Electrostatics

Boundary conditions

You will often encounter boundaries between two different media, either between two different dielectrics, or between a dielectric and a conductor. We actually have already touched on this when we calculated the electric field due to a uniformly charged ball. Remember the discontinuity in the E field?

Now let's look at the so-called boundary conditions both in general & in detail.

Let's draw a tiny loop $\int \vec{E} \cdot d\vec{l} = 0$

Define E_t & E_n

$E_{2t} \Delta l - E_{1t} \Delta l = 0$

$\Rightarrow E_{2t} = E_{1t}$

If medium 1 is an ideal conductor, $E_1 = 0 \Rightarrow E_{1t} = 0 = E_{2t} = 0$
Now let's have a small pile at the interface.

\[\oint \mathbf{D} \cdot d\mathbf{S} = \mathcal{Q} \]

\[(D_{2n} - D_{1n})dS = \rho_s dS \]

\[D_{2n} - D_{1n} = \rho_s \]

\[\varepsilon_2 E_{2n} - \varepsilon_1 E_{1n} = \rho_s \]

Special cases:

1. Two dielectrics w/ \(\rho_s = 0 \)
 \[D_{2n} = D_{1n} \quad \Rightarrow \quad \varepsilon_2 E_{2n} = \varepsilon_1 E_{1n} \]
 This is the reason why we have the discontinuity at the surface of the charged shell.

2. Medium 1 is an ideal conductor.
 \[E_1 = 0 \quad \Rightarrow \quad E_{1n} = 0 \]
 \[\Rightarrow \varepsilon_2 E_{2n} = \rho_s \]

Now let's consider an infinitely large sheet of charge w/ a density \(\rho_s \). It's a 2-D sheet, w/o a thickness.

By symmetry, the \(E \) fields on the two sides must be equal, but in opposite directions.

And \(E \) is the same everywhere @ the sheet. And \(E @ the sheet. \)
\[2\varepsilon E \Delta S = P_s \Delta S \]

\[E = \frac{P_s}{2\varepsilon} \]

This is the same as the field at the center of the charged disk when we take \(a \to \infty \).

What about elsewhere, i.e. far away from the sheet?

There's no charge.

Now, let's look at two infinite sheets of opposite charge, \(+P_s \) & \(-P_s \).

Above the positive charge sheet.

\[E = \frac{P_s}{2\varepsilon} - \frac{P_s}{2\varepsilon} = 0 \]

Between the two.

\[E = \frac{-P_s}{2\varepsilon} + \frac{-P_s}{2\varepsilon} = -\frac{P_s}{\varepsilon} \]

Below the negative charge sheet.

\[E = -\frac{P_s}{2\varepsilon} + \frac{P_s}{2\varepsilon} = 0 \]