Double-Stub Matching

Content not in textbook. Part of Lab (optional this semester). Incentive: 10 points added to Final based on report explaining how this method works in your own words.

The positions of the two stubs, d_1 and d_2, are fixed. We adjust the two stub lengths, l_1 and l_2, to achieve matching.

General strategy:
First, adjust l_1 to get $y(d_2) = 1 + jb_2$.

And then?

The 2nd step is trivial; we focus on the 1st step.
We use the “y-chart.”

\(g = 1 \) circle of the y-chart

\(g = 1 \) circle of the z-chart

Locate \(z_L \) and then find \(y_L \).
d_1 is fixed.

$$y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}}$$

$$= g(d_1) + jb(d_1) + jb_{\text{stub1}}$$

Stub purely reactive.
d_1 is fixed.

\[y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} \]
\[= g(d_1) + jb(d_1) + jb_{\text{stub1}} \]

Stub purely reactive. Therefore trajectory of $y_{\text{total}}(d_1)$ is the $g = g(d_1)$ circle when l_1 is adjusted.
\[y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} = g(d_1) + jb(d_1) + jb_{\text{stub1}} \]

Mark these points:

\(g = 1 \) circle of the y-chart
\(g = 1 \) circle of the z-chart
\[y_{total}(d_1) = y(d_1) + y_{stub1} = g(d_1) + jb(d_1) + jb_{stub1} \]

Mark these points: \(\bigcirc \)

Moving from \(d_1 \) to \(d_2 \) is rotating the \(g = g(d_1) \) circle into the violet circle. (Follow the marked points.)
\[y_{total}(d_1) = y(d_1) + y_{stub1} = g(d_1) + jb(d_1) + jb_{stub1} \]

The **violet circle** intersects the \(g = 1 \) circle of the \(y \)-chart. The intersection is the desired \(y(d_2) \).

When \(stub_1 \) is done, \(z(d_2) \) falls on the **green circle**.

In the lab, the network analyzer displays a \(z \)-chart. The TAs put this circle on the screen to help you.
\[y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} = g(d_1) + jb(d_1) + jb_{\text{stub1}} \]

The violet circle intersects the \(g = 1 \) circle of the \(y \)-chart. The intersection is the desired \(y(d_2) \).

As in single-stub matching, there are two solutions. Can you spot the other solution?
\(y_{\text{total}}(d_1) = y(d_1) + y_{\text{stub1}} \)
\(= g(d_1) + jb(d_1) + jb_{\text{stub1}} \)

The violet circle intersects the \(g = 1 \) circle of the y-chart. The intersection is the desired \(y(d_2) \).

As in single-stub matching, there are two solutions. Can you spot the other solution?
Test 1

- Thu 3/18/2021, in-class. Will give extra time. When will be your next commitment?
- Covers contents up to Thu 3/11 lecture
- Concerns and suggestions?

75 min (11:30 am – 12:45 pm class)
15 min (extra time always given in past semesters)
10 min (for scanning, photo taking, submission)
100

11:15 am – 12:55 pm