
Genomic Data Analysis Using Grid-Based Computing

A Thesis
Presented for the
Master of Science

Degree

The University of Tennessee, Knoxville

Bhanu Prasad Rekapalli
December 2003



ii

Dedicated to my father, mother, sister, 
and friends, and to the world, which gave 
me the opportunity to prove myself, and 
all who guided, motivated and supported 

me throughout my educational career.



iii

Acknowledgements

I would like to sincerely acknowledge my thesis advisor Dr. Gregory Peterson for his kind

and helpful supervision throughout the course of my work. I would like to thank my thesis

committee members, Dr. Mohammed Ferdjallah, and Dr. Michael Langston for reviewing

and directing my thesis.

I sincerely thank Webservices, UT for supporting me during my work, as a graduate

assistant at Webservices this idea of thesis was generated without which the thesis

would not have been existed. I am indebted to Dr. Colton Smith, John Rose, and Robert

Hillhouse of Webservices for support and encouragement provided by them for this

thesis. I would like to thank Dr.Gavin Sherlock of Stanford university for guiding me to

pick computation intensive parts of SMD.

I am grateful to all my friends who helped in preparation of this thesis. Special thanks to

my best friend Vamsi Nellore for giving moral and great support in hard times. I thank my

friends Mardhav Wala for proof reading my thesis, and Venki, Rohan and my roommate

Krishna.

I would like to thank University of Tennessee for giving me the opportunity for the M.S.

program. Its my pleasure to thank my graduate and undergraduate professors who laid a

good foundation for my thesis work.



iv

Last but most important, I would like to thank whole hearted, my parents Lakshmi

Sulochana Rekapalli and Subba Rao Rekapalli and my sister Dr. Deepthi Rekapalli who

supported, loved, helped and cared for me throughout my life. I am dedicating this thesis

to them.



v

Abstract

Microarray experiments generate a plethora of genomic data; therefore we need

techniques and architectures to analyze this data more quickly. This thesis presents a

solution for reducing the computation time of a highly computationally intensive data

analysis part of a genomic application. The application used is the Stanford Microarray

Database (SMD). SMD’s implementation, working, and analysis features are described.

The reasons for choosing the computationally intensive problems of the SMD, and the

background importance of these problems are presented. This thesis presents an

effective parallel solution to the computational problem, including the difficulties faced

with the parallelization of the problem and the results achieved. Finally, future research

directions for achieving even greater speedups are presented.
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Chapter 1

Overview

1.1 Introduction

Bioinformatics is an emerging field in biotechnology with the increasing demand and

importance. Scientists and researchers predict a beginning of the “Biotechnological era”

during the coming years. Bioinformatics is a developing branch in biology which is highly

interdisciplinary, utilizing the concepts and techniques from informatics, statistics,

mathematics, chemistry, biochemistry, physics, and linguistics[16]. To achieve a highly

complex and coordinated task of creating useful microorganisms through computer aided

design, a mixture of technologies must be used[17]. To refine enzymes and to analyze

kinetic parameters in vitro, enzyme engineering is used. Metabolic engineering is used to

analyze flux rates in vivo. Analytical chemistry is used to determine and analyze the

quantity of metabolites efficiently. Genetics engineering is used to select the genes and

for modifying metabolic pathways. Simulation science is used to efficiently and accurately

simulate a large number of reactions. Knowledge engineering is used to construct, edit

and maintain large metabolic knowledge bases. Mathematics is used to estimate and

tune unknown parameters. Thus proving the highly interdisciplinary aspect of

bioinformatics.

Many complex designs and tools are developed using the multi-disciplinary aspect of

Bioinformatics. This arises the question, what is Bioinformatics?
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1.1.1 Definitions

On July 17, 2000 the definition committee of National Institutes of Health (NIH)

Biomedical Information Science and Technology Initiative Consortium (BISTIC) adopted

the following definitions and distinctions[18][25].

Bioinformatics: Research, Development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, archive, analyze or visualize such data.

Computational Biology: The development and application of data-analytical and 

theoretical methods, mathematical modeling and computational simulation        

techniques to the study of biological, behavioral and social systems.

1.1.2 History

In recent times, the biological information being generated is very immense. Many

projects like genome sequencing, macromolecules structures, and functional genomic

experiments, led to the rise of a new field called biocomputing. Biocomputing or

bioinformatics became popular because of these projects. Basically biocomputing

encompass bioinformatics and computational biology. But the concept of computing in

biology is old and dates back as far as 1924, when A.J. Lotka, in “Elements of Physical

Biology” established biological laws solely from data analysis by induction [18]. In this

paper he said: “It remains to enumerate the methods by which Physical Biology may be

expected to develop. For the gathering of data two methods are available: observation in

natural conditions, and observations under experimental (laboratory) conditions. For the
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elaboration of data, the establishment of regularities (laws), there is available in this field,

as every where in science, the method of induction, aided, if need be, by statistical

technique.”

The chronology and essence of early events that led to the development of these fields

dates back, covering the period from the 1869, discovery of DNA by Miescher, to 1980-

1981 and the beginning of massive sequencing[19]. Many researchers had successes in

computational molecular biology in early times, like Linus Pauling, who advanced the

theory of molecular evolution and Margaret Dayhoff, credited with authoring the Atlas of

Protein Sequences in 1960’s. This field of computing in biology took a new turn to evolve

into its present-day state, when the Needleman-Wunsch algorithm for the global

alignment of two biological sequences was outlined in the early 1970s. In 1977 when the

first DNA genome sequenced, the interaction between biologist and computer scientist

increased [20]. Programs were developed not only for simple algorithms to translate DNA

sequences into protein sequences [26], but also programs were developed to detect

more complicated patterns such as restriction enzyme recognition sites [27][20]. Also the

early artificial intelligence approach in the field of restriction enzyme mapping [28] was

successful, which revolutionized the entry of computer science community into biological

society [20]. The Basic Local Alignment Search Tool (BLAST), since its introduction in

1990 revolutionized the practice of biology in virtually every lab, and the original paper of

BLAST became the most cited paper.
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1.1.3 Importance

The various computing techniques have evolved with the development of High

Performance Computing (HPC) and the availability of vast amounts of biological and

medical experimental data. There is a natural relationship between computer science and

biology[16]. According to Moore’s Law the processing power is doubling every 18

months, at the same time the phenomenal rate of biological data that is generated by

various applications provides challenges in data storing, analyzing and accessing data.

Since most of the data needed mathematical or statistical methods for processing, thus

increasing the need of computation.

One of the most important part of the computing is analysis of the data generated from

experiments, which is used in most of the fields. Analysis in bioinformatics focuses on

genome sequencing, macromolecular structures and functional genomic experiments.

Algorithmic development is an important part of bioinformatics, and techniques and

algorithms are specifically developed for the analysis of biological data [16].

The GenBank is doubling every 16 months [20], and containing 2 Billion bases of DNA

sequence in 1999 [29], according to this statement there should be more than ten billion

of base sequences. Thus modern biology needs computational tools to store, display and

analyze these sequences. The best example is human genome project which has 3

billion base pairs. This shows the great impact of bioinformatics on biological research.

Hence biocomputing with help of computer may answer many biological questions, which

traditional approaches could not tackle. Thus the introduction of computers in biology led

to the founding of dedicated bioinformatics research groups.
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1.2  Objective

An explosion of biological data, like in human genome projects, is creating a serious

bottleneck in runtime of analysis, data searching and storing. This results in an immense

necessity for Parallel Computing (PC) which is a dominant technique in achieving high

performance.

The complexity and size of the various simulation and modelling problems, computation

and manipulation problems and analysis problems is so large that it requires high

processing speed and more memory, which makes parallel computing an essential and

important technique in solving these humongous problems. This thesis deals with one of

the biological application called Stanford Microarray Database (SMD) which stores and

analyzes the gene data from the microarray experiments. This thesis focuses on the

analysis part of SMD which uses K-Nearest Neighbor (Knn) impute algorithm for

estimating the missing values in the experiment set and also with Hierarchical Clustering

(HC) algorithm which is used to clustering genes of the experiments to specific groups

based on few parameters. With this background in mind, let us define parallel computing.

Parallel computing is defined as dividing a big problem or a task into smaller tasks and

distributing these smaller tasks to multiple processors and coordinating work and

communication between these processors. The advantage of parallel computing is, the

cost performance, which is scalable and affordable and has high reliability and fault

tolerance.
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There are two types of parallelism one is data parallelism and the other is functional

parallelism. In data parallelism a sequential program is run on multiple machines, on

different sets of data concurrently. In functional parallelism, an application or program is

divided into a set of functionally independent components or tasks, which can be

executed in parallel[21]. 

In this thesis, the Knn-impute program is data parallelized and hierarchical clustering

program is partly data parallelized and partly functional parallelized. Parallel Virtual

Machine (PVM) is used to calculate the bandwidth and latency of the cluster, to evaluate

the performance of communication. But mostly Message Passing Interface (MPI) is used

for parallelization of main programs.

The parallelization used in this thesis uses the “master-slave” concept. Master which is

one of the process or a processor does most of the load balancing and coordinating work.

This means the master process divides the tasks and sends them to the slave processes

and the data sets on which these tasks should be performed. The slave processes

performs the computation and sends back the results to the master. Then the master

collects the results and generates the final output. This thesis primarily focuses on serial

load balancing.

1.3 Scope of Thesis

Chapter 1 introduces the reader to the concepts, importance and the history of

Bioinformatics. Chapter 2 discusses about the background research done in this field and

the related work that is done on the algorithms used. Chapter 3 deals with the actual
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problem and description of the SMD applications, end-to-end procedure and individual

blocks of the problem which needs computation. This chapter also discusses the serial

implementation and computation times of the problem, which picks up the blocks which

need high performance computing. Chapter 4 describes the solution to the problem,

which uses parallel computing approach to decrease the computation time of the

application. Chapter 5 shows the results and graphs and the speed ups achieved.

Chapter 6 is the conclusion and future work to enhance the applications further using

reconfigurable computing approach.
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Chapter 2

Background and Related Work

The data generated by many applications is increasing tremendously, with advancing

technology. Thus data mining and analysis is becoming a important need for researchers

in various fields, to solve various problems. For example, the NASA earth observatory

system satellites send terabytes of data every day to be analyzed by the systems on the

ground. Another example is the medical applications where a large number of radiological

images are generated by hospitals. This thesis addresses processing images generated

from microarray experiments to analyze genes.

To quickly analyze such humongous data sets, parallel algorithms and efficient system

architectures are required. This leads to the development of high performance computing

systems. For time-critical applications there is a need of efficient high performance

computing architectures, where the decisions can be taken on the fly. Automatic target

recognition in defense jets is a good example of a time-critical application.

Genomic data is growing explosively[1]. This data is used to diagnose diseases, or invent

new drugs, and manage diseases. Analyzing this data is of great biological and medical

importance. Since the time to analyze this data can be less in some cases, for example a

brian tumor is detected in a patient then the images generated by the scanners should be

downloaded and analyzed quickly to save the patient, thus this area provides ample

opportunities for parallel processing.
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The genomic application discussed in this thesis deals with microarray data.Microarray

experiments are performed to examine gene expression on a genomic scale. This

modern technology allows researchers to follow the expression of an organism’s entire

complement of genes simultaneously in a single simple experiment[2]. The Stanford

Microarray Database (SMD) [22] is a web-based application that stores and analyzes

microarray data. SMD has the capability to analyze the data with the help of the clustering

algorithms like Hierarchical clustering, Self-Organizing Maps, and K-Means algorithms.

Clustered data is then fed to the graphical viewing software, which shows the results. The

problem is the number of experiments in the database are enormous, SMD at Stanford

contains around 35,000 experiments. Hence it can take a huge amount of time to cluster

genes according to their expression profiles. For instance, depending on how large the

gene set and the number of experiments, clustering take anywhere from hours to days.

Hence parallelizing the cluster program has the potential of saving enormous amounts of

time, allowing researchers to efficiently mine their data.

A single DNA-microarray experiment may involve tens of microarrays; each containing

thousands of spots, for which dozens of measurements are recorded resulting in millions

of pieces of information. Currently, The University of Tennessee is experimenting with

microarray chips, which have tens of thousands of spots. To analyze the data, the

clustering program of SMD is used to cluster data. This program was written in C by SMD

group of Genetics Department, Stanford University. Since the number of spots on the

microarray chips is increasing and the number of experiments conducted are rising,

computation times are taking hours and sometimes even days. This led to the idea of

parallelizing the cluster program, for achieving the faster calculations.
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Another potential problem is estimating the missing values in the experiment sets. This is

done using the KNN-Impute algorithm[5], which is another time consuming part of SMD.

This thesis discusses the non-parallel version of the codes. This thesis also discusses,

how the data is calculated, and analyzed and how this can be parallelized and the

different levels of difficulties faced to parallelize these programs.

Apart from the above application K nearest neighbors approach is used in many areas

and this method is efficient in predicting the close to correct data. At the University of

Minnesota researchers are developing satellite-based approaches to estimate and map

forest cover types, volume and basal area on a pixel-by-pixel basis[7]. The forest services

are conducting nation wide forest inventory for decades. Yet these field plot based

inventories have not been able to produce precious county and more local estimation and

useful operational maps. The satellite-based forest classification is not matching with

ground based surveys. The K-nearest neighbors approach, offers a means of applying

satellite and GIS data so as to impute forest cover type, timber volume, and many other

data from field plots surrounding large or small areas on the basis of the spectral

characterization of neighboring pixels. Applications to updating land use maps, crop

estimates, and other resource information needs are also being investigated with KNN

approach[7].

To predict the time that will be needed to traverse a certain stretch of freeway when

departure is at a certain time in the future is a challenging problem. The prediction is done

on the basis of the current traffic situation in combination with historical data[8]. The

California Department of Transportation (Caltrans), has a Performance Measurement
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system (PeMS) obtains loop detector data on flow and occupancy, aggregated over 30

seconds of intervals. The amount of data collected is around 2 giga bytes per day. KNN

approach is one of the prediction method used for this.

Knn-impute approach is used in many data mining applications[9] like fault detection in

industrial processes or manufactured objects or fraud detection in banking and other

commercial operations, many medical and biological applications, parameter prediction in

some nueral network applications, where humongous amount of data is stored in the

databases all around the world. To speed up the processing of these applications parallel

processing and specific architectures are required.

The hierarchical clustering is picked for the thesis because of its simplicity and efficiency

and many researchers are extensively doing research to parallelize the clustering

algorithms. Suppose N patterns each with M features, the sequential hierarchical

clustering algorithm can be computed in O(N2M+N3) time in a straight forward

manner[10]. Li and Fang [11] proposed an O(N Log N) time parallel algorithm on the MN

node hypercube and O(n log2 n) on n-node butterfly. Li also proposed an O(N2) time

parallel algorithm on the SIMD shuffle-exchange networks using N processors[12]. Tsai

and Horng proposed an O(log2 N) time parallel algorithm on the processor array with a

reconfigurable bus system (PARBS) using N3 processors[14]. Wu, Horng and Tsai also

proposed a O(log N) time parallel hierarchical clustering algorithm with N3 processors[10]

on PARBS. Olson proposed many implementations of hierarchical clustering algorithms.
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In his implementation he achieved O(N) time on a N-node CRCW PRAM and O(n log n)

time on (n/log n) node butterfly.

All these parallel clustering algorithms have a drawback[15], they need a large number of

processors about the size of the data set to achieve a reasonable performance. For

instance, a data set of millions of points needs a vast number of processors which is not

possible. Chapter 4 describes how the Knn-impute and hierarchical clustering programs

are parallelized using few number of processors.
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Chapter 3

Problem Approach

This chapter discusses about the serial implementation of the SMD application for

analyzing the data. The problem is described, which shows the current implementation,

the CPU utilization and some factors which led to the development of this research. This

implementation is described from the point of data retrieval from the database to the point

of displaying the analyzed data by the graphical user interface. The problem is tackled

first block wise, and than end to end that is the entire application for analysis, based on

different file sizes.

3.1 Current SMD Implementation

The SMD application is currently running on the genome server deployed in Stokeley

Management Centre, UT. The database is on cluster of machines SAN1 with T3 disk

array. The database uses Oracle right now, and the implementation is shown in the figure

3.1. Currently, the University of Tennessee Microarray Database (UTMD) consists of

many research groups using SMD to house and analyze experiments. The UTMD

currently houses around 50 experiments of 4 different organisms containing tens of

thousands of genes on each chip (experiment). Since the microarray is the growing

technology, the number of experiments and the genes in each experiment increase day

by day. Stanford University right now houses around 35,000 experiments of around 125

different organisms and is growing rapidly every year. This same trend will be followed by

UT in coming years.
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.

The table 3.1 shows that the Knn-Impute and the clustering functions are CPU intensive

operations. They take up about 100% of CPU resources thus making other operations

very slow. Consider a worst case scenario, user 1 wants to cluster his data and user 2

needs to do Knn-impute on his data, since both are CPU intensive operations, this slows

down the processor. This needs longer time to display the results for both the users.

Hence future implementation will be to deploy clusters of computers for SMD users, so

one cluster is used for clustering analysis and the other for Knn-impute, while the main

application server acts like the master, distributing the work of the users to different

clusters with out the knowledge of users, thus making the application faster. This thesis

deals with parallelizing these programs which speeds up the application even more, thus

helping researchers at UT.

Figure 3.1:  Current Implementation of SMD application at UT
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3.2 Working Procedure of SMD

The researchers at UT perform the microarray experiments, using microarray chips. The

entire processes of performing experiments with the microarray chips is shown in the

figure 3.2, and figure 3.3 shows the microarray chips of two different technologies, and

the procedure of hybridization is shown in the figure 3.4. These chips are then scanned

which gives the TIFF images of the chip, the procedure is shown in the figure 3.5. These

images are fed into the Scanalyze tool and the grid image is formed which shows the

actual spot location and the spot area to be considered for the data generation. The files

required to load an experiment in to the database is shown in the figure 3.6. The data

files, images and the grided files are loaded with the help of web interface. The

advantage of SMD is that the experiments can be viewed, analyzed and quality check

can be done from any where in the world as the application is web-based.

Table 3.1:  CPU utilization of SMD application server 

Functions % Utilizations
Cluster 100

Knn-Impute 100
Opening a Grid file 45

Loading an experiment 35
Viewing Images / Data 25
Deleting Experiments 5

Login 2
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Figure 3.2:  Procedure working with microarray chips
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Figure 3.3:  Microarray Chips, Affymetrix[23] and Spotted chips[24]

Figure 3.4:  The Hybridization process [30]
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Figure 3.5:  The Procedure of generating images with scanner
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3.3 Analysis Procedure of SMD

SMD provides different quality and analysis tools for the researchers to better understand

the similarities and differences between various genes in the same experiment and also

between the experiments. The researcher has several options to examine his data, based

on various criteria the data can be filtered. The analysis is done on this filtered data file.

Some times due to intensities of the image, or problems with the chips, a part data is lost,

so Knn-impute is used for estimating the data, the following section describes the

importance and working of Knn-impute. The output file from Knn-impute is fed into the

hierarchical clustering program, the data is clustered according to the various criteria. The

output from this clustering program is fed in to the graphical viewing interface and the

final dendogram or tree view of the clustered data is displayed on to the screen. The

description of these procedures is discussed in the following sections, with analysis times

and calculation procedures etc.

3.4 K Nearest Neighbors (KNN) Impute Algorithm

However professional the researchers are, all microarray experiments are far from being

perfect, hence the quality of data is not hundred percent. Since a typical microarray

experiment has tens of thousands of spots on them not all these spots yield usable data.

There are many reasons, like the defect in the chip, dust in the scanner or the

hybridization of the chip is not done properly. This leads to flagging of majority of spots,

thus losing the valuable information. On the other hand most of the analysis algorithms

like hierarchical clustering and K-means clustering need complete matrix of gene array

data to analyze the gene expressions, as they are not robust to missing data and lose

effectiveness to few missing values[5].
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The Knn-impute method imputes the missing values, by selecting the genes of similar

expression profiles to that of the genes of interest from the complete matrix of data. If

gene A has one missing value in experiment 1, this method would find K other genes,

which have a value in experiment 1, with expressions most similar to A in experiments 2

to N where N is the number of experiments. A weighted average of values in experiment

1 from the K closest genes is than used as the estimate for the missing value of gene

A[3]. In the weighted average, the contribution of each gene is weighted by similarity of its

expression to that of gene A. Euclidean distance is used to calculate the gene similarity.

This method is highly accurate for the data sets up to 1%-15% of data missing. The

smaller the percentage of data missing the higher is the accuracy of the estimated data.

Suppose the data missing is 20% than there is a loss of 10% of accuracy. The method is

relatively insensitive to the value of K in range of 10-20 neighbors. The performance

declines with the lower value of K. The K value of 7 is recommended to be used on the

data of UT’s researchers by the Stanford. This method is not recommended for the data

sets having less than 4 columns of data.

3.5 Hierarchical Clustering Algorithm 

Fast and high-quality clustering algorithms are very important in analyzing and mining of

data, by organizing large amounts of information into small number of meaningful

clusters. Hierarchical clustering algorithm provides a view of the data at different levels of

granularity, making them ideal for visualization and interactively exploring large data.

Hierarchical clustering algorithms calculates in the form of trees called dendograms,

which are of great interest for many applications[4]. Hierarchical trees provide a view of
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the data at different levels of abstraction. The clustering quality of Hierarchical clustering

algorithm is superior to other partition algorithms like K-means. The figure 3.7 shows the

dendrogram or the tree view which illustrates the fusion or division made at each

successive stage of analysis of six data points.

In the today’s world of biology, work in microarrays, sequenced genome, and

bioinformatics has focused largely on algorithmic methods for processing and

manipulating vast biological data sets. Hierarchical clustering has been shown to be

effective in microarray data analysis for identifying genes of similar profiles and

characteristics. The following chapter section’s gives the description of the program used

to cluster data and how it is parallelized.

Figure 3.7:  The Tree-view of the Hierarchical clustering algorithm
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3.6 Displaying Data with Graphical Viewing Interface 

SMD has its own graphical viewing software, where it takes the output files generated by

the clustering software and generates the images. It takes any where from few seconds

to few minutes based on the size of the file. The clustering image is shown in figure

3.8.There are several options for visualizing and exploring the clustered data.

3.7 End to End Problem 

The above sections describe the individual blocks of the whole problem. The figure 3.9

shows the whole problem end to end, the entire analysis part of the SMD application. The

calculations are taken for the individual blocks and for the whole end to end

approach.First the data is retrieved from the database by the applications server based

on the filters and partitions the researcher is interested in. Then this data file which

basically consist of the log transformed data which is needed for clustering to work

properly is tested for the missing values and the missing values are estimated using the

Knn-impute algorithm. The out put generated by the Knn-impute is the preclustered file

(.pcl) is then fed into the clustering program. This program performs clustering on the

input file and generates three file, clustered data table (.cdt) file which will contain the

original data, but reordered to reflect the clustering. Apart from this a gene tree (.gtr) file is

generated, when genes are clustered, and array tree (.atr) file is generated when the

experiments are clustered. These tree file reflects the history of clusters are built. These

file are then fed into the graphical viewing software and the results are displayed on the

screen as an image with a list of links. Hence the researcher can view his clustered data

according to the different options provided.
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Figure 3.8:  Clustered image generated by the SMD [22]
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Figure 3.9:  End to End Problem, design of entire application
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3.8 Computation Times of Serial Implementation 

The computation times for the block explained above are taken individually and as a

whole end to end times of the entire application. The calculations are performed with

different file sizes and on different types of clusters. The data file is generated from the

database using the web. The data file description is discussed in the following section.

3.8.1 Data File Description 

The data set was taken from the Stanford Microarray Database’s mouse pathogen’s

published data, which is available for all, from the public search page. The data is

published by department of Microbiology and Immunology, Stanford university school of

medicine. The published article is “Distinct gene expression profiles characterize the

histopathological stages of disease in Helicobacter-induced mucosa-associated lymphoid

tissue lymphona”[6]. They used microarray analysis and laser microdissection to identify

gene expression profiles characteristic and predictive of the various histopathological

stages in a mouse model of the disease to define the cellular origin of the transcriptional

responses. They showed that the disease follows a molecular progression, and identified

a collection of genes whose expression level is predictive of disease stage. The reference

for all arrays in this study consisted of pooled cDNA extracted from stomachs of age-

matched uninfected control animals, 10 animals per time point. Data was filtered with

respect to microarray spot quality like channel intensity, regression correlations, net

mean, normalized mean and data distribution. The numerical data was Logbase 2

transformed. The microarray chips used where spotted 38,000-element murine cDna

microarray that contains features derived from the RIKEN and NIA mouse clone sets. The

total of 29 experiments data was collected for testing.
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The second data set was taken from University of Tennessee, Nutritions department

microarray experiments on human adiposite differentiation. The microarray chip is 19200

spotted array. The experiments where conducted on fat and lean patients. The data was

filtered on above mentioned critters from 6 experiments.

3.8.2 Blockwise Computations 

The table 5.1 in chapter 5 shows the computation times for serial implementation of the

Knn-impute on the Linux cluster of the engineering department and the table 5.2 in

chapter 5 shows the computation time for the serial implementation of hierarchical

clustering algorithm on the VLSI cluster of electrical engineering department of UT. The

data set used is the mouse data of 29 experiments and 38000 gene set as mentioned in

section 3.8.1.

The graph in figure 5.1 shows the quadratic growth in the computation time of the Knn-

impute program because of its computational complexity, with the increase in the number

of genes which is proved in chapter 5. 

The graph in figure 5.2 shows the squared growth in the computation time in hierarchical

clustering program, with the increase in the number of genes which is proved in chapter

5. 

3.8.3 End to End Computations 

The time for downloading the data files is few minutes, irrespective of the file size. On the

other hand the time taken for imaging the dendograms takes from few seconds to tens of
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minutes shown in table 5.3 and the graph in figure 5.4 shows the growth of the

computation time which is linear. From the above sections it is clear that the Knn-Impute

and Hierarchical clustering combined together will occupy 90 percent of the end to end

computation time. These are the potential problems to be solved. There are two

approaches to solving this problem. One is parallel computing and other is reconfigurable

computing. This thesis deals with the Parallelizing the Knn-impute and Hierarchical

clustering programs. The next chapter deals with the Parallelizing the programs and the

critical problems encountered and solutions to the problems.
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Chapter 4

 Parallel Approach 

This chapter deals with the parallelization of the analysis programs of the SMD. This

thesis shows how this approach effects the overall computation aspects of SMD. The first

part of this chapter deals with the parallelization of the Knn-impute algorithm and the

various difficulties experienced while parallelizing the program. The second part of the

chapter deals with parallelizing the hierarchical clustering algorithm and the approach of

its parallelization. The first part is comparatively easier than the second because there is

no dependant data (this implies that the next data point to be calculated does not depend

on the previous data point calculated). Second part is difficult because while clustering,

the next nodes generated depends on the previous node, thus the dependencies are

great which make it difficult to be parallelized.

4.1 Parallel Computing Architectures Used

Mainly two different clusters were used to evaluate the performance, one of the clusters,

VLSI, is a UNIX platform and the other, the Engineering cluster, is a Linux platform. The

VLSI cluster consists of 10 dual 450 MHz Ultra-SPARC-II RISC processors, with 1 GB

RAM. These machines are connected with a Gigabit ethernet connection between them,

through a Foundry Big Iron router located in Microelectronics Lab of Electrical

Engineering Department, UT. The Engineering cluster located in Perkins hall consists of

7 2.5 GHz Intel pentium 4 dual processor work stations with 1 GB ram on a 100MB

ethernet connection. 
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4.2 K-Nearest Neighbors Impute Algorithm Program Description 

The Knn-impute program was written by Olga Troyanskaya and Michael Cantor of

Stanford university. This program estimates the missing values of microarray data in a

preclustered file format (PCL).The input to this program is the matrix with the missing

values in pcl format, the number of neighbors to be used, the distance metric to be used

is Euclidean in this case, the name of the output file. In this program the file is read and

stored in to a matrix. This matrix consist of only the values, the additional columns and

rows which has information such as name of the genes, heading of columns are stored in

another matrix. The estimation of the missing values will be made with respect to the rows

of the matrix which are not estimated before to remove the redundancy. 

Once the matrix is stored and the distance to weigh the neighbors are stored the program

proceeds to do imputation. The rows with the missing values are first found and after that

the missing values are estimated. The k nearest neighbors are then found and compute

weights of these neighbors based on 1/distance (1/d). The program avoids the division

with zero. Then the program gets the sum of 1/d values for normalization and gets the

weights to estimate the values based on the neighbors. Finally the copy of matrix is filled

with the estimated missing values. This copy of matrix along with the matrix with names

and all row and column information is used to output the final estimated file which is used

for clustering. The working of the Knn-impute program is described using a flow chart

which is shown in the figure 4.1.
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Figure 4.1:  Knn-impute serial implementation
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4.3 Parallelization of Knn-Impute Program 

The technique used to parallelize the program was comparatively easier than the

clustering program because of non dependent data. The parallelization technique used

here is the master and slave concept. The master is responsible for sending the data

matrix to all the slaves and collecting the estimated data from all the slaves and putting in

a final file format. The master also decides the work load of each slave which is almost

equal. Which implies master manages the task of dynamic load balancing and merges

the results produced by the slaves. On the other hand slaves receives the data from the

master, does the imputation on the data received and sends back the estimated data to

the master.

The program works like this, first a copy of the matrix containing the numerical values is

sent to all the slaves, along with the starting row and the ending row numbers for each

slave on which the imputations should be performed. Since the data files are any where

from 500KB to 15MB proper memory should be allocated for the data files both in the

master and slaves. The slaves receive the data, and the starting row number and the

ending row number. The slaves check for the rows with the missing values and performs

the imputation for the missing data for the allotted rows. Then the estimated rows along

with the other rows are sent back to the master. The master will receive the data from all

the slaves and outputs the resultant file.

The parallel implementation of the Knn-impute program is shown as a flowchart in the

figure 4.2.



32

Figure 4.2:  Knn-impute parallel implementation
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4.4 Clustering Algorithms Program Description

To analyze the data, cluster.c program of SMD is used to cluster data, this program was

written in C by Dr. Gavin Sherlock and group, Genetics Department, Stanford University.

This program can cluster data using Hierarchical clustering, Self-Organizing maps and K-

Means clustering algorithms. Hierarchical clustering is used for know. The program reads

the input file in the text format, which has gene name, gene ID, experiment ID,

experiment weight, gene weight, and the logbase ratio values. The program also checks

the file for missing values and the program terminates if it finds any. The size of the data

is read which determines the number of experiments, and the total number of genes in

the experiment set. If the data values are not logbase values than the program also

calculates the logbase values. These logbase ratio values from the data file are fed into

the array matrix, which is used by all the functions of the program. As mentioned before

user has three algorithms to choose from, Hierarchical, Self Organizing Maps and K-

means, because of the popularity of the Hierarchical clustering algorithm, this is used to

parallelize.The figure 4.3 illustrates the program flow.

4.5 HirarchicallyCluster Function Description

This function handles all the necessary calls which are required to perform the

hierarchical clustering. This function opens and fills the output files. This function also

determines whether the clustering is done according to the genes or experiments or both

genes and experiments. This function mainly consists of two important functions one is

MakeCorrelation, which calculates the correlation coefficients. The other function is

ClusterNodes function which cluster the nodes according to the coefficients. The figure

4.4 illustrates the hierarchical cluster function flowchart diagram.
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Figure 4.3:  Clustering program Flow
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Figure 4.4:  Hierarchical Clustering function flow
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The HierarchicallyCluster function outputs three files.cdt, .gtr, .atr files, which are fed into

graphical viewing software called TreeView, which displays the clustered data. The figure

3.8 displays the tree view which is generated by the graphical viewing software.

4.6 MakeCorrelation Function Description

From the figure 4.4, it is evitable that MakeCorrelation function calculates the coefficients

by comparing each profile with every other profile. This function compares gene one

versus gene two but not vice versa, as shown in the figure 4.5, thus halving the total

number of calculations performed. Then these coefficients are sorted and filled into the

linked lists, based on the maximum number of the best values defined in the header file,

for this program 13 was used.

Figure 4.5:  Calculation of correlation coefficients
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Suppose the data set contains 10 genes A, B, .. J then the coefficients are calculated as

illustrated in the figure 4.5. So, for 10 genes the total number of correlation coefficients

calculated are 9+8+..+1=45. For n genes the total number of correlation coefficients will

be n(n-1)/n. For example, for 19200 genes the total number of coefficients is equal to

184,310,400.

4.7 ClusterNodes Function Description

In this function genes are clustered based on the best correlation coefficients between

the genes. The first entries of all the linked lists of all the genes are browsed and the best

correlation is picked, to form a new node. As each node is formed, the correlation

coefficients are calculated with respect to all the remaining genes or nodes, that have not

themselves has been assimilate into larger nodes. Once a node or a gene is assimilated

into larger node, the correlations that did exist for that node or gene are deleted from

every linked list of correlations. This process is repeated till all the genes and nodes are

joined and the entire tree is formed. Analyzing this huge volume of data is challenging

and complex because of the interdependent factors and the uncertainty of the

dependencies.

4.8 Parallelization of Clustering Program

The main functions that are parallelized are the MakeCorrelation and the ClusterNodes,

as these two functions occupy 90% of the total calculation time of the entire program

based on the statistical software utility GPROF. Certain measure are taken to parallelize

and save time where ever it is possible, because there exists a lot of dependencies in

data in this algorithm which makes it difficult to parallelize. As like the Knn-Impute the
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master and slave concept is used in this program too. The work of the master is the allot

work to the slaves and collect back the data and validate the data and output the files

required for display. To save time as soon as the data matrix is filled the data matrix is

sent to all the slaves for calculation purposes. Than the master divides the work for each

slave and sends them. Which implies master manages the task of dynamic load

balancing and merges the results produced by the slaves. The slaves perform

calculations on their assigned work and send back the results to the master. This concept

will be understood clearly from the following sections.

4.8.1 Parallelization of MakeCorrelation Function

This function occupies the 30% of the calculation time of the whole program, so this is

chosen for parallelization.Figure 4.5 shows a schematic of the coefficients calculations,

which are illustrated in the form of a right angled triangle, described in the figure 4.6. It

has certain regular features, which can be explored for parallelization. Note the triangle of

calculations can be divided between the processors according to the following reasoning.

The total number of genes = n

The number of slave processes to calculate the coefficients = p

The total number of coefficients to be calculated = 

The number of coefficients per slave process = 

2
)1( −nn

p
nn
2

)1( −
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Dividing the above triangle into equal number of partitions based on the number of

slaves, as follows

n0=n,

Solving the above equation for n1.

Figure 4.6:  The schematic view of the correlation coefficient calculations

 

n0    n1     n2     ……..  

2
1)-(nn

2
1)-(nn

2
)1( 1100 −=

−
p

nn

c
p

nnnn =−−=− )
1

1)(1()1( 11



40

The above equation is in the form of the quadratic equation,

Solving for n1 gives,

Once n1 is found, n2 and ... can be solved, this divide the calculations into equal partitions

for each of the slave processes, thus optimizing the calculation time.

The whole data set of intensity values is received by all slaves immediately after the input

file is read and the data array is filled, to save time. Then the calculations are divided

based on the total number of genes and total number of slaves as shown above. The

starting and ending number of the counter, and the total number of coefficients to be

calculated are received by the slaves. The slaves then calculates the coefficients and

send back to the master. The master receives the correlation coefficients, sorts them and

then inserts them into the linked lists. Receipt of the coefficients from the slaves are in the

order, so that they are inserted correctly. The parallel implementation of the

MakeCorrelation function is shown in the figure 4.7.

4.8.2 Parallelization of ClusterNodes Function

For a big gene set in thousands, the first few hundreds of nodes may not have any

dependencies, which could be parallelized, without any problem. This implies that these

nodes can be formed ‘p’ at a time, where p is the number of slave processes. Again the

main time consuming task, is to calculate the correlation coefficients, hence these 
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Figure 4.7:  MakeCorrelation functions parallel implementation
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calculations are done in slave processes. All the operations such as finding out the

maximum correlation, joining the nodes, deleting the joined nodes and comparing is done

in the master.

The nodes are represented as N1, N2 .. and genes as g1, g2.. joining two genes, or two

nodes, or a gene and a node forms the nodes. How the dependencies occur and why

they are a problem is shown below. Consider there are three slaves and so three nodes

are formed at one time as illustrated below.

N1 g1 and g8

N2 g7 and g3 these can be calculated in parallel without any problem

N3 g4 and g5

N4 N3 and g9

N5 g10 and N2 since N3 and N2 nodes are already calculated, this not a problem

N6 g6 and g12

N7 g11 and N6

N8 N7 and G14 N8 and N9 are the problems because they depend on the previous

N9 N8 and N1 calculations in the same loop.

If a node depends on the nodes that are formed in the same loop, then these calculations

cannot be parallelized, these are the nodes to be dealt with. The only solution in this

case, the master disregards all the calculations received from the slaves, and re-do them
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in a serial fashion. Consequently this solution can be termed as conditional

parallelization.

Once the calculations are performed by the slaves the master prints the .cdt, .gtr and .atr

files and this completes the hierarchical clustering. The following chapter shows the

results and graphs for the different calculation times and all these serial and parallelized

programs.

The parallel implementation of the ClusterNode function is shown in the figure 4.8.
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Figure 4.8:  ClusterNodes functions parallel Implementation

 Master 

Check the Linked lists, selects the best N 
coefficient, where N is number of slaves 

Join the all genes or gene and a node or two 
nodes to form N new node. Do not delete the 

entries of the joined genes/nodes in all the 
linked lists. 

Calculates the PCs, of the each new node 
generated w.r.t. all other remaining genes 

and nodes.  

Done 
joining all 

nodes 

Yes 

No 

Print the output files 

Send all the nodes generated to Slaves, one 
to each slave, to calculate Pearson 

Coefficients (PCs) 

Slave1 

Send back the calculated PCs, to the 
master.  

Slave2 

Receive all the PCs from all the slaves 

Compare the N best 
PCs w.r.t. the newly 
generated PCs, 
check if any greater 
than N Best? 

Yes 

No 

Do the serial implementation of 
ClusterNodes on the N nodes 

Delete all the entries of the joined 
genes or nodes in all linked lists. 
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Chapter 5

Results and Graphs

This chapter discusses about the various results obtained for serial implementation and

parallel implementation. First this chapter focuses on the serial implementation of

individual blocks, and the end-to-end implementation, and how the computation is

growing.Next half of the chapter, shows the results achieved by parallelization. The last

section displays the speedups achieved with parallelization, block wise and of the whole

application.

5.1 Knn-Impute Computation of Serial Implementation

The following table 5.1 shows the time taken for implementing the Knn-impute program

on a single machine of the Linux cluster which acts as a master for parallelization. The

resultant graph on the data is shown in the figure 5.1.

Table 5.1:  The serial implementation of Knn-Impute on Linux cluster for 29 experiments 
and 38000 gene set

Gene Count Computation time(s)
1700 13
2000 17
4800 126

10000 522
14100 1074
17600 1363
21800 2285
27000 3976
30800 6214
33500 9013
36700 16493
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Figure 5.1:  Computation time for Knn-Impute serial implementation
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The data set consists of around 37000 genes and 29 experiments. The figure 5.1 shows

a quadratic growth. As the computational complexity is O(mn2), where m is the number of

experiments and n is the number of genes in the data set [5].

5.2 Hierarchical Clustering Computation of Serial Implementation

The clustering program was run on the VLSI cluster, the computation times are recorded

on the VLSI2 machine. This machine is used as master for the parallel implementation of

the clustering program. The data was recorded at non-peak time when the load on the

machine is low. The computations were performed at night to get better performance.

The table 5.2 shows the recorded computation times for different gene sets for the 29

experiment data. The computational complexity of the program in O(n2) where n is the

number of genes in the experiment set. From the figure 5.2 we can see the squared

growth of the computation times. Figure 5.3 shows both Knn-impute and hierarchical

clustering computation times together for comparison.   

Table 5.2:  The serial implementation of clustering program on VLSI cluster for 29 
experiments and 38000 gene set

Gene Count Computation time(s)
1700 16
2000 21
4800 121

10000 641
14100 1120
17600 1715
21800 2791
27000 4306
30800 5622
33500 6713
36700 8096
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Figure 5.2:  Computation time for hierarchical clustering serial implementation
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Figure 5.3:  Comparison plots of Knn-impute and hierarchical clustering programs 
serial implementations
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The growth of the Knn-impute dominates the growth of the hierarchical clustering which is

seen clearly from the figure 5.3.

5.3 End to End Computation of Serial Implementation

Apart from the Knn-impute and hierarchical clustering computation times the analysis

model consist of two other part to it which contribute some time to the application

completion. One is the time taken for the generation of data files from the database of

SMD which is not much, it contributes only few minutes to the application at the most. On

the other hand the time taken to generate the image file with the help of graphical viewing

software from the output generated by the clustering programs is little more. The time

taken by the image generation can effect the overall speed-up of the application. The

table 5.3 gives the time taken by all the blocks of the application and the total time taken

for the end-to-end of the application. 

Table 5.3:  The serial implementation entire application for 29 experiments and 38000 
gene set

Genes Data file 

generation 

time(s)

Knn-impute 

computation 

time(s)

Hierarchical 

Clustering 

time(s)

Image file 

generation 

time(s)

 Total time(s)

1700 10 13 16 45 84
2000 12 17 21 57 107
4800 36 126 121 136 419

10000 65 522 641 298 1526
14100 120 1074 1120 417 2713
17600 140 1363 1715 522 3740
21800 196 2285 2791 648 5920
27000 220 3976 4306 804 9306
30800 280 6214 5622 918 13034
33500 300 9013 6713 998 17023
36700 340 16493 8112 1095 26040
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Figure 5.4 shows almost a linear growth of the time taken for data file and image file

generation combined. Figure 5.5 show the computation time for the entire application.

The figure 5.5 shows the growth of the computation time of the entire application. From

the figure 5.5 the growth is almost quadratic as the Knn-impute part effects the

computation time of the entire application. Thus parallel computing technique is used in

this thesis to answer this problem of this growth. This technique proved effective which is

shown in the following sections of parallelization and speed-ups. In the figure 5.6 DIT is

the time taken for the data file and image generation and KNNT is the time taken for the

Knn-impute program and HCT is the time taken for the hierarchical clustering program.

From the figure it is clear that the time taken by data file and image generation is low

when compared to impute and clustering programs. The impute program takes up much

of the time, and than the hierarchical clustering program of the entire application, which is

will be clear from figure 5.7.

The impact of the Knn-impute part is the most on the entire application because of its

computational complexity. The computational complexity of Knn-impute is O(mn2) where

m is the number of experiments and n is the number of genes. The growth in the

computation time is quadratic, it could be cubed, when m=n and this is a true case

scenario. The best example is in oncology, the more samples of tumor your have the

more accurate is the results. The human genome has approximately 33000 genes, and

the experiments are tremendously increasing so the m>n scenario is also possible. On

the other hand the computational complexity of hierarchical clustering is O(n2) and the

computational complexity of data file and image generation is O(n). This shows the

impact of impute part of the application is most.
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Figure 5.4:  Estimated time taken for data file and image generation together for 
serial implementation
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Figure 5.5:  Time taken for entire application’s serial implementation

Entire applications serial computation time
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Figure 5.6:  Time taken for different parts in sequential order, of entire application 

Comparision plot of different parts of entire application
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Figure 5.7:  Time taken for different parts showing the growth dominant part of 
entire application 

Comparision plot of different parts of entire application
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5.4 Knn-Impute Computation Time of Parallel Implementation

The table 5.4 shows the results of the parallel implementation of impute program. The

linux cluster is used for the parallel implementation for Knn-impute. First parallel

computation time is recorded on a cluster of 7 machines with one process each. To check

whether there will be any improvement in computation time, three processes are used on

each machine using only 6 machines of the cluster this time, the second implementation

did not improve the computation time. The graphs are plotted for these values shown in

figure 5.8. A comparison plot is shown in figure 5.9 between the serial implementation

and parallel implementations, to check the difference in computation times and success

achieved with parallelization. From the figure 5.9 it is clear that with the parallelization the

speedup of almost 6 is achieved.

.

Table 5.4:  The parallel implementation of Knn-Impute on Linux cluster for 29 
experiments and 38000 gene set

Gene Count Comp. time(s) with 7 

computers with 1 process 

each
1700 55
2000 56
4800 77

10000 154
14100 227
17600 308
21800 460
27000 759
30800 1154
33500 1635
36700 2773
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Figure 5.8:  Computation time for Knn-Impute parallel implementation

Parallel computation times of knn-impute program
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Figure 5.9:  The comparison plot between Knn-Impute serial and parallel 
implementations
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To observe the change in the computation times with the change in the number of

machines used for parallelization, a set of experiments were conducted. First master with

two slaves i.e. a total of three machines were used. Similarly three, four, and six slaves

where used for calculations. The table below shows the computation times for different

slaves. The computation times are close to serial times with low number of machines. As

this program is data parallel, a very good reduction in the computation times is achieved

with the increase in the machines, which can be seen from the table 5.5. The graph which

shows these computation times is shown in the figure 5.10. The speed ups achieved by

increasing the number of machines is discussed in the speedups section. The figure 5.11

shows the comparison plot between the serial and parallel implementations.

Table 5.5:  The parallel implementation of Knn-Impute on Linux cluster with different 
number of slaves

29 exp. Machines Computation Time
Genes count 2-slaves 3-slaves 4-slaves 6-slaves

1700 24 31 39 55
2000 27 32 40 56
4800 81 73 70 77

10000 286 209 176 154
14100 500 355 287 227
17600 715 501 399 308
21800 1209 808 629 460
27000 2053 1386 1069 759
30800 3211 2148 1694 1154
33500 4523 3045 2323 1635
36700 7934 5387 4071 2773



60

Figure 5.10:  Computation time for Knn-Impute parallel implementation with number 
of machines

Parallel computation times with number of machines of 
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Figure 5.11:  Comparison plot between Knn-Impute parallel and serial 
implementations

Comparison between serial and parallel impute times
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5.5 Hierarchical Clustering Computation of Parallel Implementation

The VLSI cluster is used for hierarchical clustering totally 7 machines where used for

parallel program. The calculations where taken during the night when the load on the

cluster is low. Still the computation time didn’t decrease much because of huge data

dependencies. The table 5.6 shows the computation times generated by using 7

machines. The figure 5.12 shows the plot of the parallel computation times. 

The figure 5.12 shows the growth of the computation time how it increases. The

computation time was calculated using different number of machines as slaves as it was

described in the above section. The total number of machines used where 3, 4, 5 and 7

respectively and the parallel computation times where calculated. The table 5.7 shows

the computation times obtained with number of machines. The experiments shows

interesting results which are described in the following section.The growth in the

computation time with the parallel implementation in not squared but less than the

squared. 

Figure 5.13 shows the comparison plot between the serial and parallel implementations

of the hierarchical clustering program. From the figure 5.13 the comparison plot it is clear

a speedup of close to 2 is achieved. Not much speedup was achieved because of the

data dependencies.

Figure 5.14 shows the hierarchical clustering program parallel implementation times with

different number of machines, and the figure 5.15 shows the comparison plot between

the serial and parallel implementations with number of machines.
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.

Table 5.6:  The parallel implementation of hierarchical clustering on VLSI cluster for 29 
experiments and 38000 gene set

Gene Count Comp. time(s) with 7 

computers with 1 process 

each
1700 13
2000 17
4800 59

10000 293
14100 505
17600 800
21800 1273
27000 1963
30800 2563
33500 3059
36700 3681

Table 5.7:  The parallel implementation of hierarchical clustering program different 
number of slaves

29 exp. Machines Computation Time
Genes count 2-slaves 3-slaves 4-slaves 6-slaves

1700 19 16 15 13
2000 24 21 19 17
4800 126 96 75 59

10000 661 504 401 293
14100 1131 863 687 505
17600 1800 1374 1089 800
21800 2864 2187 1725 1273
27000 4417 3365 2650 1963
30800 5470 4389 3437 2563
33500 6376 5237 4068 3059
36700 7493 6309 4780 3681
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Figure 5.12:  Computation time for hierarchical clustering Parallel implementation
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Figure 5.13:  The comparison plot between the hierarchical clustering serial and 
parallel implementations

The comparison plot between serial and parallel 
implementations
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Figure 5.14:  Computation time for hierarchical clustering parallel implementation 
with number of machines

Parallel computation times of hierarchical clustering
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Figure 5.15:  Comparison plot between hierarchical clustering parallel and serial 
implementations with number of machines
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5.6 End to End Computation of Parallel Implementation

The table 5.8 shows the computation times achieved with parallel implementation with

different number of machines. The more the number of machines the lesser is the

computation time which can be seen clearly from the table 5.8. This implementation has a

maximum of 7 machines and the clusters which are used for the parallelization are not

dedicated to SMD this implies that the machines in these clusters perform application

other than SMD which impacts the computation times. Figure 5.16 shows the entire

applications parallel implementation times with different number of machines. From the

figure 5.16 one can depict that more the number of machines lesser the computation

time. Hence with more number of machines and dedicated clusters for the application a

much higher speedups can be achieved. From the figure 5.16 we can depict that a

significant achievement is accomplished. There is a noticeable reduction in the

computation times. The speedups achieved by parallelization is discussed in the speed

ups section.

Table 5.8:  The parallel implementation of entire application with different number of 
slaves

29 exp. Machines Computation Time
Genes count 2-slaves 3-slaves 4-slaves 6-slaves

1700 98 102 109 123
2000 120 122 128 142
4800 379 341 317 308

10000 1310 1076 940 810
14100 2168 1755 1511 1269
17600 3177 2537 2150 1770
21800 4917 3839 3198 2577
27000 7494 5775 4743 3746
30800 9879 7735 6329 4915
33500 12197 9580 7689 5992
36700 16862 13131 10286 7889
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Figure 5.16:  Computation time for entire applications parallel implementation with 
number of machines
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Figure 5.17:  Comparison plot of entire applications parallel and serial 
implementations with number of machines

Comparision plot of entire application
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5.7 Speedups

The table 5.9, 5.10 shows the speedups achieved by parallelization of Knn-impute

program, and hierarchical clustering program. The table 5.11 shows the speedups

achieved by the entire application. From the tables the best speedup achieved by parallel

implementation of Knn-impute program is close to 6 approximately 5.947. This is because

there is no dependant data so the entire application can be divided between the slave

doing the same functionality, thus achieving the data parallelism. On the other hand the

best speedups achieved by parallelizing the hierarchical clustering program is around 2.

This is because of lots of dependant data as showed in the chapter 5 in ClusterNode

section. Due to this dependant data a venation parallelism approach is taken. In the entire

application maximum amount of time is consumed by the combination of Knn-impute and

hierarchical clustering programs. Thus a significant speedup is achieved by the entire

application which is around 3. The figures 5.18, 5.19, and 5.20 shows the speedup

curves. The figures show the speedups achieved with number of machines.

Table 5.9:  The speedups achieved by Knn-impute program

29 exp. Machines speedups
Genes count 2-slaves 3-slaves 4-slaves 6-slaves

1700 0.541 0.419 0.333 0.236
2000 0.629 0.531 0.425 0.303
4800 1.555 1.726 1.8 1.636

10000 1.825 2.497 2.965 3.389
14100 2.148 3.025 3.742 4.731
17600 1.906 2.72 3.416 4.425
21800 1.889 2.827 3.632 4.967
27000 1.936 2.868 3.719 5.238
30800 1.935 2.892 3.668 5.384
33500 1.992 2.959 3.879 5.511
36700 2.078 3.061 4.051 5.947
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Table 5.10:  The speedups achieved by hierarchical clustering program

29 exp. Machines speedups
Genes count 2-slaves 3-slaves 4-slaves 6-slaves

1700 0.842 1 1.066 1.23
2000 0.875 1 1.105 1.235
4800 0.959 1.256 1.593 2.04

10000 0.969 1.270 1.596 2.18
14100 0.973 1.275 1.603 2.181
17600 0.974 1.275 1.609 2.19
21800 0.974 1.276 1.617 2.19
27000 0.974 1.279 1.625 2.192
30800 1.027 1.28 1.637 2.193
33500 1.052 1.281 1.649 2.194
36700 1.080 1.283 1.693 2.2

Table 5.11:  The speedups achieved by entire application

29 exp. Machines speedups
Genes count 2-slaves 3-slaves 4-slaves 6-slaves

1700 0.857 0.823 0.77 0.682
2000 0.891 0.877 0.835 0.753
4800 1.105 1.227 1.317 1.360

10000 1.164 1.417 1.622 1.881
14100 1.25 1.545 1.794 2.137
17600 1.176 1.473 1.738 2.112
21800 1.203 1.541 1.851 2.296
27000 1.241 1.611 1.961 2.483
30800 1.319 1.684 2.059 2.651
33500 1.395 1.776 2.213 2.84
36700 1.544 1.983 2.531 3.301
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Figure 5.18:  The speedups curves of Knn-impute program
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Figure 5.19:  The speedup curves of hierarchical clustering program
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Figure 5.20:  The speedups curves of entire application
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The bump in the speedups seen in the Knn-impute implementation is because the

percentage of missing values is less in the files which are on the down slope. So the

computation time for the serial implementation is comparatively less than the neighboring

files thus showing a fall in the speedups thus clarifying the bump in the speedup curves.

The same trend is carried to the entire applications speedup curves from the Knn-

imputes. 

This shows that the impact of Knn-impute term is the highest on the whole application.

The proof of this is discussed in the serial implementation section 5.3. 
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Chapter 6

Conclusions and Future Improvements

This thesis explains the Stanford Microarray Database application and the analysis part

of the application and addresses the problem of long computation time taken by the

analysis programs of SMD. The solution to the problem is parallel computing, which the

thesis discusses. This chapter summarizes and compares the results of parallelizing the

analysis programs of the SMD, and discusses ideas for future improvements in

enhancing the processing speed of the whole application.

6.1 Conclusions

This thesis attempts to provide a solution for processing the large data generated by the

genetics applications. The uniqueness of this thesis is the computation speeds achieved

by using the freely available computing systems in the University of Tennessee, using

parallel processing. The analysis part of the SMD application is picked because it needs

lots of computation time for processing. The Knn-impute and Hierarchical clustering

programs where chosen because of their popularity and wide use. The impute algorithms

are used not only in this application but also in many image processing and some of the

traffic estimation problems. Hierarchical clustering is used in many applications to

generate dendograms for similar objects and groups etc.

Chapter 3 discusses the serial implementation of the SMD application procedure and the

analysis part of the application. As the number of genes increases there is almost a
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quadratic growth in the computation time of the Knn-impute and squared growth of

computation time for hierarchical clustering program. There is a linear growth in the time

taken to generate the files for analysis from the database and the image generation. Thus

the time taken for end to end process of the application has quadratic growth. These

growths are proved using the computational complexities of each part of the entire

application.

Chapter 4 discusses the parallel implementation of the analysis programs, Knn-impute

and the hierarchical clustering. Two types of parallelism are used one is data parallelism

which is used in Knn-impute program and the other is functional parallelism which is

partly used, along with data parallelism in clustering program. The results achieved with

parallelism are good. For the Knn-impute with just 7 machines a computation speed-up of

6 is achieved, this is because of the data is parallelization and non dependent. On the

other hand the computational speed-ups achieved with hierarchical clustering is close to

2. This is because of data dependencies, as the node generating the data, depends on

the data of the previous node thus causing difficulties in parallelizing. Functional

parallelism is used in this program.

The speed-ups achieved by combining both Knn-impute results and the hierarchical

clustering results is close to 4. This shows the success of the thesis in achieving the

speed-ups of the application. Further the end to end speed-ups achieved is around 3

which can save lot of time for the researchers analyzing their data. The future

improvements will attain speed-ups of many folds with the various implementations

discussed in the next section.
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6.2  Future Improvements

The fast growing requirements of not only the genetics applications but also engineering,

commercial and business applications, and lower time to market lead to the development

of many techniques in computing. Computing based applications such as genetic

analysis, simulation and modelling, weather forecasting, semiconductor modeling, drug

design and medical applications require high processing speed and large amount of

memory. Parallel computing technique which is used in this thesis is one of the essential

and important technique in solving these complex problems. A prevalent problem in

parallel computing is the ever growing technological gap between processors and

communication links. The main terms that determine the performance of the network are

the bandwidth and the latency of the communication link. Future work will address the

issues of bandwidth and latency, and come up with improved solutions to speedup the

application further.

This thesis deals with the serial load balancing by the master processor. Future work

could address the dynamic load balancing of the problem. The end to end process of the

SMD application can be further improved by parallelizing the image generation, will be

added later.

Traditional computing is divided into general purpose computing and application specific

computing. Microprocessors are used for general purpose computing and perform a wide

range of applications. However, microprocessors are not efficient for data processing

applications. Because the architecture of the microprocessor is fixed the software

program generally determines the computation time. Application specific computing, on
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the other hand, uses Application Specific Integrated Circuits (ASICs) to perform

operations in hardware. ASICs are very fast and efficient in performing a specific

operation for which they are designed. However, the limited flexibility and time-design

cost are major disadvantages of ASICs. The flexibility and the speed of ASICs can be

achieved with Reconfigurable Computing (RC). The main component of RC systems is

Field-Programmable Gate Arrays (FPGAs). The recent advances in the design of the

FPGAs lead to a drastic improvement in the RC systems. The SMD application and

analysis programs could be deployed on a RC architecture which would result in a faster

computational time.
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