 16

 3.1 ALGORITHM OVERVIEW.. 16

 3.2 APPROACHES FOR ACCELERATION ... 18

 3.3 DATA SETS.. 25

 3.3.1 RAW DATA.. 25

 3.3.2 DATA PRE-PROCESSING.. 27

 3.3.2.1 FEATURE EXTRACTION... 27

 vii

 3.3.2.1.1 HIGHER ORDER STATISTICS..27

 3.3.2.1.2 WAVELET BASED FEATURES ...28

 3.3.2.2 PRINCIPLE COMPONENT ANALYSIS.......................................29

 3.4 CHAPTER SUMMARY..30

4. HARDWARE PLATFORM...31

 4.1 WHY PILCHARD?...31

 4.2 PILCHARD SYSTEM ..32

 4.3 VIRTEX 1000E ARCHITECTURE...36

 4.3.1 CONFIGURABLE LOGIC BLOCK..37

 4.3.2 DELAY-LOCKED LOOP...38

 4.4 DESIGN ISSUES OF K-MEANS ON PILCHARD......................................39

 4.4.1 SPEEDS AND FEEDS ...39

 4.4.2 LIMITATIONS AND BOTTLENECKS ...41

 4.5 CHAPTER SUMMARY..42

5. METHODOLOGY..43

 5.1 INTRODUCTION...43

 5.2 MATLAB GOLDEN CODE ..44

 5.3 FIXED-POINT C..47

 5.3.1 BIT-WIDTH TRUNCATION ..47

 5.4 A|RT BUILDER..52

 5.4.1 ‘fxpStatistics’ COLLECTOR CLASS ...52

 5.4.2 OVERFLOW LOGGING ...53

 5.4.3 ‘fxpTrace’ STATISTICS CLASS ...53

 viii

 5.5 CHAPTER SUMMARY ... 54

6. IMPLEMENTATION AND RESULTS.. 55

 6.1 INTRODUCTION .. 55

 6.2 DESIGN IMPLEMENTATION FLOW.. 56

 6.3 DESIGN VERIFICATION FLOW .. 58

 6.4 HOST – HARDWARE FLOW ... 60

 6.5 HARDWARE MODEL... 60

 6.5.1 MEMORY MODEL... 62

 6.5.2 CORE ENGINE ... 67

 6.5.2.1 DISTANCE DETERMINATION... 67

 6.5.2.2 PIXEL CLASSIFICATION/RE-CLASSIFICATION....................... 70

 6.5.2.3 FINAL CLUSTER CENTERS DETERMINATION 72

 6.5.3 FINITE STATE MACHINE ... 72

 6.6 HOST INTERFACE .. 75

 6.7 DESIGN SCRIPTS ... 76

 6.7.1 SIMULATION AND DESIGN VERIFICATION 76

 6.7.2 SYNTHESIS AND RTL GENERATION ... 79

 6.7.2.1 SYNTHESIS FLOW .. 79

 6.7.2.2 OPTIMIZATION METHODS ... 80

 6.7.3 PLACE AND ROUTE... 82

 6.8 RESULTS... 86

 6.8.1 FLOATING POINT KMEANS... 86

 6.8.1.1 MATLAB AND C ... 86

 ix

 6.8.1.2 CLASS CORRESPONDENCE ..87

 6.8.2 HARDWARE RUNS ...88

 6.8.2.1 POLLING FOR TIMING MEASUREMENTS................................88

 6.9 DISCUSSION..91

 6.10 PILCHARD CHALLENGES ...95

 6.11 CHAPTER SUMMARY..96

7. CONCLUSION AND FUTURE WORK ..97

 7.1 OBJECTIVES ACHIEVED...97

 7.2 FUTURE DIRECTIONS...98

 7.2.1 SCALABILITY ANALYSIS ..99

 7.3 CHAPTER SUMMARY..101

BIBLIOGRAPHY ...102

VITA ..106

 x

LIST OF FIGURES

FIGURES PAGE

1.1 The Pilchard Board... 7

3.1 K-means Algorithm ... 19

3.2 Misclassification Rate for Different Distance Metric...................................... 22

3.3 Percentage Difference vs. Amount of Truncation for Different Samples....... 24

4.1 The Pilchard Card... 32

4.2 Features of Pilchard Platform ... 34

4.3 Entity Declaration of pcore.vhd... 35

4.4 Virtex Architecture Overview .. 35

4.5 Problem of Speeds and Feeds ... 40

5.1 Methodology Design Flow .. 45

5.2 Golden Matlab Code... 46

5.3 Procedure for Determining Minimum Integer Bits ... 49

5.4 Procedure for Determining Minimum Fractional Bits 50

5.5 Full Precision (I + F) 16-bit Fixed Point... 51

5.6 Modified 13-bit Representation of Pixel .. 52

6.1 Block Diagram of the Implementation... 56

6.2 Design Implementation Flow .. 57

6.3 Design Verification.. 59

6.4 Interfacing Hardware and Software .. 60

 xi

6.5 41-Stage Pipelined K-means Clustering Algorithm61

6.6 Dual Port Memory Receive Data Layout ...64

6.7 Spatial Representation of a Pixel with Three Features..................................65

6.8 Dual Port Memory Transfer Data Layout...66

6.9 Manhattan Distance Computation ...69

6.10 Pixel Classification Pseudo-RTL Model...71

6.11 One Hot Encoded State Machine ..73

6.12 FSM Entity Declaration..75

6.13 Script to Compile Memory Primitives into XilinxCoreLib..............................77

6.14 Script to Compile the Core ..78

6.15 Script to Verify Back-Annotated Results..78

6.16 Synthesis Script with Optimization Parameters...81

6.17 Place and Route Script with Highest Effort Levels82

6.18 Layout of K-means Core including Division Operators85

6.19 Flowchart for Recording Run Time Measurements89

6.20 Speedup (1) ... 93

6.21 Speedup (2) ... 93

6.22 Trade-Offs in Modeling time vs. Runtime ..94

7.1 Scalable K-means Clustering Algorithm ..100

 xii

1. INTRODUCTION

The goal of this chapter is to introduce the reader to various components in the

current work. Data analysis is considered an important problem in the research

circles and how that could be best achieved is an important question that appeals

to many young researchers. Years of work in collecting samples and massive

datasets do not have any value proposition if researchers do not understand what

they mean. Therefore the necessity for faster data analyses has been the focus of

many researchers.

1.1 DATA ANALYSIS

Several real world classification problems are characterized by a large number of

inputs and moderately large number of classes that can be assigned to any input.

Two popular simplifications have been considered for such problems: (i) feature

extraction, where the input space is projected into a smaller feature space (ii)

modular learning, where a number of classifiers, each focusing on a specific

aspect of the problem, are learned instead of a single classifier [1]. Several

methods for feature extraction and modular learning have been proposed in the

computational intelligence community.

Analysis of land cover types from airborne/space borne sensors is an important

classification problem in remote sensing [7]. Due to advances in sensor

technology, it is now possible to acquire spectral data simultaneously in more than

100 bands, each of which measures the integrated response of a target over a

 1

narrow window of the electromagnetic spectrum. The bands are ordered by their

wavelengths and spectrally adjacent bands are generally statistically correlated

with target dependent groups of bands [7]. Using such high dimensional data for

classification of land cover potentially improves distinction between classes but

dramatically increases problems with parameter estimation and storage and

management of the extremely large datasets [7].

1.1.1 HYPER-SPECTRAL DATA ANALYSIS

Hyper-spectral data is pixel information collected over 100-1000 spectral bands

simultaneously. Hyper-spectral methods for deriving information about the Earth's

resources using airborne or space-based sensors yield information about the

electromagnetic fields that are reflected or emitted from the Earth's surface, and in

particular, from the spatial, spectral, and temporal variations of those

electromagnetic fields [10]. Chemistry-based responses which are the primary

basis for discrimination of the land cover types in the visible and near infrared

portions of the spectrum are determined from the data acquired simultaneously in

multiple windows of the electromagnetic spectrum. In contrast to airborne and

space-based multispectral sensors, which acquire data in a few (<10) broad

channels, hyper-spectral sensors can now acquire data in hundreds of windows,

each less than 10 nanometers in width. Because many land cover types have only

subtle differences in their characteristic responses, this potentially provides greatly

improved characterization of the unique spectral characteristics of each, and

 2

therefore increases the classification accuracy required for the detailed mapping of

species from remotely sensed data [10].

1.2 CLUSTERING TECHNIQUES

Data analyses, for instance, interpretation of Landsat images that involve huge

datasets imply no meaning and is impractical as well for direct manipulation [6].

Some methods of data compression must initially be applied to reduce the size of

the dataset without losing the essential component of the data. Most of such

methods sacrifice some detail though. Clustering technique is one such protocol

that has been used for data analysis both as a compression algorithm and for

quick-view analysis. Generically speaking, clustering involves dividing a set of data

points into non-overlapping groups, or clusters, of points, where points in a cluster

are more similar to one another than to points in other clusters. The main goal of

clustering is to reduce the size and complexity of the dataset. Clustered sets of

points require much less storage space and can be manipulated more quickly than

the original data [3]. The value of a particular clustering method will depend on

how closely the reference points represent the data as well as how fast the

program runs. There have been several algorithms proposed in the past for

clustering data for the purpose of compression and dimensionality reduction. Two

such methods are the supervised (knn) and unsupervised (k-means) methods. In

the Knn method, the feature space, described in chapter3 is partially divided into

testing set and training set. The classifier is trained on the training set and the

 3

testing set is used to test the performance of the classifier derived [22]. This thesis

focuses on the unsupervised learning scheme.

1.2.1 K-MEANS CLUSTERING

A non-hierarchical approach to forming good clusters is to specify a desired

number of clusters, say, k, then assign each case (object) to one of k clusters so

as to minimize a measure of dispersion within the clusters. A very common

measure is the sum of distances or sum of squared Euclidean distances from the

mean of each cluster. The problem can be set up as an integer-programming

problem but because solving integer programs with a large number of variables

is time consuming, clusters are often computed using a fast, heuristic method

that generally produces good (but not necessarily optimal) solutions. The k-

means algorithm is one such method.

The k-means algorithm [25] starts with an initial partition of the cases into k

clusters. Subsequent steps modify the partition to reduce the sum of the

distances for each case from the mean of the cluster to which the case belongs.

The modification consists of allocating each case to the nearest of the k means

of the previous partition. This leads to a new partition for which the sum of

distances is strictly smaller than before. The improvement step is repeated until

the improvement is very small. The method is very fast. There is a possibility that

the improvement step leads to fewer than k partitions. In this situation one of the

partitions (generally the one with the largest sum of distances from the mean) is

 4

divided into two or more parts to reach the required number of k partitions. The

algorithm can be rerun with different randomly generated starting partitions to

reduce the chances of the heuristic producing a poor solution. Generally the

number of "true" clusters in the data is not known. Therefore, it is a good idea to

run the algorithm with different values for k that are near the number of clusters

one expects from the data to see how the sum of distances reduces with

increasing values of k.

This algorithm has its origin in the data-mining field [1]. It is utilized for

classification purposes and to discover anomalies and patterns in both small and

large data sets. There exist many different variants of k-means clustering – most of

which are variants adapted for special purpose environments. With the growth of

data collected on operational and transactional data, the field of data mining has

become increasingly important. The growth of data has been accelerated with the

commercialization of the Internet and the increased use of personal computer. In

this environment collection of individual metrics is relatively cheap and unobtrusive

to the user. Companies who have been collecting vast amount of data on

consumer habits are now confronted with the dilemma of what to do with all the

data. This is where k-means clustering becomes useful. It provides a remedy

tailored to this problem and reveals patterns that otherwise are obfuscated. In

short, it can be said that k-means is a common solution to the segmentation of

multi-dimensional data [8][9]. However, these large amounts of data sets require

 5

large computational capacity. The nature of this problem is ideally implemented on

a high performance computing architectural node.

1.3 HARDWARE IMPLEMENTATION

K-means algorithm developed in high performance computing (HPC) architectures

[19] drastically increases the achievable parallelism with small transformation in

the conventional algorithm. K-means is an iterative algorithm that assigns to each

pixel a label indicating which of K clusters the pixel belongs to. The conventional

software implementation of k-means algorithm uses floating-point arithmetic and

Euclidean distances. Floating-point arithmetic and the multiplication-heavy

Euclidean distance calculation are efficient on a general-purpose processor, but

they have large area and speed penalties when implemented on an FPGA [3]. In

order to get the best performance of k-means on an FPGA, the algorithm needs to

be transformed to eliminate these operations. An alternative distance measure,

Manhattan distances, that does not require multiplier was used to develop the

macro on the hardware. Measurement using full precision and truncated bit widths

were performed, examined and presented. A direct translation of the standard

software implementation of k-means would result in a very inefficient use of FPGA

hardware resources. Alternatively, changes to the conventional algorithm have

been done to better realize the performance on the hardware.

 6

Figure 1.1: The Pilchard Board

1.3.1 PILCHARD SYSTEM

A high performance architecture called Pilchard [18] shown in Figure 1.1

developed at Chinese University of Hong Kong has been used to perform

measurements of this clustering technique. One of the main advantages of trying

to map k-means clustering is the inherent massive parallelism that can be

exploited within the algorithmic level. Other hardware level optimizations have

been discussed later in this manuscript.

The efficient interface and low cost model of the Pilchard architecture makes it

suitable for various applications including cryptosystems, image processing and

speech processing, clustering techniques, in addition to rapid prototyping. The

 7

unique features about pilchard are that it uses DIMM slot as an interface as

opposed to PCI thereby leveraging bandwidth. A picture of the Pilchard card is

shown in Figure 1.1 [18].

The other distinct advantages of Pilchard when compared with other FPGA

platforms available at University Of Tennessee are the use of one big virtex chip,

easy interface, minimal overhead either in hardware resources and timing.

Developers can concentrate more on algorithmic partitioning, if needed, instead of

worrying much about partitioning program or data within multi-chip modules on the

prototype board. Additionally much time can be spent on algorithm development

rather than focusing on complex interfacing. Chapter 4 explains some of the other

features of the Pilchard system. For complete information, refer the Pilchard user

guide [18].

1.4 SCOPE OF THE THESIS

K-means algorithm, presented as a proof of concept over a hardware unit and

more specifically on the Pilchard system, is applied to both synthetic and hyper-

spectral datasets. Primarily, the five points summarized below are the focus of the

current work.

1. Implementing k-means software version.

2. Analysis of scalability of k-means on FPGA units.

3. Developing a methodology flow design to realize the algorithm on the

hardware.

 8

4. Discussing design issues of k-means clustering on hardware, with

reference to Pilchard system and implementing it.

5. Cluster classification verification of the algorithm using synthetic and

hyperspectral datasets.

Chapter 1 introduces the reader to all the main idea and briefly discusses about

each of the topics. Chapter 2 details some of the background work done by

various researchers in implementing clustering algorithms on hardware units as

well as hardware-software co-design models. Chapter 3 provides information

about the algorithm itself and some of its variants. Certain acceleration approaches

are detailed followed by the description of hyperspectral datasets. Some pre-

processing techniques used on the data have been explained. Chapter 4

describes a bit about the hardware platform that has been used in this work to

realize the algorithm. The benefits and bottlenecks of using the system have been

pointed out. Furthermore, hardware blocks available within the platform have been

described to familiarize a reader with limited or no knowledge about the hardware

system. Chapter 5 describes the methodology and the approach taken in the

design of the algorithm. Chapter 6 details the implementation of the design

including the scripts used. Also, the results obtained are presented followed by

interpretation of the numbers. Chapter 7 discusses conclusion of the thesis work

followed by future work that could be interpolated from the current one.

 9

2. RELATED WORK

A number of researchers have worked on clustering algorithms, especially k-

means. Enormous research focus has been on data mining and multi-spectral

pattern classification applications using k-means algorithm. Some researchers

have worked on classification of hyper-spectral images but the focus has been

on the quality of clusters and handling of huge data sets. The nature of the

algorithm as is discussed in chapter 3 reveals that the changes in final cluster

centers/classification are robust to changes in the ground conditions. This

reinforces the fact that speed is still a main concern and fast number crunching of

massive datasets becomes a matter a significant importance.

2.1 K-MEANS CLUSTERING ON FPGA-BASED PLATFORMS

Few research groups have experimented to map k-means algorithm to re-

configurable fabric in order to achieve some acceleration. Such experiments

have ‘feel-good’ results but there has not been a high performance-computing

platform coupled with reconfigurable elements to really be able to exploit the

tremendous potential parallelism inherent within the algorithm. The architectural

goal of high performance reconfigurable computing nodes is to achieve

hardware-like performance and software-like flexibility. Image processing

algorithms are natural candidates for high performance computing due to their

inherent parallelism and intense computational demand [1].

 10

Mainly, two thesis topics based on this have been produced. The first one [7] is a

work titled ‘K-means clustering for Color Image processing on Reconfigurable

Hardware Board’ conducted experiments on Annapolis Microsystems Wild Force

FPGA-based custom computing machine. Two facts were established as an

outcome of their experiments. One, custom-computing machines are suitable for

intermediate-level image processing algorithms. Two, a custom computing

approach permits image-processing applications to run at high speed.

The second thesis [1] also from the same research group at Northeastern

University, Boston did similar work as the first one but on hyper-spectral images.

A couple of transformation techniques have been employed to take advantage of

FPGA elements and presented pros and cons of such implementation.

Manhattan distance measure was employed to classify points under a certain

category and this helped eliminate multipliers in hardware that turns out to be

area and speed expensive. The other major technique involved in the work was

improving computational time by the use of input data truncation. However, the

number of bits to be truncated was not rationalized but has been observed at the

same token, that a significant improvement was obtained by truncating input data

by 2 bits. A speed up of two orders of magnitude faster than the same algorithm

run in software was shown [1]. The current work presented in this document tries

to rationalize the exact number of bits that could be truncated with an acceptable

percentage error in accuracy of the final cluster centers. Nevertheless, the

classification of points into N number of classes does not change. Again the

 11

hardware implementation was targeted to Annapolis Microsystems Wildstar PCI

board with three Xilinx Virtex 1000 FPGAs and 40 MB of ZBT SRAM. The design

classifies 614 X 512 pixel images with 10 channels of 12 bits data per pixel into 8

clusters. The design returns the cluster number for each pixel, as well as the

accumulated values for each channel of each cluster and the number of pixels in

each cluster. One of the processing elements PE1 is used by the design and has

interface to the host PCI bus. The registers mapped onto the host PCI bus hold

the control signals, cluster centers, and cluster accumulators. The two 64 bit

memory ports hold the pixel data, so that 128 bits of the image can be accessed

each clock cycle. Each pixel is 120 bits (10 channel/12 bits), and the image is

mapped into the memories so that one whole pixel is accessed each clock cycle

with 8 unused bits. The design has a 10-stage pipeline and one pixel is classified

every clock cycle [1].

Thomas Fry and Scott Hauck of University of Washington, Seattle have done

related work on a RC-based system which compresses the data stream before

down linking. By developing image compression routines on a reconfigurable

platform, they have established it is possible to obtain the computational

performance required to compress a satellite’s data in real time and at the same

time retain the ability to modify the system post-launch [27]. The algorithm used

is the Set Partitioning in Hierarchical Trees (SPIHT) image compression

algorithm, which is similar to k-means also regarded as a compression algorithm.

 12

More importantly the hyper spectral data has been represented as a fixed-point

number. Similar representation has been considered in this thesis.

Researchers at Los Alamos National Laboratory, USA and IRISA – CNRS,

France have implemented a hardware/software co-processing model on a hybrid

processor for k-means clustering [6]. The experiments were done on two models

of the Altera Excalibur board, the first using the soft IP core 32-bit NIOS 1.1 RISC

processor, and the second with the hard IP core ARM processor. A comparison

of the performance of the sequential k-means algorithm with three different

accelerated versions was reported as an outcome of the experiments.

Granularity and synchronization issues were considered when mapping an

algorithm to a hybrid processor. The results indicated that a speed-up of 1.8 X

was achieved by migrating computation to the Excalibur ARM hardware/software

as compared to software only on a Gigahertz Pentium III. Speedup on the

Excalibur NIOS was limited by the communication cost of transferring data from

external memory through the processor to the customized circuits. The dual port

memories of the Excalibur ARM, accessible to both the processor and

configurable logic, overcame the limitation and has had the biggest performance

impact of all the techniques studied [6][2].

Dominique Lavenier, researcher at IRISA, CNRS France has conducted some

independent research of k-means clustering on various prototype hardware and

 13

implemented k-means using systolic or linear arrays to exploit algorithmic level

parallelism [6].

2.2 K-MEANS CLUSTERING ON OTHER PLATFORMS

Research groups at John Hopkins University, Laurel and University Of Maryland,

College Park have looked into efficient k-means clustering heuristics like Lloyd’s

Algorithm but haven’t experimented any of them on scalable architectures or

hardware assisted platforms [28].

University Of Minnesota has researched advantages of implementing K-means

algorithm on the DANCE (Definitive Axiomatic Notation for Concurrent Execution)

Multitude parallel execution architecture and compared it to equivalent MPI

based routine and showed improvements. The implementation was based on

DANCE program that was invented specifically for the general-purpose parallel

processing Multitude architecture. A DANCE program specifies the task without

having to explicitly schedule the parallelism [29].

Researchers Inderjit S. Dhillon and Dharmendra S. Modha at the IBM TJ Watson

Research Center developed k-means clustering algorithm on a distributed

memory multiprocessor environment with message passing models [4].

Researchers S Ray and RH Turi [8] at the Monash University in Australia looked

at determination of the number of clusters in K-means clustering and application

 14

in color image segmentation in a totally software kind of environment. Other

researchers as R.A Schowengedt [9], David Langrebe [21] have conducted

experiments related to K-means clustering but haven’t used any kind of hardware

assist to upgrade the analysis and performance.

2.3 CHAPTER SUMMARY

This chapter discussed some of the contributions of other research groups

relating to k-means clustering and some of the benefits of implementing k-means

clustering on a variety of platforms. The rest of this thesis document discusses

the approach taken in the current work followed by the implementation of the

algorithm on the Pilchard system. The following chapter will introduce the reader

the details of the k-means clustering algorithm and the advantages of using the

algorithm over a hardware platform.

 15

3. K-MEANS CLUSTERING

In the previous chapter, some related work done in the past with reference to K-

means clustering was pointed out. In addition to describing the K-means

clustering algorithm in some detail, this chapter presents the massive potential

parallelism that can be tapped and few ways of accelerating the algorithm by the

way of minor transformations and bit width reduction done on the input vector.

Also, two popularly known pre-processing techniques that have been employed

in the implementation are summarized.

3.1 ALGORITHM OVERVIEW

This algorithm is widely used in the data-mining field. It is utilized for

classification purposes and to discover differences and patterns in both small and

large data sets. There exist many different variants of K-means clustering – most

of which are variants adapted for special purpose environments [2]. With the

growth of data collected on operational and transactional data, the field of data

mining has become increasingly important. The growth of data has been

accelerated with the commercialization of the Internet and the increased use of

personal computer. In this environment collection of individual metrics is

relatively cheap and unobtrusive to the user. Companies who have been

collecting vast amount of data on consumer habits are now confronted with the

dilemma of what to do with all the data. This is where K-means clustering

becomes useful. It provides a remedy tailored to this problem and reveals

patterns that otherwise are obfuscated and not otherwise discernible [1]. There

 16

has been an increasing interest in clustering genomic data and analyzing DNA

sequences. K-means is a common solution to the segmentation of multi-

dimensional data. However, these large amounts of data sets require large

computational capacity. The nature of this problem is ideally implemented on a

high performance computing architectural node [19].

Given a set of N pixels, each composed of S spectral channels, and represented

as a point in S-dimensional Euclidean space (that is, xn ε RD, with n = 1…N); we

partition the pixels into K clusters with the property that pixels in the same cluster

are spectrally similar [3]. Each cluster is associated with a “prototype” or “center”

value which is representative of (and close to) the pixels in that class. One

measure of the quality of partition is the within-class variance [3]; this is the sum

of squared (Euclidean) distances from each pixel to that pixel’s cluster center.

The k-means clustering algorithms (there are several variants) provide an

iterative scheme that operates over a fixed number (K) of clusters, while

attempting to simultaneously optimize center locations and pixels assignments.

To begin with, the algorithm passes over all the data points, and reassigns each

to the cluster whose center it is closest to. After the pass through the data, the

cluster centers are recomputed. Each iteration reduces the total within-class

variance for the clustering, so it is guaranteed that after enough iteration, the

algorithm will converge, and further passes will not reassign points. It bears

remarking that this is only a local minimum. There may be an assignment of

 17

pixels to classes that produces a smaller within-class variance, but to search all

possible assignments (there are KN/K! of them) would be an impossibly large task

for all but the smallest values of N. This problem is known to be NP-complete [3].

3.2 APPROACHES FOR ACCELERATION

One of the most important goals of this work is to be able to utilize hardware

units to increase processing speed. The standard software implementation of k-

means uses floating-point arithmetic and Euclidean distances. Floating-point

arithmetic and the multiplication heavy Euclidean distance calculation are fine on

a general-purpose processor, but they have large area and speed penalties

when implemented on a FPGA [1] [3] [7]. In order to get the best performance of

k-means on FPGA, the algorithm needs to be transformed to eliminate these

operations. Manhattan distance as opposed to Euclidean distance is considered

in the present implementation. Manhattan distance measures uses adder and

absolute value computational blocks that are far less expensive than the

multiplication units on the hardware. K-means clustering technique is shown in

Figure 3.1.

Fixed-point division operators have been implemented within the hardware fabric

and thus have considerable effect in increasing the computational speed. The

effects and results are discussed in chapter 6.

 18

W

c

Figure

Assign cluster
enters at random
Compute Manhattan/
Euclidean Distance
Assign pixels to
nearest cluster
Recalculate cluster
centers
hile ∆ ≤ ∈ Iterate

 3.1: K-means Algorithm

19

Two important approaches for acceleration have been reported positive for

improvements on the hardware units. One, being the use of Manhattan distance

measures. Input data bit width truncation being the other. The input data size

reduction could be easily extended to data width truncation of intermediate

representation upon careful analysis.

Essentially, in K-means clustering, the points are assigned to cluster centers to

which they are closest; for the minimum-variance criterion, “closest” is defined in

terms of the Euclidean distance. The definition in terms of Manhattan distance is

reported to be less accurate but easier to implement and significantly faster on

the hardware [1] [3] [7]. To perform k-means iteration, one must compute the

distance from every point to every center. If there are N points, K centers, and D

spectral channels, then there will be O (N K D) operations [1]. For the Euclidean

distance, each operation requires computing the square of a number.

The Euclidean distance has several advantages. For one, the distance is

rotationally invariant [1] [7]. Furthermore, minimizing the Euclidean distance

minimizes the within-class variance. On the flip side Euclidean distances are

more expensive than alternative approaches we are considering for acceleration.

The Manhattan distance, corresponding to p = 1, is the sum of absolute values of

the coordinate differences [1]. In hardware, calculating the Euclidean distance

would be significantly slower than calculating the Manhattan distance. This is due

to the fact that a multiplication is required for every channel and every cluster per

 20

pixel, so the amount of parallelism that can be exploited in the hardware

implementation would decrease drastically. The Manhattan distance is

approximately twice as fast in software as Euclidean, but significantly faster in

hardware [1] [7].

The research group at Northeastern University, Boston and Space and Remote

Sensing Sciences Group at Los Alamos National Labs have conducted

experiments and reported results stating that Manhattan measures are

acceptable for k-means clustering [1]. Data independent and data dependent

experiments were conducted to determine if the use of cheaper metrics were

acceptable. Figure 3.2 shows the data independent experiments estimation on

how often points would be mis-assigned because of the use of a cheaper metric.

Note that although the relative variance is decreasing for large values of D, the

rate of misclassification is monotonically increasing. For the Manhattan metric,

the misclassification rate saturates at about fifteen percent, but for the Max

metric, the error rate begins to approach fifty percent. That is, for very large

dimension D, the Max metric is not much better than just assigning points to

clusters at random. As expected, the linear combination performs better than the

Manhattan distance. The improvement is substantial for smaller dimensions (D

<10), but the difference becomes small for large dimensions.

 21

Figure 3.2: Misclassification Rate for Different Distance Metric [1]

 22

The research group also performed data dependent experiment on AVIRIS data

sets. Each AVIRIS image was classified with each of the distance measures, so

there were twenty trials (5 images * 4 distance measures). Each trial used K = 16

clusters and stopped after convergence or fifty iterations. The within-class

variance for the AVIRIS data cubes was measured with most of the images

exhibiting less than a 6% increase for using Manhattans over Euclidean

measures [1].

One of the major improvements in the use of technique is the capability that has

been developed to establish the amount of truncation and still retain acceptable

within-class variance. Previous researchers have reported that small amounts of

truncation, figure 3.3 can vastly improve the performance of huge datasets

comprising of hundreds and thousands of spectral information [1][17]. The

current work attempts to quantify the term ‘small amount’ so as to answer the

question, how small is small. To approach this problem, a fixed-point version of

the algorithm is developed both full precision and truncation applied. The

truncation of the bits is increased and run until the algorithm breaks. In other

words till the algorithm puts out an acceptable within-class variance. With the aid

of A|RT collector class and statistics class summarized briefly in chapter 5,

overflows were detected and the iteration stopped when detected. The bit width

at that point is taken as the final bit length to represent a data point with

maximum truncation.

 23

Figure 3.3: Percentage Difference vs. Amount of Truncation for Different
Samples [1]

 24

The other single most important approach is the implementation of division

operators within the hardware fabric. Researchers who have done similar work

have implemented division operators, a part of the k-means clustering on the

host computer. This thesis work tries to analyze how much improvement in

performance gain was obtained in eliminating some of the communication delay

between the host computer and the pilchard subsystem. Additionally, data-path

area and latency introduced in the design cycle has also been reported.

3.3 DATA SETS

The hardware implementation deals with the classification of synthetically

generated datasets of different sizes. It also deals with classification of different

materials based on the hyper-spectral reflectance data of the materials. The raw

reflectance data is obtained from the JPL as observed by the earth looking

satellites. There are three classes of materials namely manmade materials,

minerals and soils. The high-order statistical and wavelet based features are

extracted [section 3.3.2] from each sample to perform a feature space.

Unsupervised learning algorithms are applied on the feature space to classify the

given sample.

3.3.1 RAW DATA

Two kinds of data sets, synthetic and real data from JPL spectral library have

been used to verify the design on the hardware. Initial cluster centers generated

at random with mean of 0 and standard deviation of 1. The size of the matrix is 3

 25

x M, where the number three represents the number of classes in the cluster and

M is the number of principal features of the cluster. Normally, an image analyst

determines the number of clusters.

The raw data consist of wavelength versus reflectance data of different materials

obtained from Jet Propulsion Laboratories (JPL) spectral library [20]. This JPL

Spectral Library includes laboratory reflectance spectra of 160 minerals in digital

form. Data for 135 of the minerals are presented at three different grain sizes:

125-500µm, 45-125µm, and <45µm. This study was undertaken to illustrate the

effect of particle size on the shape of the mineral spectra. Ancillary information is

provided with each mineral spectrum, including the mineral name, mineralogy,

supplier, sampling locality, and our designated sample number. In the original

publication the spectra were separated into classes according to the dominant

anion or anionic group present, which is the classification scheme traditionally

used in mineralogy. The three main classes include manmade materials,

minerals and soils [20].

The data for three classes exist in three different directories with each directory

containing the text files for each material. Each sample text file consists of a

header describing the chemical information and the range of wavelengths used

etc. For feature extraction purposes these headers are removed with only

wavelength and the reflectance data remaining in the text files.

 26

3.3.2 DATA PRE-PROCESSING

A number of preprocessing steps are performed before data is used as an input

vector to the hardware blocks. Two important steps are performed to transform

the ram vector to a more usable format.

1. Feature Extraction

2. Principal Component Analysis (Critical features selection)

3.3.2.1 FEATURE EXTRACTION

The feature extraction is the main part of the project since the accuracy of the

classification depends on deriving the non-correlated independent features,

which distinctly describe the material. In this project we derived the high order

statistics of each data sample describing the shape of the wavelength versus

reflectance data and wavelet based features.

3.3.2.1.1 HIGHER ORDER STATISTICS

The hyper spectral data for each material exists in wavelength versus reflectance

data format and thus studying about the statistics of this two dimensional data

provides valid features since each different material will have particularly different

reflectance and thus deriving the statistics will provide efficient index for

classification. The high order statistics include the following four:

 27

∑
−

=

=
1

0

1 :mean
N

j
jjshape rw

S
µ

()∑
−

=

−=
1

0

21 :deviation standard
N

j
jshapejshape rw

S
µσ

∑
−

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

1

0

3
1 :skewness

N

j
j

shape

shapej
shape r

w
S σ

µ
γ

∑
−

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

1

0

4
1 :kurtosis

N

j
j

shape

shapej
shape r

w
S σ

µ
β

The mean gives the average reflectance of the data, standard deviation gives the

variation of the data in the distribution, skewness gives the relative symmetry of

the data and kurtosis gives the relative flatness of the graph of the given data.

3.3.2.1.2 WAVELET BASED FEATURES

Wavelet transform gives the time-frequency information of the given signal. This

two-domain representation makes it a useful transform in signal analysis. This

technique uses decomposition of the original signal into discrete wavelet

coefficients. The wavelet coefficients effectively represent the signal completely

and the knowledge of these coefficients we can reconstruct the whole signal. In

 28

this projects the statistics and the energy of these coefficients is derived to act as

features for classification purposes. The original data is decomposed using the

Daubechis wavelet is used for decomposing the reflectance data by four levels.

The mean, variance and energy of the coefficients form each level are derived

and used as features.

Thus the feature extraction gives 16 independent features for each sample text

file or each material. The feature space is constructed with three different

classes. Before the pattern classification is done the feature space is normalized

so that the adjacent features are in comparable scale. Each column of the

feature space is independently normalized using the formula

σ
µ−

= i
i

f
f

where µ is the mean and σ is the standard deviation.

3.3.2.2 PRINCIPLE COMPONENT ANALYSIS

Principle component analysis is done to eliminate the correlated feature vector,

thus making the feature space into useful minimum thus helping in dimensionality

reduction. The algorithm of the PCA is as follows:

1. The covariance matrix of the feature space is calculated.

2. The Eigen values and the corresponding Eigen vectors are calculated.

 29

3. The Eigen value matrix is arranged in ascending order of magnitude

correspondingly arranging the Eigen vector matrix.

4. The sub matrix of Eigen vectors is chosen to be multiplied with the dataset

depending on K where is k is obtained from the following formula, where n

is the loss of energy.

η
λ

λ
−>=

∑

∑

=

= 1

1

1

i

M

i

i

K

i

5. The obtained set of the Eigen vectors is multiplied with the training set to

reduce the dimensionality of the data set.

3.4 CHAPTER SUMMARY

This chapter discussed the details of the k-means clustering algorithm and small

transformations that could be applied to the algorithm to achieve better

performance on the hardware. Also, a brief description of the hyper-spectral data

pre-processing steps has been described. The next chapter discusses the

platform for implementing the algorithm. Additionally, reasons for choosing the

platform and design issues relating to the system are also discussed.

 30

4. HARDWARE PLATFORM

In the previous chapter, a few variants of k-means clustering were introduced

and an overview of the most common variant of the algorithm was discussed.

Also, different algorithmic level transformations for acceleration and the

organization of data sets that the algorithm operates on were detailed. This

chapter introduces the hardware assist that has implemented for k-means

clustering.

4.1 WHY PILCHARD?

Mainly, there are three reasons for choosing the Pilchard system. For one, the

architecture of the pilchard system is such that it mounts on the DIMM slot as

opposed to the PCI. The DIMM slot has a greater bandwidth and speed and

hence is preferred over a PCI bus. Secondly, the host interface design takes

relatively less time to comprehend and use. Hence, the learning curve is fairly

short when compared to complicated interfaces of other prototype boards such

Wildforce and Wildcard that are available at the Microelectronics Laboratory in

the University of Tennessee. In this way, users can concentrate more on their

designs rather than on understanding complicated host interfaces. Third, and by

far the last main reason for choosing pilchard is that it’s a fairly new hardware

assist for educational and research use and is readily available for use at the

University of Tennessee. Unlike the Wildforce and the Wildcard hardware

platforms that have multiple FPGA on the mezzanine card, the pilchard system

has one big virtex FPGA on the board. This eliminates the use of any kind of

 31

partitioning methods for fairly big designs. Also, de-skew techniques for off-chip

signals and vice versa can be avoided.

4.2 PILCHARD SYSTEM

Pilchard board is a high performance-computing card that has been used to

target the algorithm down to Xilinx Virtex 1000e chip part [18]. This chapter

briefly describes the board and the architecture of the FPGA part embedded in

the mezzanine card. Figure 4.1 shows a picture of the Pilchard card.

This card developed by researchers led by Dr. Philip Leong [18] at the Chinese

University of Hong Kong is not an off the shelf commercial board but a platform

for the research environment and educational purposes. As we go along the way

Figure 4.1: The Pilchard Card [18]

 32

in successfully mapping the design to the FPGA on the Pilchard board, the

advantages and the downsides of the system are discussed. Figure 4.2

describes some of the salient features of the Pilchard system.

It has been reported that the system has an efficient interface, is a low cost

model and is suitable for various applications that include cryptosystem, image

processing and speech processing, clustering and rapid prototyping. Other

significant features include high data transfer rate capability due the DIMM RAM

interface, communication speed of up to 133MHz directly with the CPU, shorter

learning curve, 27 bits external I/O outlets including clock signal outs for

hardware debugging and monitoring etc. Xchecker cable is required to download

the bit stream to the FPGA.

The users are provided with a set of VHDL source and other useful files.

1. pilchard.vhd: The top level VHDL code which wraps the core and

interfaces with the DIMM slot directly.

2. pcore.vhd: This is a standard template and all user designs go inside this.

Figure 4.3 shows the entity port list of the VHDL core.

Figure 4.4 shows the internals of the Virtex 1000e chip part and an overview of

the Virtex architecture is described in section 4.3.

 33

DIMM interface

64-bit Data I/O

Host Interface

12-bit Address Bus

External (Debug) Interface

27 bits I/O

Configuration Interface

X-Checker, Multi-Link and JTAG

Maximum System Clock

Rate 133MHz

Maximum External Clock

Rate 240MHz

FPGA Device

XCV1000E-HQ240-6

Dimension 133mm X 65mm X 1mm

OS Supported

GNU/Linux

Configuration Time 16s (using Linux download program)

Figure 4.2: Features of Pilchard Platform [30]

 34

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity pcore is
port (

 clk: in std_logic;
 clkdiv: in std_logic;
 rst: in std_logic;
 write: in std_logic;
 addr: in std_logic_vector(13 downto 0);
 din: in std_logic_vector(63 downto 0);
 dout: out std_logic_vector(63 downto 0)

);
end pcore;

Figure 4.3: Entity Declaration of pcore.vhd

 DLL IOBS DLL

IOBS IOB S

DLL IOBS DLL

 VersaRing

 VersaRing

B B
R R
A CLBs A
M M
S S

Figure 4.4: Virtex Architecture Overview [11]

 35

3. pilchard.ucf: This a constraint file to the place and route program during

the process of mapping the design to logic cells inside the FPGA. Pin

assignments and the clock period of the design are specified here.

4. iob_fdc.edif: A synthesized netlist for the I/O blocks in pilchard.vhd

4.3 VIRTEX 1000E ARCHITECTURE

Virtex architecture comprises an array of configurable logic blocks (CLBs)

surrounded by programmable input/output, all interconnected by fast, versatile

routing resources.

• CLBs provide the functional elements for constructing logic

• IOBs provide the interface between the package pins and the CLBs

• The large amounts of routing resources allow the largest and the most

complex designs to be mapped to these elements. Virtex FPGAs are

SRAM-based devices that provide better performance than previous

generations of FPGA.

Designs can achieve synchronous system clock rates up to 200 MHz including

the I/O [18]. Furthermore; I/O’s are fully compliant with PCI specifications.

CLBs interconnect through a general routing matrix (GRM). The GRM comprises

an array of routing switches located at the intersections of horizontal and vertical

routing channels. The Virtex architecture also includes the following circuits that

connect to the GRM.

 36

• Dedicated block memories of 4096 bits each

• Clock DLLs for clock-distribution delay compensation and clock domain

control

3-state buffers (BUFTs) associated with each CLB that drive dedicated

segmentable horizontal routing resources.

4.3.1 CONFIGURABLE LOGIC BLOCK

Configurable logic blocks have four logic cells (LC) as basic components. An LC

includes a 4-input function generator; carry logic, and a storage element. The

CLB also contains function generators to provide functions of five or six inputs.

Other elements in a Virtex Slice include

• Look-Up Tables

• Storage Elements

• Additional Logic

• Arithmetic Logic

• BUFTs

• Block SelectRAM

The Block SelectRAM memories are organized in columns. All Virtex devices

contain two such columns, one along each vertical edge. These columns extend

the full height of the chip. Each memory block is four CLBs high, and

consequently, a Virtex device 64 CLBs high contains 16 memory blocks per

 37

Table 4.1: Virtex-E Block SelectRAM Amounts [11]

Virtex-E Device # Of Blocks Block SelectRAM bits

XCV50E 16 65,536

XCV100E 20 81,920

XCV200E 28 144,688

XCV300E 32 131,072

XCV400E 40 163,840

XCV600E 72 294,912

XCV1000E 96 393,216

XCV1600E 144 589,824

XCV2000E 160 655,360

column, and a total of 32 blocks. Table 4.1 shows the amount of block

SelectRAM memory that is available in each Virtex device.

4.3.2 DELAY-LOCKED LOOP (DLL)

A DLL purpose in the Virtex device is to eliminate skew between the clock input

pad and the internal clock-input pins throughout the device. Each DLL can drive

two global clock networks. The DLL monitors the input clock and the distributed

clock and automatically adjusts a clock delay element. In addition to this, the DLL

provides advanced control of multiple clock domains. It provides four quadrature

phases of the source clock, in addition to provisions of doubling the clock or

dividing the clock by multiple factors of 1.5, 2, 2.5, 3, 4, 5, 8 or 16.

 38

The DLL also operates as a clock mirror. By driving the output from a DLL off

chip and then back on again, the DLL can be used to de-skew a board level clock

among multiple Virtex devices. In order to guarantee that the system clock is

operating correctly prior to the FPGA starting up the configuration, the DLL can

delay the completion of the configuration process until after it has achieved lock.

4.4 DESIGN ISSUES OF K-MEANS ON PILCHARD

There have been quite a few successful implementations like encryption engines

that have been reported with the Pilchard [18]. However, there are still few critical

design issues with the system, particularly with pattern classification algorithms

like K-means. These issues and limitations offset some of the advantages

pertaining to the Pilchard system.

4.4.1 SPEEDS AND FEEDS

Later in this chapter, a methodology flow of the design and ad-hoc approaches to

decide number of bits to represent data points are discussed. The smaller the

number of bits required to represent a dataset, better would be the performance

in terms of speed and data-path area. However, accuracy needs to be traded off.

Arguably, since the k-means clustering technique is used for quick view analysis

and data compression, the speed needs for massive number crunching has been

treated more important in the research community. Figure 4.5 refers to this

problem.

 39

AVAILABLE
HARDWARE

DATA TO
ANALYZE

 Data from the Host Gateway I/O FPGA Resources

Figure 4.5: Problem of Speeds and Feeds

Smaller I/O indirectly limits the speedup but smaller bit representations can solve

this problem to a certain extent. This is because the I/O channel now transports

more of such data points that are packed together in one write cycle. However, if

the pixel representation cannot be further reduced to smaller bit width; an

increase in copies of hardware computational blocks does not enhance

performance. Hardware units could be optimized for best achievable results but

is almost always limited by the I/O of the prototype. The Virtex 1000e FPGA has

about a million gates that the user designs could use. The K-means core takes

about 10% of the Virtex chip and therefore, there is a natural thinking that the

core engine could be replicated at least nine times to take advantage of the

plenty of hardware resources. This is given the fact that processing of one

observation point is independent of the processing of another and hence

parallelism can be exploited at the algorithmic level. This proposition is, however,

 40

invalid, since the gateway I/O is band limited to a 64-bits transfer for every

write64() transaction. The data can be packed if fewer bits represent the data

point. Such data packing can be a solution to the bandwidth saturation problem.

4.4.2 LIMITATIONS AND BOTTLENECKS

Bottlenecks that limit performance numbers are

1. Limited block RAMs available in the chip part. Unlike other usual

prototyping boards, the pilchard system is devoid of on board RAMs that

would enable the user to store the entire image on the board before

starting hardware operations. This means that the entire image or any

data set needs to be stored within the FPGA. More importantly, the

onboard RAMs normally are DMA mapped to the memory of the host and

hence cuts down overheads cost in data transfer cycles.

2. Limited support for handshaking protocols complicate development of

streaming applications on the hardware.

3. The core template for the I/O registers has 14bits of address lines but only

8bits could be used for hardware addressing.

I/O is a 64bit bi-directional data bus, so data transfer from the host to the re-

configurable unit is bandwidth limited. Since the entire image is stored within the

FPGA before the start of hardware operations, a number of cycles of latency are

introduced from the data transfer from the host to the re-configurable blocks. The

latency introduced increases as the data size increases and this eventually

offsets the performance benefits obtained by exploiting inherent parallelism. One

 41

way that has been used to solve the problem is to transfer as many data points

as possible per write cycle.

4.5 CHAPTER SUMMARY

 This chapter briefly described the reasons for choosing the Pilchard

development board for the k-means clustering implementation and the

architecture of the Pilchard system as well. In addition to this, hardware

subsystems within the Pilchard, such as the architecture of the Virtex 1000e

FPGA have been described. The design issues and bottlenecks of the system

have also been identified and presented. The next chapter discusses the

approach and methodology adopted for the implementation.

 42

5. METHODOLOGY

In the previous chapter, a few hardware platforms were mentioned and Pilchard

was chosen as the current hardware assist for the clustering implementation. In

addition to this, the architecture of the target Virtex 1000 e chip was summarized

and the limitations of the system with respect to the k-means algorithm were

pointed out. The chapter discusses the methodology and approach taken in this

design with respect to the Pilchard system as the design platform.

5.1 INTRODUCTION

The Methodology and approach in problem solving is a key to an effective and

productive design. This is particularly true for a design that needs to meet the

‘time-to-market’ constraints. This chapter discusses the top down approach with

a focus on finding a near optimal implementation on the hardware assist. Here,

the optimality is primarily based on the speed of the computation and the

correctness of the classifier.

Bit truncation techniques during the input and intermediate stages have been

shown to cause dramatic increases in performance and speed [1]. A protocol has

been established to quantify the maximum number of the bits that could be

truncated at different levels. Hardware implementations with fewer bits tend to

decrease the data path area and the critical path of the design, thereby

enhancing the performance and speed of the design. In addition to the

quantifying bit truncation, tested approaches that have worked well with other

platforms have been implemented on the Pilchard system.

 43

Figure 5.1 shows the methodology flow of the design. The golden code is

eventually translated to hardware units at the output of the flow.

5.2 MATLAB GOLDEN CODE

A given Matlab code shown in Figure 5.2 is treated as a golden code and all the

results of the final implementation is based on the results of this Matlab code.

The data set is a floating-point number and all the iterative operations are

floating-point operations. An attempt has been made to port the algorithm to

floating point C and this code was later modified into a fixed-point version. The

floating point C was developed and the results are compared with the Matlab

version. Since, at this point the operations in both Matlab and C are floating-

point, the results had to match with 100% accuracy and was verified to be the

same. A fixed-point version of C was then developed using the fixed-point

package available in the A|RT library. While in the development stage, an

iterative search was performed to identify minimum bit-width required to avoid

any overflow of bits. The following figure shows the flowchart of an iterative

search.

The bit length of the fractional part of the number was decided by comparing the

results of the floating-point C versus the fixed-point C for an acceptable

percentage error.

 44

 N

 Y

Matlab

Golden Code

Floating-Point C

Fixed-Point C

Acpt?

Final
Cluster
Points

Final
Cluster
Points

Trade off
Curves

VHDL

Classified

Data

Classified

Data

Compare

Classified

Data

Calculate
% Error

Pilchard Prototyping Board

Figure 5.1: Methodology Design Flow

 45

[m, n] = size(X);
% generate k random number of n-dimension as initial mean value
R1 = randn(k, n);

% start classification, initial class assignment
Y(:,1:n) = X;
diff = Inf;
while diff > 0
% choose the shortest distance to cluster
 for i=1:m
 D = sqrt(sum((repmat(X(i,:),k,1)-R1).^2, 2));
 [S, I] = sort(D);
 Y(i,n+1) = I(1);
 end
% recalculate the mean
 R2 = zeros(k, n);
 for j=1:k
 p = 0;
 for i=1:m
 if Y(i,n+1) == j
 R2(j,:) = R2(j,:) + Y(i,1:n);
 p = p + 1;
 end
 end
 if p > 0
 R2(j,:) = R2(j,:) / p;
 end
 R(j) = norm(R1(j,:)-R2(j,:));
 end
 % calculate the largest difference
 diff = max(R);
 R1 = R2;
 fprintf('Mean vector is \n');
 disp(R2);
 end
 mu = R2;

Figure 5.2: Golden Matlab Code

 46

5.3 FIXED-POINT C

One of the main things in the present work is an attempt to be able to say that for

an acceptable error percentage, n times the speed of computation of standard

software implementation, where n >1, is the speedup of the algorithm

implemented in hardware over a conventional microprocessor. K-means

clustering inherently is robust and thus is insensitive to small changes in the

ground conditions. This is to say that a predetermined small level of error is

acceptable as long as a considerable amount of speedup results. The trade off

factors and the numbers related to this are discussed in the chapter 6.

5.3.1 BIT-WIDTH TRUNCATION

A procedure was developed to determine exactly the number of bits that could be

used to minimally represent a data point. The minimum bit representation helps

achieve the fastest k-means algorithm on the hardware but not necessarily the

best quality results. However, if the classification of data points does not change

then the experiment is treated as successful regardless of the accuracy of the

convergence. A trial and error attempt is made to repeat the process until an

acceptable optimum point on the speedup vs. percentage error was determined.

Two experiments were conducted to individually identify the minimum number of

integer and fractional bits to represent the input data point. Two separately run

algorithms to determine minimum widths are described in five steps as shown

below. A simple example is demonstrated to illustrate the idea of bit truncation

 47

method. As the number of bits required to represent the pixel is reduced the

data-path area on the FPGA drastically roll off. A more compact data-path

normally tends to reduce the critical path and increase the computation speed.

To determine number of integer bits

Step1 - Start with the fixed point of type <16, 0> with 16 integer bits and 0

fractional bits.

Step2 - Run the data points through the fixed-point k-means code.

Step3 - Feed the results to the statistics tool to check for overflows and validate

cluster classifications with the results from the golden code.

Step4 - If overflows were not detected and the data correctly classified; truncate

the data to 15 integer bits; < 15, 1>

Step5 - If detected, step back to the previous iteration to decide the minimum bit

representation.

Figure 5.3 is the block diagram of the procedure developed to determine the

minimum integer bits and Figure 5.4 is a similar diagram to determine minimum

fractional bits.

 48

 No Overflow

 Overflow

Represent the pixel
with

<MaxBitWidth, 0>
fixed-point

Run the program
redirecting the results to
an A|RT statistics tool.

Develop a Fixed-Point C
with Fixed-Point Library

Change the
representation of pixel

to
<MaxBitWidth-I, 0>

 I=0 Initially

I = I + 1

Integer Bit Length [IL]
=

MaxBitWidth – I + 1

Figure 5.3: Procedure for Determining Minimum Integer Bits

 49

 No Overflow

 Overflow

Represent the pixel
with

(IBL, MaxBitWidth)
fixed-point

Run the program
redirecting the results to
an A|RT statistics tool.

Develop a Fixed-Point C

using Fixed-Point
Library

Change the
representation of pixel

to
(IBL, MaxBitWidth-F)

F=0 Initially

F = F + 1

Fractional Bit Length [FL]
=

MaxBitWidth-F+1

Figure 5.4: Procedure for Determining Minimum Fractional Bits

 50

1st byte 2nd Byte

Figure 5.5 Full Precision (I + F) 16-bit Fixed Point

Consider a single dimensional 16-bit pixel as shown in Figure 5.5. Also, assume

16-bit representation as full precision and the normalized range of pixel values -1

to 1.

Determine number of fractional bits; A similar approach as the previous one is

used to determine the fractional part.

Step1 - Start with the fixed point of type <2, 14> with 2 integer bits and 14

fractional bits.

Step2 - Run the data points through the fixed-point k-means code.

Step3 - Feed the results to the statistics tool to check for overflows and verify

cluster classifications with the results from the golden code.

Step4 - If overflows were not detected and the data correctly classified; truncate

the data to 13 fractional bits and so on; < 2, 13>.

Step5 - If detected; go back to the previous iteration to decide the minimum bit

representation. If the classification breaks and or the overflows detected at lets

say F=10, then the minimum fractional bits needed would be F=11;

The end result obtained is shown as in Figure 5.6.

 51

2bits, I 11bits, F 3bits truncated

Figure 5.6: Modified 13-bit Representation of Pixel

Therefore the total number of bits needed to fully represent the pixel value would

be 13bits. Right now this complete process is manually performed, but can be

easily automated using scripting utilities. The overflow statistics is collected over

different iterations with the help of fxpStatistics collector class described briefly

below. The class is available in the A|RT fixed-point library.

5.4 A|RT BUILDER

A|RT Builder [31] is an electronic design tool that translates a C-based functional

specification of an algorithm into an RTL (Register Transfer Level) HDL

description. The input to A|RT builder is a description of an algorithm, expressed

in a subset of C, optionally enhanced with fixed-point classes as provided by

A|RT library. The fixed-point data types and operators in this library give the

designer full control over the dimensions of the data path operators.

5.4.1 ‘fxpStatistics’ COLLECTOR CLASS

A|RT Library [31] also provides an auxiliary class, fxpStatistics, of which

instances can be hooked up to instances of the Number class (and its derivatives

of course). They will then be notified when an A|RT Library variable is

constructed, destructed, read from or written to. The fxpStatistics protocol

 52

class is typically used to collect statistics on the dynamics of the fixed-point

variables, as well as to build special profiling and analysis functions.

5.4.2 OVERFLOW LOGGING

The statistics class has a built-in utility that automatically performs overflow

logging on selected variables. Overflow occurs when an attempt is made to store

a value that exceeds the range-capacity of a given variable. The Number class

automatically keeps track of such an event, and sets a status flag in the NbrRef

object that is passed to the statistics class. So, an overflowDetect class is

created, which implements the write() protocol class such that the overflow

flag is checked. For every overflow event a message is produced and the

overflow counter is incremented.

5.4.3 ‘fxpTrace’ STATISTICS CLASS

This fxpTrace class can be used to gather statistics on A|RT Library variables,

even if one does not have C++ knowledge. This class has been built in inside

A|RT Library, and only requires the use of fxptrace.h as an include file. The

fxptrace.h file can be found in the A|RT Library installation. Note that the

statistics information cannot be gathered from global variables. The statistics

output resulting from running the application code is produced in a file called

trace.out.

 53

5.5 CHAPTER SUMMARY

This chapter describes the approach adopted for implementation of the algorithm

on the Pilchard. Procedures to determine minimum bit widths and different steps

involved in taking the given golden code down to the bit level have been

discussed. The next chapter describes the details of the actual parameterized

implementation. Constraints and pragmatic considerations of the implementation

have also been described.

 54

6. IMPLEMENTATION AND RESULTS

This chapter deals with the hardware implementation of the classifier, k-means

clustering and compares it with the standard software version implemented on a

P3/Linux platform. It begins with details about the architectural block diagram

description followed by the description of the memory and the core models with

functional simulations. Subsequently, timing simulations are shown to meet time

closure constraints that were specified earlier on. A variety of scripting utilities

were employed to solve this iteratively tedious problem.

6.1 INTRODUCTION

In Figure 6.1 the Pilchard development board is shown to illustrate the

architecture of the design. Different colors are shown to represent multiple clock

circuits that have been incorporated in this design. The portion of the architecture

shaded with plum color runs at the system speed of 133 MHz and the blue

portion of the circuitry runs at half the system clock speed. The inputs are

buffered into the dual port memory, which feeds into the core circuit at a speed

that the design can handle. The current experiments show that the clock speed

could be increased to about 66MHz, which is half the system clock speed.

The pilchard has clock DLL’s set up in a way that different factors of the system

clock can be used to drive the design. Factors of 2,3,4,5 and so on could be

used, as design gets bigger and complicated.

 55

Pilchard

Development Board

Pentium

Processor

 DUAL
PORT RAM CORE ENGINE

DUAL
PORT RAM

Figure 6.1: Block Diagram of the Implementation

The next section introduces the design flow procedure and the other portions

chapter deals with the design details followed by the presentation of results and

discussions.

6.2 DESIGN IMPLEMENTATION FLOW

A conventional design flow is used to implement the design on hardware. Figure

6.2 is the flow procedure block diagram that illustrates the steps involved in

translation a hardware description language to bit pattern that can be loaded into

the hardware via the Xchecker cable. Two important steps namely synthesis and

place and route are involved.

 56

Pilchard I/O
Wrapper File

User Source
Design Files and

Constraints

pilchard.edf

From Coregen
Utility & Pilchard

Package

EDIF Files

PLACE
&

ROUTE

User Constraint

File

pilchard.sdf
&

pilchard.bit

Chinese University

of Hong Kong

SYNTHESIS

EDIF Files

Figure 6.2: Design Implementation Flow

 57

The inputs to the synthesis tool are the design files developed by the user along

with the pilchard wrapper file and any other available synthesized netlist

developed by the user earlier on. Two synthesis tools, in this case, FPGA

Compiler and Synplify are used to synthesize the design to pilchard.edf. One of

them cut the design area by almost 30%. The synthesized netlist is then fed into

the Xilinx Place and Route tool with certain placement constraint included in the

User Constraint File. During the MAP process, the User Constraint File provided

by the developers of Pilchard and any user-defined constraints translates to a

Physical Constraint File. The PAR, TRACE, BITGEN and XPOWER programs

use this constraint file to create a characterized bitstream. The design is also

back annotated for post layout gate level verification.

6.3 DESIGN VERIFICATION FLOW

Functional and post layout gate level simulations models are developed to verify

the K-means implementation. Modelsim simulation software is used to develop

the models. The beginning stages of the design are tested for functionality by

feeding the test vectors to the compiled code using Modelsim. The blocks are

tested individually and then incrementally to verify the functionality. The design

files are then synthesized and routed on a chip for the purpose of back

annotation. The annotated sdf file is then used instead of the original design files

to verify gate level simulation with the same test vectors. Figure 6.3 is a block

diagram to illustrate the idea of design verification.

 58

 PRE-LAYOUT POST LAYOUT GATE LEVEL

 NO YES

 PRE-LAYOUT POST LAYOUT GATE LEVEL

MODELSIM
SIMULATOR

XilinxCore ib L
Unisim

Test Vectors

SYNTHESIS
/PAR

CORRECT

 Design Files

Pilchard.sdf
&

Simprim

Figure 6.3: Design Verification

 59

6.4 HOST - HARDWARE DESIGN FLOW

The bitstream generated is downloaded to the Pilchard system and the host

software used the read and write routines to transfer data back and forth. These

are the only two simple routines available for the pilchard interface. Absence of

handshake signals or other sophisticated routines like DMA transfer or interrupt

controller make it harder to implement designs with constant data streaming.

Figure 6.4 illustrates the idea of interfacing software and hardware.

6.5 HARDWARE MODEL

A hardware model is developed to reproduce the results of K-means clustering

algorthim on the FPGA system. Figure 6.5 is a 41-stage pipelined

implementation of the algorithm and the sub-units of the architecture are detailed

in this section.

Download.exe

Pilchard.bit

read64()

write64()
Host Software

Code

PILCHARD

SYSTEM

VIRTEX
1000E

Figure 6.4: Interfacing Hardware and Software

 60

SUBTRACT

REGISTER
FILE

MODULUS

ACCUMULATOR

DIVIDER

MINIMUM
DISTANCE

FINDER

ACCUMULATOR

REGISTER
FILE

STAGE1

 STAGE2

 STAGE3

STAGE4

 STAGE5

STAGE 6- 41

Figure 6.5: 41-Stage Pipelined K-means Clustering Algorithm

 61

6.5.1 MEMORY MODEL

As described in chapter 4, one of the major drawbacks of the pilchard system is

the unavailability of on-board RAMs. This necessitates the use the block RAMs

available within the FPGA unit. Three sets of dual port rams have been used.

The first one [R1] is used to store the entire image, the second [R2] to hold the

initial and intermediate cluster centers and the third one [R3] for holding the final

cluster centers.

The control signals to R1, R2 and R3 are from a global state machine that

set/reset registers globally. At the end of the convergence, a soft reset is

triggered to reset all global registers to the ‘Idle’ state.

The 64 bit data is transferred to R1 and R2 on the positive edge of the clock. The

bus line is organized in a way that 16 bits of a pixel, 16 bits of initial cluster

centers C1, C2 and C3 are packed together and transferred to the block RAMs at

the same time. As is stated earlier in chapter 5, only 13 bits were required to

represent the data set obtained from Jet Propulsion Laboratory. The remaining

12 bits were used for any extra addressing needs. The control signals from the

FSM help unpack the bits for further number crunching.

The design is incorporated in such a way that the 64-bit bus line holds only a

single element of the pixel, otherwise called ‘feature vector’ along with the class

 62

center values of similar features. Thus, if 10 feature vectors represent a pixel,

also called an observation, it would take 10 clocks plus transfer overheads to

load a single observation into the RAMs. The main advantage of packing and

loading a pixel this way is that the number of features used to represent the data

does not change or add additional circuitry. The downside though could be the

use of extra RAM blocks required to store massive datasets. This one, along with

unavailability of on-board rams limits the designer to handle data sizes with a

certain limit. However, within the constraint, it certainly works to the advantage of

the designer. The block level architecture of R1 and R2 is shown in Figure 6.6.

Consider a pixel with three features. Assume the features X, Y and Z represent a

spatial domain. Figure 6.7 is a pixel located in a 3-dimensional space.

Let the pixels be represented as Px
i, Py

i, Pz
i and the class centers be Cx

j, Cy
j, Cz

j;

where i ε N and 0<j<3. The first pixel is loaded into the RAM in 3 clock cycles and

the next one takes three more clock cycles to load up. The process is continued

until the block rams are filled up or till all the pixels get loaded if the size of the

dataset is smaller than size of the block RAMs.

The current design is scalable for number of features from 1 to 16 and the

memory model remains the same. This eliminates any additional circuitry,

hardware costs and other engineering costs.

 63

clka
clkb
ena
enb
wea
addra[7:0] douta[63:0]
addrb[7:0] doutb[63:0]
dina[63:0]
dinb[63:0]

R1

13, 13, 13 - bit
initial center

points for
three classes

13-bit pixel

Control
Signals

64-bit data
64

Address 13-bit C1 13-bit C2 13-bit C3 13bit Pix

64

clka
clkb
ena
enb
wea
addra[7:0] douta[63:0]
addrb[7:0] doutb[63:0]
dina[63:0]
dinb[63:0]

Figure 6.6: Dual Port Memory Rece

 64
R2
ive Data Layout

 Z

 , Py, Pz)

 Y

Figure 6.7: Spatial Represen

Figure 6.8 illustrates the architectur

purposes.

1. Transferring cluster centers and s

2. Hardware debugging.

This is quite similar to looking a

verification, but is even better, sinc

world environment that can then be

The use of 27 pin outputs to spectru

do hardware debugging. The use o

hardware resources.

 (Px*
65

 X

tation of a Pixel with Three Features

e of R3 dual port RAM. It mainly serves two

tate outputs back to the host

t the simulation waveform for functionality

e it outputs the resultant numbers in a real

verified.

m analyzer is another available technique to

f R3 just avoids usage of additional/external

 Hardware_Debug_In

 Read/Write API

 Hardware_Debug_Out

R3

Local
State

Machine

Figure 6.8: Dual Port Memory Transfer Data Layout

The state machine described in section 6.5.3 controls the start and stop of the

processing cycle. Also, the state machine controls the way the RAM reads out

and feeds into the core. Some of the controls signals emanating from the state

machine are discussed in this section to show how exactly the memory model

works in this design. The illustration of the idea is aided with pictures, pre-layout

and post layout simulation models.

The RAM keeps accumulating the data until it fills up completely and when it

reaches the last addressable line, the FSM sets a start register to signal high

enabling the start of the core engine. Another register keeps track of the address

count as the address start to move up.

 66

The start signal is held high until the core completes all the iteration and spits out

results back to the block rams.

The dual port RAMs are basically used to isolate the system speed with the

design speed. The memory models have been tested for functionality and back

annotated for post layout analysis.

6.5.2 CORE ENGINE

There are three pieces that basically integrate into a core engine. They are

1. Distance Determination

2. Pixel Classification/Re-Classification

3. Division and Cluster Centers Determination

These three pieces are at the heart of the implementation and are major

components in the solving of this tediously iterative problem. The implementation

as mentioned earlier is based on a heuristic approach and is not necessarily an

optimal solution.

Each of the blocks is described in the following sections with corresponding RTL

models.

6.5.2.1 DISTANCE DETERMINATION

This unit basically computes the distance between the pixel and the class’s

cluster center. Manhattan distance metric is used to find the closest distance.

 67

The schematic for the distance determination data path is shown in Figure 6.9.

The sub_abs RTL block takes each feature of the pixel and evaluates the

Manhattan distance for each corresponding feature of the class centers. The

Manhattan distances of all features then add up to determine the distance of the

current pixel. The features feed into the processing engines serially that has

been maximally pipelined. Amdahl’s law limits the benefit of more pipeline

stages.

The state machine control signals keep track of the number of features to add up

and reset the accumulator to zero for the next set of pixel features to be

processed. The equation represents the logic implemented

Manhattan Distance: 11111111],[zzyyxx CPCPCPCP −+−+−=

Manhattan Distance: 21212121],[zzyyxx CPCPCPCP −+−+−=

Manhattan Distance: 31313131],[zzyyxx CPCPCPCP −+−+−=

The accumulator is reset to zero after 3 clock cycles. The control circuit controls

the number of feature vectors that goes into the accumulator. This is important

because the pixels are sent in serially to the processing engine and a counter

keeps track of start and end of a pixel and sets/resets the accumulator

accordingly.

 68

PIXELS [X, Y, Z]

 C1 C2 C3

SUB2 SUB3

ABS1 ABS3 ABS2

SUB1

ADD1 ADD2 ADD3

 212121
zzyyxx CPCPCP −+−+−

Figure 6.9: Manhattan Distance Computation

 69

6.5.2.2 PIXEL CLASSIFICATION/RE-CLASSIFICATION

This piece of the design is a bit tricky and a picture is drawn to comprehend the

design. Figure 6.10 shows the pseudo-RTL model for the pixel classification unit.

To begin with, the Manhattan distance computed for each pixel to all the three

class centers is compared against each other to determine the least distance.

The classify logic determines which class the pixel belongs to. Since the pixel is

already available for the add/shift logic to use, a look-ahead addition is performed

for all the classes and presets back to the previous values if they don’t belong to

the class. The classify logic makes the decision whether to step back or not.

The number of pipeline stages change as the feature size is incremented. This is

because the shift register keeps track of the feature value for a pixel set and

resets the pre-calculated values to the previous state after all the features /pixel

have been processed. This requires a shift pipeline to hold all and only the

number of feature values per pixel. The VHDL for this is also parameterized. In

chapter 7, a way to build a dynamically parameterized pipeline is detailed.

The look-ahead addition is similar to the carry look-ahead adder, the difference

being that while the latter operates on bits and carries overflow bits to the

adjacent bits, the look-ahead adder just operates on real numbers.

 70

 21 CP − 21 CP − 21 CP −

 PIXEL PIXEL

CMP1 CMP3 CMP2

CLASSIFY LOGIC

LOOK
AHEAD

ADDITION

LOOK
AHEAD

ADDITION

LOOK
AHEAD

ADDITION

SHIFT1

MUX1 MUX3 MUX2

SUB1 SHIFT2 SUB2 SHIFT3 SUB3

Figure 6.10: Pixel Classification Pseudo-RTL Model

 71

6.5.2.3 FINAL CLUSTER CENTERS DETERMINATION

Three division operators have been implemented within the FPGA. The division

operators are blocks generated from the Xilinx’s core generator utility. A 32 bit

pipelined divider model takes 36 clock cycles to fetch the division results. With

the dividers inside the FPGA, it remains idle for a certain number of clock cycles

before it starts to determine the updated centers for the cluster classes.

However, it is found that the latency cycles are far fewer than having the dividers

do their function on the host processor.

At the end of the division, a div_complete is sent out to the state machine to

transition it to the next state. The values are then updated to the R2 dual port

RAM for the next iteration to begin. The process continues until the centers

converge.

6.5.3 FINITE STATE MACHINE

FSM is basically a machine with a fixed number of internal options or

possibilities. These could be as few as 2 or any number of separate possibilities,

each determined by some combination of input parameters.

The finite state machine is implemented as a Moore machine as shown in Figure

6.11. It sends out global control signals controlling the data path of the design. In

other words, the state machine controls both the core engine and the memory

modules of the design.

 72

 start_en=’0’

i ≤ 2

 i > 2

IDLE

UPDATE

’

Figure

start en=’1

 div_complete=’0’

div_complete=’1’

j ≤ 1024

j > 1024

NORMAL

DONE

DECIDE

6.11: One Hot Encoded State Machine

73

The salient features of the state machine are listed below

1. One-hot encoded.

2. State variables are registered.

3. Control is global and resets all the registers globally after reaching the

DONE state.

The VHDL entity of the state machine is shown in Figure 6.12

The control starts with an IDLE state and stays in the same state till the ‘start

enable’ signal goes high. The start signal is basically a signal off another local

state machine that controls writing, reading and addressing of the dual port

RAMs. In other words, when the RAMs are ready to feed data into the core, it

sends out a start enable signal. When the IDLE state detects this signal it jumps

to the NORMAL state enabling the core to do its intended function.

The state is not transitioned until the entire set of the data is processed and

pixels re-classified. At this point, the state machine detects the ‘division complete’

signal and moves to the DECIDE state. The purpose of the DECIDE state is to

check for a condition such as the number of iterations before the core halts

processing. For example, if the number were chosen as 50, a counter state

variable checks for 50 counts before changing the state to the DONE state. Until

this condition reaches, the states loop around first to UPDATE state where it

updates the reclassified values, then to the NORMAL state and back to DECIDE

state.

 74

Figure 6.12: FSM Entity Declaration

6.6 HOST INTERFACE

As is stated in chapter 4, the pilchard has a very simple and efficient host

interface. The read and write cycles are 64-bit bus transfers each. The downside

is the unavailability of handshake protocols.

First, the code begins with a memory map of the hardware in the host machine.

Second, the data to be processed is read into a matrix of p X q, where p is the

number of the rows indicating an observation and q is the number of columns of

features per observation. Third, the data is sent out to the pilchard using the

write64() API in several cycles until the entire dataset is down linked to the

hardware. The size of the dataset cannot exceed the size of all the blocks RAMs

available in the FPGA. It is worthwhile to reiterate at this point one of the

 75

disadvantages of the Pilchard system, unavailability of on-board RAMs. The on-

board RAMs as in Wild force system allows DMA transfers of the data to it or

allows it to map directly to the external hardware with minimal bus cycles.

Logically, this effect tends to get prominent when handling larger data sets.

Fourth, when the core finishes processing the entire data set, a soft reset is set

high, all the registers are reset to zero and read64() API reads out the final

cluster centers stored in the dual port RAM.

6.7 DESIGN SCRIPTS

Scripting is programming technique mainly used to automate repetitive tasks.

Scripting has been widely used in hardware design circles where the flow of

taking a specification down to bit patterns hasn’t changed dramatically over more

than a decade. Some of the scripts used in this design are discussed in detail in

this section.

6.7.1 SIMULATION AND DESIGN VERIFICATION

Modelsim simulator is used to develop simulation models before and after layout.

This simulator has been widely used in the digital and mixed design community

to verify their designs for functionality and timing. The VHDL is first parsed,

checked for syntax and semantics and then compiled using a Modelsim program

‘vcom’. The compiled code is simulated for over a chosen time interval using

‘vsim’.

 76

The University of Tennessee has the latest version of the Xilinx Alliance tools but

the Xilinx4.1i series pack has been used instead of the newer Xilinx5.1i. The

reason for this is that the current Pilchard development board has built in

packages that uses the former version and it has been found empirically that the

primitives in the Xilinx5.1i series has compatibility issues.

Three important steps encoded into 3 scripts are required to verify the design for

functionality and timing. Figure 6.13 shows the initial step to compile the Coregen

memory blocks into a library, Figure 6.14 shows the next step of compiling the

core and running it through the test bench and finally Figure 6.15 shows the

script for timing simulation.

Figure 6.13: Script to Compile Memory Primitives into XilinxCoreLib

 77

Figure 6.14: Script to Compile the Core

Figure 6.15: Script to Verify Back-Annotated Results

 78

The script shown in Figure 6.15 sets up and maps library components to the

current working directory. Also, the last line in the script does a timing simulation

of the design.

6.7.2 SYNTHESIS AND RTL GENERATION

Two tools have been employed to verify the correctness and quality of the

design. Synplicity was primarily used to view gate-level RTL schematics and

optimize unused or unrelated logic. Synopsys’s FPGA Compiler is the other tool

used to verify and synthesis the design into a gate-level netlist. The netlist is in

the EDIF [Electronic Data Interchange Format] that the Xilinx’s Place and Route

tool uses to lay the design out.

6.7.2.1 SYNTHESIS FLOW

The synthesis script in Figure 6.16 is probably the most important script in the

design and the brief explanation of the script is done in this section. Lines 1

through 7 define variables. The device present in the Pilchard system is targeted

with a speed grade of 6. A directory export_dir is created to hold design

information that needs to be exported for use with the other following programs.

Lines 8 through 9 remove old versions of the project and then create a new one.

Lines 10 through 12 opens the existing project and sets up project variables.

Lines 13 through 26 identify the design source files and analyze each of them in

hierarchical order. Lines 27 through 29 set up don’t touch attribute to already

optimized blocks. This saves some considerable CPU time and keeps the best-

 79

optimized design untouched. Line 30 is a very important step in the synthesis

process. The options specified with the create_chip command line decide

performance results to a very great extent. For example, ‘-eliminate’ option

synthesizes the design by the way of flattening it. This leads to a very optimal

design in terms of timing but the downside being large design cycle time.

Essentially this creates a chip targeted for $TARGET with the default part and

speed grade. The chip is named $chip and $top indicates the top-level design.

The remaining lines in the script basically optimizes, shows error and warning

messages, writes out PPR netlist and constraints to the export directory and

reports timing results. Figure 6.16 shows the details of the synthesis process.

6.7.2.2 OPTIMIZATION METHODS

Few optimization methods at different levels are employed. At the architectural

level, the design is maximally optimized by the use of

1. 41-stage pipelined model

2. One hot encoded state machine

3. Carry look-ahead logic for adds and subtracts.

4. Re-use of DesignWare and Coregen models for efficient design etc.

5. Clock Gating

At the synthesis level, few optimization methods such as register retiming,

synthesis of flattened design were used. In addition to this speed level of 6 is set

and the design is over constrained to run at 150 MHz for better synthesis results.

 80

Figure 6.16: Synthesis Script with Optimization Parameters

 81

6.7.3 PLACE AND ROUTE

A place and route program for Xilinx4.2i has been used to place and route the

entire design. During the initial stages of development, a set of easy constraints

was imposed on the par software just to be able to do a quick verification. The

final stages of the design were set to tighter constraints and higher effort level to

route the design. Additional optimization techniques such as pipelining, register

retiming was done for better performance results. Figure 6.17 shows the script

involved in the bit pattern generation.

A brief explanation of the script in Figure 6.17 is given below. More information

about each utility can be found in the Xilinx User Guide [12].

Line1 performs an ngdbuild on the input netlist. NGDBuild performs the following

steps to convert a netlist to an NGD file.

Figure 6.17: Place and Route Script with Highest Effort Levels

 82

1. Reads the source EDIF netlist.

2. Reduces all components in the design to NGD primitives

3. Checks the design by running a Logical Design Rule Check (DRC) on the

converted design.

4. Writes an NGD file output.

The output NGD file can be mapped to the desired device family.

Line 2 runs a map program. MAP performs the following steps when mapping a

design.

1. Selects the target Xilinx device, package, and speed. If the part is not

specified, MAP issues an error message and stops. If the speed is not

specified, MAP supplies a default speed though.

2. Reads the information in the input design file.

3. Performs a Logical DRC (Design Rule Check) on the input design. If any

DRC errors are detected, the MAP run is aborted. If any warnings are

detected, it continues to run though.

4. Removes unused logic. All unused components and nets are removed,

unless the following Xilinx S (Save) constraint has been placed on the net

or the –u option is used on the command line.

5. Maps pads and their associated logic into IOBs.

6. Maps the logic into Xilinx components (IOBs, CLBs, etc).

7. Update the information received from the input NGD file and write this

updated information into an NGM file.

8. Creates a physical constraints (PCF) file.

 83

9. Run a physical DRC on the mapped design. If successful writes a NCD file

and a MAP report (MRP) file.

Line 3 invokes the placement and router tool. Figure 6.18 is a picture of the

routed design generated by the PAR tool. It routes the design depending on cost-

based or timed driven. Efforts level of 5 is set of the placer and the route that

basically directs the router to search for a bigger search space for finding the

optimum placement points. However, a guided PAR is a better technique for a

better solution.

Line 4 of the script, TRACE (Timing Reporter and Circuit Evaluator) provides

static timing analysis of a design based on input timing constraints. The TWR file

is the timing report file with a .twr extension.

Line 5, BitGen produces a bitstream for Xilinx device configuration. After the

design has been completely routed, it is necessary to configure the device so

that it can execute the desired function. This is done using files generated by

BitGen, the Xilinx bitstream generation program. It takes a fully routed NCD file

as its input and produces a configuration bit pattern – a binary file with a .bit

extension.

 84

Figure 6.18: Layout of the K-means Core including Division Operators

 85

6.8 RESULTS

 This section discusses the results obtained and the conclusions that are drawn

from the obtained results under certain specific constraints. A concluding speed

up of hardware over software has been demonstrated for this application. A 117-

point pre-processed hyper-spectral dataset from the Jet Propulsion Laboratory

Library has also been analyzed to reinforce the judgment.

6.8.1 FLOATING POINT KMEANS

Different floating-point variations of k-means are tested in software. The code

was then ported to fixed point C to analyze any performance benefits as is stated

earlier in chapter 5. Initially, floating point with two different measures, Euclidean

and Manhattan are analyzed followed by fixed-point K-means analysis using the

design flow methodology described in chapter 5.

6.8.1.1 MATLAB AND C

Basically floating point Matlab is used to test the accuracy of the classifier and

floating point C is used to compare run times of hardware vs. software. The

golden Matlab code is ported to floating point C using Euclidean measure and

none of the points misclassified for both synthetic datasets and hyper-spectral

dataset from JPL library. The floating point is then taken as the reference to

check the validity of the floating point C code with Manhattan distance measure.

For all the synthetic as well as real dataset tested, the classifier did not

misclassify but there was definite accuracy loss in the displaced cluster centers.

 86

While there has been no misclassification for the limited datasets tested, it does

not, however, infer that the use of Manhattan distance does not misclassify. The

Manhattan C is then transformed to fixed point C for further optimization.

6.8.1.2 CLASS CORRESPONDENCE

Different runs on K-means on the same dataset for example produces different

order of classes depending on the initialization of the random vector. For

instance, consider a 117-pt data set supposed to be classified in 3 classes,

minerals, salts and manmade materials. For one run, the classifier does a

classification of 9 points in class 1, 77 points in class 2, 31 points in class 3. On a

different run, it might produce 9 point in class 2, 77 points in class 3, and 31

points in class 1. Hence, we can map class 1 of first run to class 2 of second run,

class 2 of first run to class 3 of second run and so on. Therefore, the classes’

minerals, salts and manmade materials can correspond to any of class1, class2

or class3. A class correspondence algorithm is developed to identify such a

mapping procedure.

Table 6.1 shows the matlab runs for the pre-processed real data set before and

after normalization. All the 16 features extracted have been used at this time.

The accuracy listed in Table 6.1 is the accuracy of the classifier developed in

software with respect to the ground truth. The error percentage ripples down as

the design tries to optimize the speed from the floating-point software run to

hardware implementation.

 87

Table 6.1: Clusters Classification of 117pt Hyper Spectral data

Matlab Runs Points in
Class 1

Points in
Class 2

Points in
Class 3 Accuracy

Before
Normalization 9 77 31 43.589%

After
Normalization 18 68 31 35.897%

6.8.2 HARDWARE RUNS

A number of bit stream configurations were downloaded to the pilchard and

tested for the validity of K-means. Methodical hardware debugging with the aid of

R3 RAM is done to get the clustering algorithm working on the pilchard for a tiny

dataset. Then, datasets with different numbers of observations were used to test

the functionality and see if it consistently matched the results of the software. The

hardware run times with and without the I/Os are observed. Table 6.2 shows the

run time measurements of K-means clustering on different platforms. In addition

to this, power measurements for 50% activity rate have been recorded.

6.8.2.1 POLLING FOR TIMING MEASUREMENTS

The host interface is very simple and easy to use but lacks sophisticated APIs

that are available in hardware platforms like the Wildforce. Also, absence of

handshake protocols necessitates the development of some polling techniques to

constantly check the hardware status through one of the available registers.

Figure 6.19 is a polling algorithm for measuring run time on hardware.

 88

STATE
=

DONE

READ
MEMP+255*8

STOP TIMER

START TIMER

Figure 6.19: Flowchart for Recording Run Time Measurements

 89

Table 6.2 Run Times of K-means Clustering A. Matlab

Number
of Points

Matlab on
Pentium III

Matlab on
Sun Blade

6 4.6714 ms 8.220 ms
10 7.6816 ms 19.46 ms
25 18.330 ms 44.39 ms
50 38.000 ms 90.02 ms
117 349.70 ms 423.4 ms
234 692.00 ms 834.6 ms
468 1016.4 ms 1659.5 ms
936 1597.3 ms 3336.7 ms

B. Floating Point/Fixed Point C Run Times of K-means Clustering

Number
of Points

Floating-C
Manhattan

Fixed-C
Manhattan

6 201 us 3229 us
10 383 us 4894 us
25 826 us 6999 us
50 1626 us 11537 us
117 3926 us 49507 us
234 6932 us 93669 us
468 17503 us 182214 us
936 35510 us 358833 us

C. Pilchard Run Times of K-means Clustering

Number
of Points

Hardware
without I/O

Hardware
with I/O

6 2.040 us 34.04 us
10 5.040 us 45.04 us
25 8.630 us 78.63 us
50 14.62 us 134.62 us
117 15.39 us 269.39 us
234 30.00 us 518.00 us
468 61.48 us 1017.48 us
936 61.55 us 1953.55 us

 90

For measuring execution time of the core, the timer starts after the write64() API

and then reads the 255th address location constantly and keeps looping until the

state of the hardware goes to DONE. Once the DONE state is reached the

software quits out of the loop and records the end time. The difference of the

start and end time provides the runtime of the core.

Table 6.3 characterizes the K-means Algorithm on the Pilchard Prototype board.

The gate count and the power estimates recorded seem to be consistent for all

the test vectors.

6.9 DISCUSSION

The implementation looked at three basic elements, viz core, memory and I/O.

The Pilchard system has inadequate memory capabilities that require transferring

data into the RAMs within the FPGA. A considerable amount of write cycles have

to be spent in transferring data to the hardware units with the FPGA framework.

Table 6.3 Area and Power Estimates of K-means clustering On Pilchard

Number of Points Area [Gate Count] Power Estimate [mW]
6 430,471 1395.60
10 430,294 1398.12
25 430,459 1438.00
50 430,465 1435.00

117 430,417 1439.00
234 430,435 1435.00
468 430,435 1440.00
936 430,435 1440.00

 91

However, in the software implementation, the data is already mapped to the main

memory or even cache memory. Therefore, it is actually fair to compare the two

software versions for core-to-core run times. In the case of other similar

hardware assist platforms available at University Of Tennessee, the availability of

on board RAMs facilitates DMA mapping of the local memories to the main

memory of the host computer. The DMA mapping significantly reduce the I/O

overheads. It has been thus identified that I/O still remains to be a bottleneck of

the Pilchard system. However, for the purpose of understanding of the system,

run time measurements including the reads and writes is recorded and analyzed.

Figure 6.20 shows the speed up numbers for different experimental observations

excluding the I/O overheads. Figure 6.21 also shows the speed up figures but

including the I/O. As can be seen, without the I/O, the speed up over a

conventional software version explodes to a maximum of 25,000.

However, the speedup factor with respect to floating point and fixed point C

versions are drastically different. The hardware beats the fixed point C by a factor

of 3216 without the I/O included and 183 with the I/O overheads included. But the

floating point C seems to be faster than fixed point C version of the k-means

clustering algorithm. This is a quite intuitive because the Pentiums on the Linux

boxes have dedicated floating-point silicon to run floating-point operations and

hence faster. The hardware beats the floating point C by a factor of 255 without

the I/O included and 14 with the I/O overheads included.

 92

Speedup of Matlab over Hardware excluding I/O

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

6 10 25 50 117 234 468 936

Number of observations

Sp
ee

du
p

Speedup = (Matlab on
linux)/(HW without R/W)

Figure 6.20: Speedup (1)

Speedup of Matlab over Hardware including I/O

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00
1600.00

6 10 25 50 117 234 468 936

Number of observations

Sp
ee

du
p

Speedup = (Matlab on
linux)/(HW with R/W)

Figure 6.21: Speedup (2)

 93

VHDL

C/C++

MATLAB

VHDL

C/C++

MATLAB

Modeling Time Run Time

Figure 6.22: Trade-Offs in Modeling time vs. Runtime

The speedup of hardware implementation over the software version scales down

drastically to a maximum of 1300 including the times to reads and writes.

However, the speed is still fairly impressive but could be improved overall with

efficient I/O and on board memories. Figure 6.22 shows the trade-off in

development time vs. run time for different coding models.

Another interesting observation comes from the Table 6.4. A gate count with a

consistent average of 430,000 out of a million gate chips is about 43%. It has

been computed empirically that out of the 43%, the three dividers take up 34% of

the area. Thus, the core logic occupies about 9% of the chip area. Conceivably,

the core can be replicated about 6 times before the chip runs out of floor area.

That means 6 times more speedup than the current reported speedup numbers.

 94

However, the problems of speeds and feeds discussed in chapter 4 occur. This

again could be improved if we had better memory and I/O capabilities.

One of the most important features of the implementation is the compilation of a

parameterized VHDL. The implementation has been parameterized for two items.

1. Number of features

2. Number of Observations

However, there are limitations in the present work that can be eliminated quite

easily as suggested in the chapter 7.

The generic items have been set to limit the number of features to 16 and the

number of observations to 215. The number of features is parameterized and can

be set to any desirable number less than or equal to 16. Similarly the number of

observations is parameterized as well. For the case of 16 features and 215

observations, only 18% of the blockRAMs have been utilized. Hence, we expect

the design to support up to 217 observations.

6.10 PILCHARD CHALLENGES

The formulation of the problem started with the availability of the Pilchard system

and a curiosity to implement conventional clustering algorithms for the purpose of

rapid prototyping. First the algorithm and details were studied, followed by

literature survey of related research. Tons of researchers had been identified to

have done or doing similar research. An attempt to isolate points that haven’t

been addressed was done. A methodology was laid out before starting to

 95

experiment with the hardware assist. The Pilchard system posed numerous

design challenges and the process of identifying loopholes and fixing them

serves a rewarding experience. Simple designs were composed and made to

work on the pilchard system. Designs like an adder or an accumulator

sandwiched between two dual-port RAMs were first implemented successfully.

This example served as a tutorial to other research students in the group using

the same system.

Along the way, several better ways to implement logic was also identified and

described below. These could be applied particularly to the Pilchard system as

some of the hardware designs and optimization methods do work fairly well with

some platforms but do not work at all with others. The reason for this is because

different platforms might use different technologies, different synthesis programs

within the FPGA framework. For example, two synthesis tools treat the same

piece of code in a different way and synthesize it to the gate level in an entirely

different way.

6.11 CHAPTER SUMMARY

This chapter described the implementation details, followed by the analysis of the

results obtained. A discussion involving analysis and interpolation of the results

for better hardware platforms has been included. The next chapter presents

conclusions and offers future directions for the present work.

 96

7. CONCLUSION AND FUTURE WORK

The previous chapter described the details of the design and the results were

presented. The objectives of the design were realized and the results shown are

quite promising within the constraints specified. This chapter outlines the

conclusion of the thesis and provides future directions of the research work.

7.1 OBJECTIVES ACHIEVED

Three important conclusions can be drawn from the results of the thesis work.

1. Acceleration approaches of k-means clustering on hardware seem to be very

promising. An average speed-up of 10K for a core-core comparison (without I/O)

and an average of 500 over Matlab with the I/O overheads included have been

achieved with the current implementation.

2. System is I/O and memory limited. With some improvements to the

architecture of the hardware assist, significant speed-up results can be achieved.

This also necessitates more banks of memory or even on-board RAMs.

3. The implementation is highly scalable with minor changes to the control logic

of the design. Also, multiple copies of the hardware resources need to be used

until the chip floor runs out of logic gates/blocks.

4. Parallel kernels have been exploited to run concurrently on the hardware for

significant speedup factors and therefore image processing algorithms such as k-

means clustering are a good fit for hardware platforms and hardware

accelerators.

 97

7.2 FUTURE DIRECTIONS

There are enormous potential developments that can be done to take the current

implementation to the higher levels. Some of these are pointed out as below.

1. As the chips sizes get denser and bigger in terms of logic gates, more stuff

can be thrown into the FPGAs to build a comprehensive image-processing

model. For example, raw data filter compressor (Principle Component

Analysis) classifier (K-means clustering) processed data can all be burned

in a single FPGA and deployed near the sensor. This way down linking and other

transfer overheads could almost be eliminated. This saves a lot of latency cycles

and therefore a faster processing method.

2. The division operations within the FPGA that consume large amounts of clock

cycles per iteration can be replaced by shifts and subtracts and one final divider.

The final divider could be implemented within the hardware or can be made

available on the host.

3. The chip floor takes up about 34% of the floor area with 3 dividers that could

be replaced by a single divider by appropriate scheduling and pipelining.

4. The parameterized implementation can also be made scalable across classes.

Section 7.2.1 describes the steps required to implement a fully scalable design.

5. Massive parallelism at the course grain level can be exploited by HPRC

development of the algorithm where N general-purpose processors are each

attached to the respective RC nodes. The latency issues could be a bottleneck

and appropriate research could identify the strength or weakness of such

implementations.

 98

7.2.1 SCALABILITY ANALYSIS

The following are the steps required to tweak the current design to make it fully

scalable across classes. First, the three dividers need to be replaced with a

single divider to create room for copies of hardware blocks for additional classes.

The number of classes up to which scalability can be done depends on the size

of the chip part and would need to be found out empirically. Figure 7.1 shows the

block diagram of the scalable implementation. Proper scheduling can be done to

pipeline the single division unit by appropriate latency delays per class.

The three dividers in the current implementation utilizes about 34% of the floor

area, which is roughly about 10% for each divider. Three copies can be replaced

by just one copy of the divider, which saves about 20% of the floor area. This

gives some flexibility to include hardware copies for more classes in the scalable

k-means architecture.

Second, the control unit needs to be tweaked to add logic to pick only the

required outputs depending on the number of classes specified for the data set.

Third, the memory model needs to be changed to pack and unpack bits

accordingly. Include all the 96 block RAMS available and let the additional control

logic in the FSM pick the number of RAMS required for the design. This logic is

similar to picking up only the required outputs for the number of classes. The R3

model needs no changes and the current model could still be used to store

intermediate values for the purpose of hardware debugging.

 99

SUBTRACT

2

MODULUS

2

ACCUMULATOR
2

DIVIDER

MINIMUM
DISTANCE

FINDER

ACCUMULATOR
2

SUBTRACT

1

SUBTRACT

N

MODULUS

1

MODULUS

N

ACCUMULATOR

1

ACCUMULATOR

N

ACCUMULATOR

1

S

ACCUMULATOR

N

REGISTER
FILE

REGISTER
FILE

Figure 7.1: Scalable K-means Clustering Algor

 100

N REGISTER
ithm

Additional logic circuitry should be added in the NORMAL state of the state

machine to decide on the fly the number of hardware copies to use. Generate

statements can be used to parameterize the total number of copies replicated

within the FPGA and the number of classes, the number of features and the

number of observations could be written to the register file and the control logic

within the finite state machine would read the registers and draw outputs from the

required hardware copies on the fly. This design will also require one time

configuration of the hardware design provided the bit width representation for the

given datasets remains the same.

7.3 CHAPTER SUMMARY

This chapter concludes the objective of the thesis and points out contributions

and limitations of the current work. Future directions of the work have been

stated, in addition to laying out steps that needs to be done to scale this

architecture for N classes, N>3.

 101

BIBLIOGRAPHY

[1] M. Estlick, M. Leeser, J. Szymanski, and J. Theiler, Algorithmic

Transformations in the Implementation of K-means Clustering on Reconfigurable

Hardware. ACM FPGA 2001, 2001.

[2] J. Frigo, M. Gokhale, and D. Lavenier, Evaluation of the Streams-C C-to-

FPGA Compiler: An Applications Perspective. ACM FPGA 2001, 2001.

[3] M. B. Gokhale and J. M. Stone. Co-synthesis to a hybrid RISC/FPGA

architecture. Journal of VLSI Signal Processing Systems, 24, March 2000.

[4] Inderjit S. Dhillon, Dharmendra S. Modha, A Data Clustering Algorithm on

Distributed Memory Multiprocessors, IBM Research Report RJ 10134(95009),

Nov.11, 98, Proc Large-scale Parallel KDD Systems Workshop, ACM SIGKDD,

Aug. 15-18, 1999

[5] Jeffrey Wolff, Dance Implementation of K-means Clustering, May 2000

[6] D. Lavenier. FPGA Implementation of the K-Means Clustering Algorithm for

Hyper- spectral Images. Los Alamos National Laboratory LAUR 00-3079, 2000.

[7] M. Leeser, M. Estlick, N. Kitaryeva, J. Theiler, and J.Szymanski. Applying

Reconfigurable Hardware to Segmentation for Multispectral Imagery. In HPEC

2000, Boston, MA, Sept. 2000.

[8] S Ray and R H Turi, Determination of number of clusters in K-means

clustering and application in color image segmentation, (invited paper) in N R

Pal, A K De and J Das (eds), Proceedings of the 4th International Conference on

 103

Advances in Pattern Recognition and Digital Techniques (ICAPRDT'99),

Calcutta, India, 27-29 December, 1999, Narosa Publishing House, New Delhi,

India, ISBN: 81-7319-347-9, pp 137-143.

[9] R. A. Schowengerdt. Techniques for Image Processing and Classification in

Remote Sensing. Academic Press, Orlando, 1983.

[10] J. Theiler, J. Frigo, M. Gokhale, and J. J. Szymanski. Co-design of software

and hardware to implement remote sensing algorithms. Proc. SPIE, 4480, 2001.

[11] Xilinx Corporation, Virtex 1000e Datasheet,

http://www.xilinx.com/bvdocs/publications/ds022.pdf, 2000.

[12] Xilinx Corporation, User Manual, /sw/Xilinx4.2i/userguide/docs, N.A

[13] Synopsys Inc, Designware IP Blocks, http://www.synopsys.com/cgi-

bin/designware/ipdir.cgi, N.A.

[14] Synopsys Inc, Designware User Guide,

http://vlsi1.engr.utk.edu/ece/bouldin_courses/Designware_Docs/dwdg.pdf, N.A

[15] Dr. Donald W Bouldin, Lecture Notes of ECE 551, 2002.

[16] Dr. Donald W Bouldin, Lecture Notes of ECE 552, 2002

[17] J. Theiler, M. Leeser, M. Estlick, and J.J. Szymanski. Design issues for

hardware implementation of an algorithm for segmenting hyper spectral imagery.

In M.R. Descour and S.S. Shen, editors, Imaging Spectrometry VI, volume 4132,

2000.

[18] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, M.Y.

Wong and K.H. Lee, “Pilchard - A Reconfigurable Computing Platform with

 104

http://www.synopsys.com/cgi-bin/designware/ipdir.cgi
http://www.synopsys.com/cgi-bin/designware/ipdir.cgi
http://vlsi1.engr.utk.edu/ece/bouldin_courses/Designware_Docs/dwdg.pdf

Memory Slot Interface”, Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), California USA, 2001

[19] Peterson, G. D. and Smith, M. C., Programming High Performance

Reconfigurable Computers, SGRR 2001, Rome, Italy.

[20] JPL spectral library document

[21] David Langrebe, Some fundamentals and methods for hyperspectral image

analysis, SPIE conference proceedings, January 1999.

[22] R.B. Smith, Introduction to hyperspectral imaging.

[23] John A. Richards, Xiuping Jia, Interpretation of hyperspectral image data.

[24] N.R. Pal and S.K. Pal, A review on image segmentation techniques, Pattern

Recognition, vol.26, pp. 1277-1294, 1993

[25] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, New Jersey:

Prentice Hall, 1988.

[26] C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel. Clustering to improve

matched-filter detection of weak gas plumes in hyper-spectral imagery. IEEE

Trans. Geosci. Remote Sensing, 39:1410–1419, 2001.

[27] Thomas Fry Thesis, Schott Hauck @ University of Washington

[28] Lloyd Algorithm, John Hopkins

[29] DANCE Implementation by Jeffrey Wolf

[30] Pilchard User Manual

[31] Frontier Design, A|RT Builder User Guide

 105

VITA

Venkatesh Bhaskaran was born on January 21st, 1979 in the city of Hyderabad,

India. He lived there for 21 years where he went to high school at St. George’s

Grammar School. Venkatesh then moved to Madras to get his Bachelor of

Engineering degree at the University of Madras. He developed a great interest

for digital design engineering while an undergraduate and came over to the

United States of America to further his skills at the University of Tennessee. He

graduated with a Masters of Science degree majoring in Electrical and Computer

Engineering in the year 2003. He is now a huge fan of VOLS and hopes to fund

the VOLS team a bit as an alumnus. GO VOLS GO.

 106

	Chapter2.pdf
	2. RELATED WORK

	Chapter3.pdf
	Figure 3.3: Percentage Difference vs. Amount of Truncation f

	Chapter4.pdf
	Figure 4.1: The Pilchard Card [18]
	Figure 4.2: Features of Pilchard Platform [30]
	Figure 4.4: Virtex Architecture Overview [11]
	Table 4.1: Virtex-E Block SelectRAM Amounts [11]
	Virtex-E Device
	Block SelectRAM bits

	4.4 DESIGN ISSUES OF K-MEANS ON PILCHARD

	Chapter5.pdf
	Figure 5.1: Methodology Design Flow
	Figure 5.4: Procedure for Determining Minimum Fractional Bit
	Figure 5.5 Full Precision (I + F) 16-bit Fixed Point
	Figure 5.6: Modified 13-bit Representation of Pixel

	Chapter6.pdf
	Figure 6.1: Block Diagram of the Implementation
	Figure 6.7: Spatial Representation of a Pixel with Three Fea
	Hardware_Debug_Out

	Figure 6.8: Dual Port Memory Transfer Data Layout
	Figure 6.9: Manhattan Distance Computation
	PIXEL PI

	Figure 6.10: Pixel Classification Pseudo-RTL Model
	Figure 6.11: One Hot Encoded State Machine
	Figure 6.16: Synthesis Script with Optimization Parameters
	Figure 6.17: Place and Route Script with Highest Effort Leve
	Table 6.1: Clusters Classification of 117pt Hyper Spectral d
	Matlab Runs
	Figure 6.19: Flowchart for Recording Run Time Measurements
	Table 6.2 Run Times of K-means Clustering A. Matlab
	B. Floating Point/Fixed Point C Run Times of K-means Cluster
	C. Pilchard Run Times of K-means Clustering
	Table 6.3 Area and Power Estimates of K-means clustering On
	Modeling Time Run Time
	Figure 6.22: Trade-Offs in Modeling time vs. Runtime

	Chapter7.pdf
	7. CONCLUSION AND FUTURE WORK

