Double-Stub Matching

Content not in textbook. Part of Lab. Report to explain how this method works in your own words.

We quickly went through this slide set on Tue 9/28/2021. Please review offline.

The positions of the two stubs, d_1 and d_2, are fixed.

We adjust the two stub lengths, l_1 and l_2, to achieve matching.

General strategy:
First, adjust l_1 to get $y(d_2) = 1 + jb_2$.

And then?

The 2nd step is trivial; we focus on the 1st step.
We use the “y-chart.”

\[g = 1 \text{ circle of the y-chart} \]

\[g = 1 \text{ circle of the z-chart} \]

Locate \(z_L \) and then find \(y_L \).
\(y_1 \text{ is fixed.} \)

\[
y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} \\
= g(d_1) + jb(d_1) + jb_{\text{stub1}}
\]

Stub purely reactive.
d_1 is fixed.

$$y_{total}(d_1) = y(d_1) + y_{stub1} = g(d_1) + jb(d_1) + jb_{stub1}$$

Stub purely reactive. Therefore trajectory of $y_{total}(d_1)$ is the $g = g(d_1)$ circle when l_1 is adjusted.
\[y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} = g(d_1) + jb(d_1) + jb_{\text{stub1}} \]

Mark these points: \(y_L \) and \(z_L \).
$y_{total}(d_1) = y(d_1) + y_{stub1}$
$= g(d_1) + jb(d_1) + jb_{stub1}$

Mark these points: ○

Moving from d_1 to d_2 is rotating the $g = g(d_1)$ circle into the violet circle (locus of $y(d_2)$ for all possible l_1). (Follow the marked points.)
\[y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} = g(d_1) + jb(d_1) + jb_{\text{stub1}} \]

The **violet circle** intersects the \(g = 1 \) circle of the \(y \)-chart. The intersection is the desired \(y(d_2) \).

When stub\(_1\) is done, \(z(d_2) \) falls on the **green circle**.

In the lab, the network analyzer displays a \(z \)-chart. The TAs put this circle on the screen to help you.
\[y_{total}(d_1) = y(d_1) + y_{stub1} = g(d_1) + jb(d_1) + jb_{stub1} \]

The violet circle intersects the \(g = 1 \) circle of the \(y \)-chart. The intersection is the desired \(y(d_2) \).

As in single-stub matching, there are two solutions. Can you spot the other solution?
\[y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} = g(d_1) + jb(d_1) + jb_{\text{stub1}} \]

The **violet circle** intersects the \(g = 1 \) circle of the \(y \)-chart.
The intersection is the desired \(y(d_2) \).

As in single-stub matching, there are two solutions. Can you spot the other solution?