at $0.250\lambda + 0.357\lambda - 0.500\lambda = 0.107\lambda$ on the WTL scale, and here

$$z_L = 0.82 - j0.39.$$

Therefore $Z_L = z_L Z_0 = (0.82 - j0.39) \times 50 \Omega = (41.0 - j19.5) \Omega$.

Problem 2.44 At an operating frequency of 5 GHz, a 50-Ω lossless coaxial line with insulating material having a relative permittivity $\varepsilon_r = 2.25$ is terminated in an antenna with an impedance $Z_L = 150 \Omega$. Use the Smith chart to find Z_m. The line length is 30 cm.

Solution: To use the Smith chart the line length must be converted into wavelengths. Since $\beta = 2\pi/\lambda$ and $\nu_p = \omega/\beta$,

$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi \nu_p}{\omega} = \frac{c}{\sqrt{\varepsilon_r f}} = \frac{3 \times 10^8 \text{ m/s}}{\sqrt{2.25} \times (5 \times 10^9 \text{ Hz})} = 0.04 \text{ m}.$$

Hence, $l = \frac{0.30 \text{ m}}{0.04 \text{ m}} = 7.5\lambda$. Since this is an integral number of half wavelengths,

$$Z_m = Z_L = 150 \Omega.$$

Section 2-10: Impedance Matching

Problem 2.45 A 50-Ω lossless line 0.6λ long is terminated in a load with $Z_L = (50 + j25) \Omega$. At 0.3λ from the load, a resistor with resistance $R = 30 \Omega$ is connected as shown in Fig. 2-43 (P2.45(a)). Use the Smith chart to find Z_m.

![Figure P2.45: (a) Circuit for Problem 2.45.](image)
Solution: Refer to Fig. P2.45(b). Since the 30-Ω resistor is in parallel with the input impedance at that point, it is advantageous to convert all quantities to admittances.

\[z_L = \frac{Z_L}{Z_0} = \frac{(50 + j25) \Omega}{50 \Omega} = 1 + j0.5 \]

and is located at point Z-LOAD. The corresponding normalized load admittance is at point Y-LOAD, which is at 0.394λ on the WTG scale. The input admittance of the load only at the shunt conductor is at 0.394λ + 0.300λ − 0.500λ = 0.194λ and is denoted by point A. It has a value of

\[Y_{inA} = 1.37 + j0.45. \]
CHAPTER 2

The shunt conductance has a normalized conductance

\[g = \frac{50 \, \Omega}{30 \, \Omega} = 1.67. \]

The normalized admittance of the shunt conductance in parallel with the input admittance of the load is the sum of their admittances:

\[y_{inR} = g + y_{inA} = 1.67 + 1.37 + j0.45 = 3.04 + j0.45 \]

and is located at point B. On the WTG scale, point B is at 0.242λ. The input admittance of the entire circuit is at 0.242λ + 0.300λ − 0.500λ = 0.042λ and is denoted by point Y-IN. The corresponding normalized input impedance is at Z-IN and has a value of

\[z_{in} = 1.9 - j1.4. \]

Thus,

\[Z_{in} = z_{in}Z_0 = (1.9 - j1.4) \times 50 \, \Omega = (95 - j70) \, \Omega. \]

Problem 2.46 A 50-Ω lossless line is to be matched to an antenna with

\[Z_L = (75 - j20) \, \Omega \]

using a shorted stub. Use the Smith chart to determine the stub length and the distance between the antenna and the stub.

Solution: Refer to Fig. P2.46(a) and Fig. P2.46(b), which represent two different solutions.

\[z_L = \frac{Z_L}{Z_0} = \frac{(75 - j20) \, \Omega}{50 \, \Omega} = 1.5 - j0.4 \]

and is located at point Z-LOAD in both figures. Since it is advantageous to work in admittance coordinates, \(y_L \) is plotted as point Y-LOAD in both figures. Y-LOAD is at 0.041λ on the WTG scale.

For the first solution in Fig. P2.46(a), point Y-LOAD-IN-1 represents the point at which \(g = 1 \) on the SWR circle of the load. Y-LOAD-IN-1 is at 0.145λ on the WTG scale, so the stub should be located at 0.145λ − 0.041λ = 0.104λ from the load (or some multiple of a half wavelength further). At Y-LOAD-IN-1, \(b = 0.52 \), so a stub with an input admittance of \(y_{stub} = 0 - j0.52 \) is required. This point is Y-STUB-IN-1 and is at 0.423λ on the WTG scale. The short circuit admittance

HW5: P4
Notice that this is answer to Problem 4.
is denoted by point $Y-SHT$, located at 0.250λ. Therefore, the short stub must be $0.423\lambda - 0.250\lambda = 0.173\lambda$ long (or some multiple of a half wavelength longer).

For the second solution in Fig. P2.46(b), point $Y-LOAD-IN-2$ represents the point at which $g = 1$ on the SWR circle of the load. $Y-LOAD-IN-2$ is at 0.355λ on the WTG scale, so the stub should be located at $0.355\lambda - 0.041\lambda = 0.314\lambda$ from the load (or some multiple of a half wavelength further). At $Y-LOAD-IN-2$, $b = -0.52$, so a stub with an input admittance of $Y_{stub} = 0 + j0.52$ is required. This point is $Y-STUB-IN-2$ and is at 0.077λ on the WTG scale. The short circuit admittance is denoted by point $Y-SHT$, located at 0.250λ. Therefore, the short stub must be $0.077\lambda - 0.250\lambda + 0.500\lambda = 0.327\lambda$ long (or some multiple of a half wavelength.
Problem 2.47 Repeat Problem 2.46 for a load with \(Z_L = (100 + j50) \, \Omega \).

Solution: Refer to Fig. P2.47(a) and Fig. P2.47(b), which represent two different solutions.

\[
Z_L = \frac{Z_L}{Z_0} = \frac{100 + j50 \, \Omega}{50 \, \Omega} = 2 + j1
\]

and is located at point \(Z\text{-LOAD} \) in both figures. Since it is advantageous to work in admittance coordinates, \(y_L \) is plotted as point \(Y\text{-LOAD} \) in both figures. \(Y\text{-LOAD} \) is at 0.463\(\lambda \) on the W TG scale.
For the first solution in Fig. P2.47(a), point Y-LOAD-IN-1 represents the point at which $g = 1$ on the SWR circle of the load. Y-LOAD-IN-1 is at 0.162λ on the WTG scale, so the stub should be located at $0.162\lambda - 0.463\lambda + 0.500\lambda = 0.199\lambda$ from the load (or some multiple of a half wavelength further). At Y-LOAD-IN-1, $b = 1$, so a stub with an input admittance of $y_{stub} = 0 - j1$ is required. This point is Y-STUB-IN-1 and is at 0.375λ on the WTG scale. The short circuit admittance is denoted by point Y-SHT, located at 0.250λ. Therefore, the short stub must be $0.375\lambda - 0.250\lambda = 0.125\lambda$ long (or some multiple of a half wavelength longer).

For the second solution in Fig. P2.47(b), point Y-LOAD-IN-2 represents the point at which $g = 1$ on the SWR circle of the load. Y-LOAD-IN-2 is at 0.338λ on the
WTG scale, so the stub should be located at $0.338\lambda - 0.463\lambda + 0.500\lambda = 0.375\lambda$ from the load (or some multiple of a half wavelength further). At Y-LOAD-IN-2, $b = -1$, so a stub with an input admittance of $y_{stub} = 0 + j1$ is required. This point is Y-STUB-IN-2 and is at 0.125λ on the WTG scale. The short circuit admittance is denoted by point Y-SHT, located at 0.250λ. Therefore, the short stub must be $0.125\lambda - 0.250\lambda + 0.500\lambda = 0.375\lambda$ long (or some multiple of a half wavelength longer).

Problem 2.48 Use the Smith chart to find Z_{in} of the feed line shown in Fig. 2-44 (P2.48(a)). All lines are lossless with $Z_0 = 50\ \Omega$.

HW5: P2
\[Z_1 = (50 + j50) \, \Omega \]

\[Z_2 = (50 - j50) \, \Omega \]

\[Z_{in} \]

\[0.3\lambda \]

\[0.7\lambda \]

Figure P2.48: (a) Circuit of Problem 2.48.

Solution: Refer to Fig. P2.48(b).

\[z_1 = \frac{Z_1}{Z_0} = \frac{50 + j50}{50} \, \Omega = 1 + j1 \]

and is at point \(Z\text{-LOAD}-1 \).

\[z_2 = \frac{Z_2}{Z_0} = \frac{50 - j50}{50} \, \Omega = 1 - j1 \]

and is at point \(Z\text{-LOAD}-2 \). Since at the junction the lines are in parallel, it is advantageous to solve the problem using admittances. \(y_1 \) is point \(Y\text{-LOAD}-1 \), which is at 0.412\(\lambda \) on the WTG scale. \(y_2 \) is point \(Y\text{-LOAD}-2 \), which is at 0.088\(\lambda \) on the WTG scale. Traveling 0.300\(\lambda \) from \(Y\text{-LOAD}-1 \) toward the generator one obtains the input admittance for the upper feed line, point \(Y\text{-IN}-1 \), with a value of \(1.97 + j1.02 \). Since traveling 0.700\(\lambda \) is equivalent to traveling 0.200\(\lambda \) on any transmission line, the input admittance for the lower line feed is found at point \(Y\text{-IN}-2 \), which has a value of 1.97 \(- j1.02 \). The admittance of the two lines together is the sum of their admittances: \(1.97 + j1.02 + 1.97 \text{ } - j1.02 = 3.94 + j0 \) and is denoted \(Y\text{-JUNCT} \).

0.300\(\lambda \) from \(Y\text{-JUNCT} \) toward the generator is the input admittance of the entire feed line, point \(Y\text{-IN} \), from which \(Z\text{-IN} \) is found.

\[Z_{in} = z_{in} Z_0 = (1.65 - j1.79) \times 50 \, \Omega = (82.5 - j89.5) \, \Omega. \]
Problem 2.49 Repeat Problem 2.48 for the case where all three transmission lines are \(\lambda/4 \) in length.

Solution: Since the transmission lines are in parallel, it is advantageous to express loads in terms of admittances. In the upper branch, which is a quarter wave line,

\[
Y_{1\text{ in}} = \frac{Y_0^2}{Y_1} = \frac{Z_1}{Z_0^2},
\]
and similarly for the lower branch,

\[Y_{2 \text{ in}} = \frac{Y_0}{Y_2} = \frac{Z_2}{Z_0}. \]

Thus, the total load at the junction is

\[Y_{\text{CT}} = Y_{1 \text{ in}} + Y_{2 \text{ in}} = \frac{Z_1 + Z_2}{Z_0}. \]

Therefore, since the common transmission line is also quarter-wave,

\[Z_m = \frac{Z_0^2}{Z_{\text{CT}}} = Z_0^2 Y_{\text{CT}} = Z_1 + Z_2 = (50 + j50) \Omega + (50 - j50) \Omega = 100 \Omega. \]

Section 2-11: Transients on Transmission Lines

Problem 2.50 Generate a bounce diagram for the voltage \(V(z,t) \) for a 1-m long lossless line characterized by \(Z_0 = 50 \Omega \) and \(\nu_p = 2c/3 \) (where \(c \) is the velocity of light) if the line is fed by a step voltage applied at \(t = 0 \) by a generator circuit with \(V_g = 60 \text{ V} \) and \(R_g = 100 \Omega \). The line is terminated in a load \(Z_L = 25 \Omega \). Use the bounce diagram to plot \(V(i) \) at a point midway along the length of the line from \(t = 0 \) to \(t = 25 \text{ ns} \).

Solution:

\[\Gamma_g = \frac{R_g - Z_0}{R_g + Z_0} = \frac{100 - 50}{100 + 50} = \frac{50}{150} = \frac{1}{3}, \]
\[\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{25 - 50}{25 + 50} = \frac{-25}{75} = -\frac{1}{3}. \]

From Eq. (2.124b),

\[V_1^+ = \frac{V_g Z_0}{R_g + Z_0} = \frac{60 \times 50}{100 + 50} = 20 \text{ V}. \]

Also,

\[T = \frac{l}{\nu_p} = \frac{l}{2c/3} = \frac{3}{2 \times 3 \times 10^8} = 5 \text{ ns}. \]

The bounce diagram is shown in Fig. P2.50(a) and the plot of \(V(t) \) in Fig. P2.50(b).
P3. Problem 2.74 in 8/E

2.74 A 25 Ω antenna is connected to a 75 Ω lossless transmission line. Reflections back toward the generator can be eliminated by placing a shunt impedance \(Z \) at a distance \(l \) from the load (Fig. P2.74). Determine the values of \(Z \) and \(l \).

\[Z_0 = 75 \, \Omega \]

\[Z_L = 25 \, \Omega \]

\[Z_B = Z_0 / Z \]

\[y_B + y = 1 \]

\[Y_B + Y = Y_0 \]

There are an infinite number of solutions \((l, Z)\) that satisfy the above condition. We describe two special ones, where \(Z \) is purely resistive and purely reactive, respectively.

Special solution 1: purely resistive shunt impedance \(Z \)

For \(z_B \) to be purely resistive, we need \(l = \lambda / 4 \), resulting in \(z_B = 1/z_L = 3 \).

\[y_B + y = 1 \quad \Rightarrow \quad z_B \parallel z = 1 \]

\[\therefore \quad 3 \parallel \frac{3}{2} = \frac{3 \times \frac{3}{2}}{3 + \frac{3}{2}} = 1 \]

\[\therefore \quad z = \frac{3}{2} \quad \Rightarrow \quad Z = \frac{3}{2} \times 75 \, \Omega = 112.5 \, \Omega \]

Special solution 2: purely resistive shunt impedance \(Z \)

Using the Smith chart, we find that \(y_B(l) = 1 - 1.75j \) at \(l = 0.333\lambda - 0.250\lambda = 0.083\lambda \).

\[y_B + y = 1 \quad \Rightarrow \quad y = 1.75j \quad \Rightarrow \quad Z = \frac{Z_0}{1.75j} = -j \frac{75 \, \Omega}{1.75} = -j42.86 \, \Omega \]
\[
y_B(\lambda) = 1 - 1.75 \gamma
\]
\[
l = 0.333 \lambda - 0.250 \lambda = 0.083 \lambda
\]