ECE 341 Homework #1

P1. Problem 1.1 in Textbook 7/E:

1.1 A 2 kHz sound wave traveling in the x direction in air was observed to have a differential pressure $p(x, t) = 10 \text{ N/m}^2$ at $x = 0$ and $t = 50 \mu s$. If the reference phase of $p(x, t)$ is 36°, find a complete expression for $p(x, t)$. The velocity of sound in air is 330 m/s.

P2. Problem 1.2 in Textbook 7/E:

Problem 1.2 For the pressure wave described in Example 1-1, plot

(a) $p(x,t)$ versus x at $t = 0$,
(b) $p(x,t)$ versus t at $x = 0$.

Be sure to use appropriate scales for x and t so that each of your plots covers at least two cycles.

P3. Problem 1.3 in Textbook 7/E:

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator that completes 180 vibrations per minute. If it is observed that a given crest, or maximum, travels 300 cm in 10 s, what is the wavelength?

P4. Problem 1.5 in Textbook 7/E:

Two waves, $y_1(t)$ and $y_2(t)$, have identical amplitudes and oscillate at the same frequency, but $y_2(t)$ leads $y_1(t)$ by a phase angle of 60°. If

$$y_1(t) = 4 \cos(2\pi \times 10^3 t),$$

write down the expression appropriate for $y_2(t)$ and plot both functions over the time span from 0 to 2 ms.

Note: We often call a sinusoidal function of time a "wave." This is not in a strict sense, as a wave is a function of both time and position. Better to say a "waveform" (as you can see with an oscilloscope) or a "signal."

P5. Problem 1.6 in Textbook 7/E:

The height of an ocean wave is described by the function

$$y(x,t) = 1.5 \sin(0.5t - 0.6x) \text{ (m)}.$$

Determine the phase velocity and the wavelength and then sketch $y(x,t)$ at $t = 2 \text{ s}$ over the range from $x = 0$ to $x = 2\lambda$.
P6. Problem 1.7 in Textbook 7/E:

A wave traveling along a string in the +x-direction is given by

\[y_1(x,t) = A \cos(\omega t - \beta x), \]

where \(x = 0 \) is the end of the string, which is tied rigidly to a wall, as shown in Fig. 1-21 (P1.6). When wave \(y_1(x,t) \) arrives at the wall, a reflected wave \(y_2(x,t) \) is generated. Hence, at any location on the string, the vertical displacement \(y_s \) will be the sum of the incident and reflected waves:

\[y_s(x,t) = y_1(x,t) + y_2(x,t). \]

(a) Write an expression for \(y_2(x,t) \), keeping in mind its direction of travel and the fact that the end of the string cannot move.

(b) Generate plots of \(y_1(x,t) \), \(y_2(x,t) \) and \(y_s(x,t) \) versus \(x \) over the range \(-2\lambda \leq x \leq 0\) at \(\omega t = \pi/4 \) and at \(\omega t = \pi/2 \).

P7. Problem 1.8 in Textbook 7/E:

Two waves on a string are given by the following functions:

\[y_1(x,t) = 4 \cos(20t - 30x) \quad \text{(cm)}, \]
\[y_2(x,t) = -4 \cos(20t + 30x) \quad \text{(cm)}, \]

where \(x \) is in centimeters. The waves are said to interfere constructively when their superposition \(|y_s| = |y_1 + y_2| \) is a maximum and they interfere destructively when \(|y_s| \) is a minimum.

(a) What are the directions of propagation of waves \(y_1(x,t) \) and \(y_2(x,t) \)?

(b) At \(t = (\pi/50) \) s, at what location \(x \) do the two waves interfere constructively, and what is the corresponding value of \(|y_s| \)?

(c) At \(t = (\pi/50) \) s, at what location \(x \) do the two waves interfere destructively, and what is the corresponding value of \(|y_s| \)?
P8. Problem 1.9 in Textbook 7/E:

HW1:P8

Give expressions for \(y(x,t) \) for a sinusoidal wave traveling along a string in the negative \(x \)-direction, given that \(y_{\text{max}} = 40 \) cm, \(\lambda = 30 \) cm, \(f = 10 \) Hz, and

(a) \(y(x,0) = 0 \) at \(x = 0 \),
(b) \(y(x,0) = 0 \) at \(x = 7.5 \) cm. Notice difference from problem in textbook

P9. Problem 1.14

A certain electromagnetic wave traveling in sea water was observed to have an amplitude of 98.02 (V/m) at a depth of 10 m and an amplitude of 81.87 (V/m) at a depth of 100 m. What is the attenuation constant of sea water?

P10. Problem 1.26

Find the phasors of the following time functions:

(a) \(v(t) = 3 \cos(\omega t - \pi/3) \) (V), Amplitude is 9 in 7/E and 6/E of textbook
(b) \(v(t) = 12 \sin(\omega t + \pi/4) \) (V),
(c) \(i(x,t) = e^{-3x} \sin(\omega t + \pi/6) \) (A),
(d) \(i(t) = -2 \cos(\omega t + 3\pi/4) \) (A),
(e) \(i(t) = 4 \sin(\omega t + \pi/3) + 3 \cos(\omega t - \pi/6) \) (A).

Again, amplitude different in newer versions

P11. Problem 1.27

Find the instantaneous time sinusoidal functions corresponding to the following phasors:

(a) \(\vec{V} = -5e^{j\pi/3} \) (V),
(b) \(\vec{V} = 6e^{-j\pi/4} \) (V),
(c) \(\vec{I} = (6 + j8) \) (A),
(d) \(\vec{I} = -3 + j2 \) (A),
(e) \(\vec{I} = j \) (A),
(f) \(\vec{I} = 2e^{j\pi/6} \) (A).