P1. Problem 5.2 (in 8/E & 7/E)

5.2 When a particle with charge \(q \) and mass \(m \) is introduced into a medium with a uniform field \(B \) such that the initial velocity of the particle \(u \) is perpendicular to \(B \) (Fig. P5.2), the magnetic force exerted on the particle causes it to move in a circle of radius \(a \). By equating \(F_m \) to the centripetal force on the particle, determine \(a \) in terms of \(q, m, u, \) and \(B \).

![Figure P5.2 Particle of charge \(q \) projected with velocity \(u \) into a medium with a uniform field \(B \) perpendicular to \(u \) (Problem 5.2).](image)

P2. Problem 5.4 (in 8/E & 7/E)

5.4 The rectangular loop shown in Fig. P5.4 consists of 20 closely wrapped turns and is hinged along the \(z \) axis. The plane of the loop makes an angle of 30° with the \(y \) axis, and the current in the windings is 0.5 A. What is the magnitude of the torque exerted on the loop in the presence of a uniform field \(B = \hat{y} 2.4 \) T? When viewed from above, is the expected direction of rotation clockwise or counterclockwise?

![Figure P5.4 Hinged rectangular loop of Problem 5.4.](image)

Hint: The angle that the plane of the loop makes with the \(y \) axis must be considered.

Note: Answer in Appendix E at end of book.
P3. Problem 5.7 (in 8/E & 7/E).
Hint: Add up the fields due to all four sides. “Magnetic flux density” means B.
Note: Answer in Appendix E at end of book.

Note: The problem is not well stated. Change “power cable” to “DC current-carrying wire”, as we usually understand a “power cable” as two wires carrying opposite AC currents.
Hint: The field is a vector! You know the direction of the earth’s magnetic field.
Note: Answer in Appendix E at end of book.

P5. Problem 5.16 (in 8/E & 7/E).
Note: Answer in Appendix E at end of book.

Note: Follow the same method as in example given in class. Just need a tad more math.
Answer: $H = J_0 \hat{\phi}$ for $r < a$, and $H = J_0(a/r) \hat{\phi}$ for $r > a$.

P7. Problem 3.58
Note: This is a Chapter 3 problem. Answer in Appendix E at end of book.
Do (b) thru (d). You answered whether the fields are solenoidal in HW #8. Now, only answer if the fields are conservative.
A field is said to be solenoidal if its divergence is zero.
A field is said to be conservative if its curl is zero.